Solutions to Math 42 Second Exam - February 20, 2014

1. (12 points)
(a) Evaluate $\int_{0}^{\infty} x e^{-x^{2}} d x$ or explain why its value does not exist; show all reasoning.
(5 points) The function $f(x)=x e^{-x^{2}}$ is continuous at 0 , so we have an improper integral of type I and we should compute

$$
\lim _{t \rightarrow \infty} \int_{0}^{t} x e^{-x^{2}} d x
$$

We use u-substitution: let $u=-x^{2}$ so that $d u=-2 x d x$.
The bounds of integration become $u(0)=0$ and $u(t)=-t^{2}$, hence we obtain

$$
\begin{aligned}
& \left.\lim _{t \rightarrow \infty} \int_{0}^{-t^{2}} e^{u}\left(-\frac{d u}{2}\right)=-\frac{1}{2} \lim _{t \rightarrow \infty} e^{u}\right]_{0}^{-t^{2}}= \\
& =-\frac{1}{2} \lim _{t \rightarrow \infty}\left(e^{-t^{2}}-1\right)=-\frac{1}{2}(0-1)=\frac{1}{2}
\end{aligned}
$$

(b) Determine whether $\int_{0}^{1} \frac{\ln (1+x)}{x^{2}} d x$ converges or diverges; give complete reasoning.
(7 points) The function $f(x)=\frac{\ln (1+x)}{x^{2}}$ is continuous and positive for all $x>0$, but is not continuous at 0 so we have an improper integral of type II. Here are three possible solutions:
Solution 1 (Limit Comparison Theorem): We take $g(x)=\frac{1}{x}$ as a reference function, also continuous and positive for all $x>0$: we have

$$
\lim _{x \rightarrow 0^{+}} \frac{\frac{\ln (1+x)}{x^{2}}}{\frac{1}{x}}=\lim _{x \rightarrow 0^{+}} \frac{\ln (1+x)}{x^{2}} \cdot \frac{x}{1}=\lim _{x \rightarrow 0^{+}} \frac{\ln (1+x)}{x}
$$

The last fraction is an indeterminate form of type $\frac{0}{0}$ and both $\ln (1+x)$ and x are continuous and positive when we take the limit for $x \rightarrow 0^{+}$, hence using l'Hôpital's Rule we obtain

$$
\lim _{x \rightarrow 0^{+}} \frac{\ln (1+x)}{x}=\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{1+x}}{1}=\lim _{x \rightarrow 0^{+}} \frac{1}{1+x}=\frac{1}{1+0}=1>0
$$

Therefore by the Limit Comparison test for improper integrals of type II, our original integral converges if and only if

$$
I=\int_{0}^{1} \frac{1}{x} d x
$$

converges.
It remains to compute the integral above. We have

$$
\left.I=\lim _{t \rightarrow 0^{+}} \int_{t}^{1} \frac{1}{x} d x=\lim _{t \rightarrow 0^{+}} \ln x\right]_{t}^{1}=\lim _{t \rightarrow 0^{+}}(\ln 1-\ln t)=-(0-\infty)=+\infty
$$

hence $\int_{0}^{1} \frac{\ln (1+x)}{x^{2}} d x$ diverges too.
Solution 2 (direct computation): We can do the indefinite integral by parts, using $u=\ln (1+x)$, $d v=x^{-2} d x$, so that $d u=\frac{1}{1+x} d x, v=-\frac{1}{x}$:

$$
\int \frac{\ln (1+x)}{x^{2}} d x=-\frac{\ln (1+x)}{x}+\int \frac{d x}{x(1+x)}
$$

Using the partial fraction decomposition $\frac{1}{x(x+1)}=\frac{1}{x}-\frac{1}{x+1}$ the latter integral becomes

$$
\int \frac{d x}{x(1+x)}=\int \frac{d x}{x}-\int \frac{d x}{x+1}=\ln x-\ln (x+1)+C
$$

so that

$$
\begin{aligned}
\int \frac{\ln (1+x)}{x^{2}} d x & =-\frac{\ln (1+x)}{x}+\int \frac{d x}{x(1+x)} \\
& =-\frac{\ln (1+x)}{x}+\ln x-\ln (x+1)+C
\end{aligned}
$$

Now we have

$$
\begin{aligned}
\int_{0}^{1} \frac{\ln (1+x)}{x^{2}} d x & =\lim _{a \rightarrow 0^{+}}\left[\frac{\ln (1+x)}{x}+\ln x-\ln (x+1)\right]_{a}^{1} \\
& =\lim _{a \rightarrow 0^{+}}\left[\ln 2+0-\ln 2-\frac{\ln (1+a)}{a}-\ln a+\ln (a+1)\right] \\
& =\lim _{a \rightarrow 0^{+}}\left[-\frac{\ln (1+a)}{a}+\ln \left(\frac{a+1}{a}\right)\right]=\infty, \text { so the integral diverges, since }
\end{aligned}
$$

$\lim _{a \rightarrow 0^{+}}\left(-\frac{\ln (1+a)}{a}\right)=-1$ (using l'Hôpital as above) and $\lim _{a \rightarrow 0^{+}} \ln \left(\frac{a+1}{a}\right)=\infty$.
Solution 3 (Comparison Theorem): We should strongly suspect that this integral diverges, because near the integrand's discontinuity of $x=0$, the function $\ln (1+x)$ is approximately x (this is one of our basic linear approximations, or you can think of x as the start of the Taylor series for $\ln (1+x))$, which means that $\frac{\ln (1+x)}{x^{2}}$ is approximately $\frac{x}{x^{2}}=\frac{1}{x}$; and we can verify (as in solution 1) that the improper integral $\int_{0}^{1} \frac{d x}{x}$ diverges. This is not a proof, but it helps guide us toward making a successful comparison.
The one complication here is that $\ln (1+x) \leq x$ for small x (again think about how this expresses that the graph of the linear approximation lies above the graph of $\ln (1+x)$, since the latter is concave down), so we can't apply the Comparison Theorem to $\frac{\ln (1+x)}{x^{2}}$ and $\frac{1}{x}$, since the latter is larger and its integral diverges. But there is a simple fix: we claim that

$$
\begin{equation*}
\frac{\ln (1+x)}{x^{2}} \geq \frac{1}{2 x} \quad \text { for all } \quad 0<x \leq 1 \tag{*}
\end{equation*}
$$

If true, the Comparison Test would apply; and $\int_{0}^{1} \frac{\ln (1+x)}{x^{2}} d x$ diverges, since $\int_{0}^{1} \frac{d x}{2 x}$ diverges. To see why $(*)$ is true, note that $(*)$ follows if we could show that

$$
\begin{equation*}
\ln (1+x) \geq \frac{x}{2} \quad \text { for all } \quad 0 \leq x \leq 1 \tag{**}
\end{equation*}
$$

But the function $f(x)=\ln (1+x)-\frac{x}{2}$ satisfies $f(0)=0$, and

$$
f^{\prime}(x)=\frac{1}{1+x}-\frac{1}{2}>0 \quad \text { for all } \quad 0 \leq x<1
$$

so f is increasing on $[0,1)$ and is therefore nonnegative on this interval (and it is also nonnegative at $x=1$ by direct computation), so the inequality $(* *)$ is true, and this implies $(*)$.
2. (10 points) Determine, with justification, whether each series converges. If the series converges, find its sum.
(a) $\sum_{n=1}^{\infty} \frac{4^{n-1}-5^{n+2}}{3^{2 n}}$
(5 points) Note that

$$
\sum_{n=1}^{\infty} \frac{4^{n-1}}{3^{2 n}}=\frac{1}{9} \sum_{n=1}^{\infty} \frac{4^{n-1}}{9^{n-1}}
$$

is a geometric series with common ratio $\frac{4}{9}<1$, so it is convergent. It converges to

$$
\frac{1}{9} \times \frac{1}{1-\frac{4}{9}}=\frac{1}{9} \times \frac{9}{5}=\frac{1}{5}
$$

Similarly,

$$
\sum_{n=1}^{\infty} \frac{5^{n+1}}{3^{2 n}}=\frac{5^{3}}{9} \sum_{n=1}^{\infty} \frac{5^{n-1}}{9^{n-1}}
$$

is also a geometric series with common ratio $\frac{5}{9}<1$, so it is convergent. It converges to

$$
\frac{5^{3}}{9} \frac{1}{1-\frac{5}{9}}=\frac{5^{3} 9}{9} \frac{5^{3}}{4}=\frac{125}{4}
$$

Thus,

$$
\sum_{n=1}^{\infty} \frac{4^{n-1}}{3^{2 n}}-\frac{5^{n+1}}{3^{2 n}}
$$

is convergent since it is a difference of two convergent series and it converges to

$$
\frac{1}{5}-\frac{125}{4}=-\frac{621}{20}
$$

(b) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}+\sqrt{n+1}}$
(5 points) Note that for any integer n,

$$
\sqrt{n}+\sqrt{n+1}<\sqrt{n}+\sqrt{n+3 n}=\sqrt{n}+2 \sqrt{n}=3 \sqrt{n}
$$

so

$$
\frac{1}{\sqrt{n}+\sqrt{n+1}}>\frac{1}{3 \sqrt{n}}>0
$$

We know that $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ diverges since it is a p-series with $p=1 / 2<1$. Thus, by Comparison Test, $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}+\sqrt{n+1}}$ diverges as well.
Alternatively, one can use Limit Comparison Test by comparing it with $b_{n}=\frac{1}{\sqrt{n}}$. Clearly, all terms are positive. Next, we check the limit condition;

$$
\lim _{n \rightarrow \infty} \frac{\frac{1}{\sqrt{n}+\sqrt{n+1}}}{\frac{1}{\sqrt{n}}}=\frac{1}{1+\sqrt{\frac{n+1}{n}}}=\frac{1}{2} \neq 0
$$

Thus, by LCT, either both series converges or both diverges. But we know that $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ diverges since it is a p-series with $p=\frac{1}{2}<1$. Therefore, $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}+\sqrt{n+1}}$ diverges as well.
3. (10 points) Determine whether each of the series below converges or diverges. Indicate clearly which tests you use and how you apply them.
(a) $\sum_{n=2}^{\infty} \frac{n^{2 / 3}}{n^{3 / 2}-n+1}$
(5 points) Comparison Test. Let $a_{n}=\frac{n^{2 / 3}}{n^{3 / 2}-n+1}$ be the n-th term and let $b_{n}=\frac{n^{2 / 3}}{n^{3 / 2}}$ be the reference series. Notice that $b_{n}=\frac{n^{2 / 3}}{n^{3 / 2}}=n^{-5 / 6}$ forms the p-series for $p=5 / 6$. Since $5 / 6<1$, the series $\sum_{n=2}^{\infty} b_{n}$ diverges by the p-series test.
We claim that $0<b_{n}<a_{n}$ for all $n \geq 2$. To see this, notice for all $n \geq 2$, we have $-n+1<0$, which implies

$$
\begin{equation*}
n^{3 / 2}-n+1<n^{3 / 2} \tag{1}
\end{equation*}
$$

and for all $n>1$ we have $n^{3 / 2}>n$, which implies $n^{3 / 2}-n+1$ is positive. Thus we can flip (1) to obtain

$$
0<\frac{1}{n^{3 / 2}}<\frac{1}{n^{3 / 2}-n+1}
$$

Multiplying this inequality by $n^{2 / 3}$, we get $0<b_{n}<a_{n}$, for all $n \geq 2$. Since both a_{n}, b_{n} are positive and $\sum_{n=2}^{\infty} b_{n}$ diverges, the Comparison Test applies, concluding that $\sum_{n=2}^{\infty} a_{n}$ diverges. Note: we need to check that $n^{3 / 2}-n+1$ is positive in order to flip (1). For example, $-2<3$ but $\frac{1}{3} \nless-\frac{1}{2}$.
Limit Comparison Test. Let a_{n} and b_{n} be the same as before. Calculate $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}} \\
= & \lim _{n \rightarrow \infty} \frac{\frac{n^{2 / 3}}{n^{3 / 2}-n+1}}{\frac{n^{2 / 3}}{n^{3 / 2}}} \\
= & \lim _{n \rightarrow \infty} \frac{n^{2 / 3}}{n^{3 / 2}-n+1} \frac{n^{3 / 2}}{n^{2 / 3}} \\
= & \lim _{n \rightarrow \infty} \frac{n^{13 / 6}}{n^{13 / 6}-n^{5 / 3}+n^{2 / 3}} \\
= & \lim _{n \rightarrow \infty} \frac{1}{1-n^{-1 / 2}+n^{-3 / 2}} \\
= & 1 .
\end{aligned}
$$

To apply the Limit Comparison Test, we further check that a_{n} and b_{n} are positive for all $n \geq 2$. b_{n} is clearly positive for all $n \geq 2$, and a_{n} is positive for all $n \geq 2$ because $n^{3 / 2}>n$. By the Limit Comparison Test the series $\sum_{n=2}^{\infty} a_{n}$ and $\sum_{n=2}^{\infty} b_{n}$ both converge or both diverge. The latter diverges by the p-series test for $p=5 / 6<1$. Hence $\sum_{n=2}^{\infty} a_{n}$ also diverges.

Problem instructions, repeated: Determine whether each of the series below converges or diverges. Indicate clearly which tests you use and how you apply them.
(b) $\sum_{n=1}^{\infty} \frac{2^{n} n!}{(2 n-1)!}$
(5 points) Use the Ratio Test. Let $a_{n}=\frac{2^{n} n!}{(2 n-1)!}$.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|} \\
= & \lim _{n \rightarrow \infty} \frac{\frac{2^{n+1}(n+1)!}{(2 n+1)!}}{\frac{2^{n} n!}{(2 n-1)!}} \\
= & \lim _{n \rightarrow \infty} \frac{2^{n+1}(n+1)!}{(2 n+1)!} \frac{(2 n-1)!}{2^{n} n!} \\
= & \lim _{n \rightarrow \infty} \frac{2^{n+1}}{2^{n}} \frac{(n+1)!}{n!} \frac{(2 n-1)!}{(2 n+1)!} \\
= & \lim _{n \rightarrow \infty} \frac{2}{1} \frac{n+1}{1} \frac{1}{2 n(2 n+1)} \\
= & \lim _{n \rightarrow \infty} \frac{1+1 / n}{n(2+1 / n)} \\
= & 0<1
\end{aligned}
$$

By the Ratio Test, the series converges absolutely, and hence it converges.
4. (10 points) One of three possibilities holds for each of the series below: (i) it converges absolutely, (ii) it converges but does not converge absolutely, or (iii) it diverges. Determine which possibility holds for each of the series below; indicate clearly which tests you use and how you apply them.
(a) $\sum_{n=3}^{\infty} \frac{(-1)^{n} \ln n}{2 n}$
(6 points) Let $b_{n}=\frac{\ln n}{2 n}$ which is positive for $n \geq 3$.
Then the given series is an alternating series $\sum_{n=3}^{\infty}(-1)^{n} b_{n}$, and thus we use the alternating series test for convergence.

1. As $x \rightarrow \infty, \ln x$ and x both tends to infinity.

By l'Hôpital's Rule $\lim _{x \rightarrow \infty} \frac{\ln x}{2 x}=\lim _{x \rightarrow \infty} \frac{(\ln x)^{\prime}}{(2 x)^{\prime}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{2}=0$.
Therefore $\lim _{n \rightarrow \infty} b_{n}=0$.
2. Let $f(x)=\frac{\ln x}{2 x}$.

Then $f^{\prime}(x)=\frac{1}{2} \cdot \frac{x(\ln x)^{\prime}-(\ln x) x^{\prime}}{x^{2}}=\frac{1-\ln x}{2 x^{2}}<0$ when $x \geq 3$ because $\ln x>\ln e=1$.
Therefore $f(x)$ is decreasing and $f(n+1)<f(n)$; and thus $b_{n+1}<b_{n}$ for all $n \geq 3$.
Thus by the alternating series test, the series converges.
We now test if the series converges absolutely, which is to test if the series

$$
\sum_{n=3}^{\infty}\left|\frac{(-1)^{n} \ln n}{2 n}\right|=\sum_{n=3}^{\infty} \frac{\ln n}{2 n}
$$

converges.
We have $\frac{\ln n}{2 n}>\frac{1}{2 n}>0$ for $n \geq 3$ and we know that $\sum_{n=3}^{\infty} \frac{1}{2 n}$ diverges from the p-series Test.
Therefore using the comparison test on two series $\sum_{n=3}^{\infty} \frac{\ln n}{2 n}$ and $\sum_{n=3}^{\infty} \frac{1}{2 n}$, the series $\sum_{n=3}^{\infty} \frac{\ln n}{2 n}$ diverges as well.
Answer: (ii) the series converges, but does not converge absolutely

Problem instructions, repeated: One of three possibilities holds for each of the series below: (i) it converges absolutely, (ii) it converges but does not converge absolutely, or (iii) it diverges. Determine which possibility holds for each of the series below; indicate clearly which tests you use and how you apply them.
(b) $\sum_{n=1}^{\infty} \frac{\arctan n}{2+(-1)^{n}}$
(4 points) Let $a_{n}=\frac{\arctan n}{2+(-1)^{n}}$.
For odd n, say $n=2 k-1, a_{2 k-1}=\arctan (2 k-1)$ whereas on even n, say $n=2 k, a_{2 k}=\frac{\arctan 2 k}{3}$.
Then taking limits for odd and even n separately, $\lim _{k \rightarrow \infty} a_{2 k}=\frac{\pi}{6}$ whereas $\lim _{k \rightarrow \infty} a_{2 k-1}=\frac{\pi}{2}$.
Thus $\lim _{n \rightarrow \infty} a_{n}$ does not exist, since it may not approach to two distinct number.
Using the test for divergence, the series $\sum a_{n}$ diverges.

Alternate solution:

For any $n \geq 1$, we have $\arctan n \geq \arctan 1 \geq \frac{\pi}{4}$ and $1 \leq 2+(-1)^{n} \leq 3$.
Therefore $\frac{\arctan n}{2+(-1)^{n}} \geq \frac{\pi}{12}$ for all $n \geq 1$.
Since $\sum_{n=1}^{\infty} \frac{\pi}{12}$ diverges, so is $\sum_{n=1}^{\infty} \frac{\arctan n}{2+(-1)^{n}}$ from the comparison test.
Answer: (iii) the series diverges.
5. (12 points) Find, with complete justification, the interval of convergence of the power series

$$
\sum_{n=0}^{\infty} \frac{(3-2 x)^{n}}{\left(n^{3}+2\right) 5^{n}}
$$

The first thing to do is compute the radius of convergence by using the ratio test (6 points). Let

$$
a_{n}=\frac{(3-2 x)^{n}}{\left(n^{3}+2\right) 5^{n}}
$$

we have

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(3-2 x)^{n+1}}{\left((n+1)^{3}+2\right) 5^{n+1}} \cdot \frac{\left(n^{3}+2\right) 5^{n}}{(3-2 x)^{n}}\right|=\lim _{n \rightarrow \infty}\left(\left|\frac{3-2 x}{5}\right| \cdot \frac{n^{3}+2}{(n+1)^{3}+2}\right)
$$

Now $\frac{|3-2 x|}{5}$ is independent of n, so we can take it outside of the limit sign, while in the fraction $\frac{n^{3}+2}{(n+1)^{3}+2}$ both the numerator and the denominator are polynomials of the same degree (3), hence the limit as $n \rightarrow \infty$ is the quotient of the coefficients of the terms of highest degree (that is, degree 3). Thus we have

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\left|\frac{3-2 x}{5}\right| \cdot \frac{1}{1}=\left|\frac{3-2 x}{5}\right|
$$

The ratio test says that the power series converges absolutely for

$$
\left|\frac{3-2 x}{5}\right|<1
$$

and diverges for

$$
\left|\frac{3-2 x}{5}\right|>1
$$

In particular,

$$
\left|\frac{3-2 x}{5}\right|<1
$$

is true if and only if

$$
-5<3-2 x<5
$$

which is equivalent to

$$
4>x>-1
$$

Now we have to check the endpoints 4 and -1 (3 points each).
For $x=-1$, one gets

$$
\sum_{n=0}^{\infty} \frac{(3-2(-1))^{n}}{\left(n^{3}+2\right) 5^{n}}=\sum_{n=0}^{\infty} \frac{(3+2)^{n}}{\left(n^{3}+2\right) 5^{n}}=\sum_{n=0}^{\infty} \frac{1}{n^{3}+2}
$$

Letting now $b_{n}=\frac{1}{n^{3}+2}$, it is clear that

$$
0<\frac{1}{n^{3}+2}<\frac{1}{n^{3}} \text { for all } n \geq 1
$$

moreover

$$
\sum_{n=1}^{\infty} \frac{1}{n^{3}}
$$

is a convergent p-series for $p=3>1$, hence by comparison test also

$$
\sum_{n=0}^{\infty} \frac{1}{n^{3}+2}
$$

converges, which means that the endpoint -1 belongs to the interval of convergence.
For $x=4$, one gets

$$
\sum_{n=0}^{\infty} \frac{(3-2(4))^{n}}{\left(n^{3}+2\right) 5^{n}}=\sum_{n=0}^{\infty} \frac{(-5)^{n}}{\left(n^{3}+2\right) 5^{n}}=\sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n}}{\left(n^{3}+2\right) 5^{n}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\left(n^{3}+2\right)}
$$

We obtain then an alternating series and we apply the absolute convergence test: the series

$$
\sum_{n=0}^{\infty}\left|\frac{(-1)^{n}}{\left(n^{3}+2\right)}\right|=\sum_{n=0}^{\infty} \frac{1}{\left(n^{3}+2\right)}
$$

converges as shown above, hence

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\left(n^{3}+2\right)}
$$

converges absolutely and thus converges (by absolute convergence test). In particular, the endpoint 4 also belongs to the interval of convergence.
The interval of convergence is then $[-1,4]$.
6. (12 points) Match each function below with its power series, listed among the choices below. You do not need to justify your answers. (Not all of the series have a match, but every function has a match.)
(A) $-x^{2}-\frac{x^{4}}{2}-\frac{x^{6}}{3}-\frac{x^{8}}{4}-\cdots$
(B) $1-\frac{x}{2}+\frac{x^{2}}{3}-\frac{x^{3}}{4}+\cdots$
(C) $1-\frac{2^{2}}{2!} x^{2}+\frac{2^{4}}{4!} x^{4}-\frac{2^{6}}{6!} x^{6}+\cdots$
(D) $-x^{3}-\frac{x^{5}}{2}-\frac{x^{7}}{3}-\frac{x^{9}}{4}-\cdots$
(E) $\frac{1}{10}+\frac{x}{100}+\frac{x^{2}}{1000}+\frac{x^{3}}{10000}+\cdots$
(F) $1-x^{2}+x^{4}-x^{6}+\cdots$
(G) $x-x^{3}+x^{5}-x^{7}+\cdots$
(H) $x^{3}-\frac{x^{5}}{2}+\frac{x^{7}}{3}-\frac{x^{9}}{4}+\cdots$
(I) $2 x-\frac{2^{3}}{3!} x^{3}+\frac{2^{5}}{5!} x^{5}-\frac{2^{7}}{7!} x^{7}+\cdots$
(J) $\frac{1}{10}-\frac{x}{100}+\frac{x^{2}}{1000}-\frac{x^{3}}{10000}+\cdots$
(K) $1+2 x+\frac{2^{2}}{2!} x^{2}+\frac{2^{3}}{3!} x^{3}+\cdots$
(L) $1-2 x+3 x^{2}-4 x^{3}+\cdots$

(2 points each)

Function	Series (choose one of (A) through (L))
$\cos (2 x)$	\mathbf{C}
$x \ln \left(1+x^{2}\right)$	\mathbf{H}
$e^{2 x}$	\mathbf{K}
$\frac{1}{10+x}$	\mathbf{J}
$\frac{1}{1+x^{2}}$	\mathbf{F}
$\ln \left(1-x^{2}\right)$	\mathbf{A}

7. (12 points) Let $f(x)=x^{5 / 4}$.
(a) Find $T_{2}(x)$, the degree-2 Taylor polynomial for f centered at 16 . (Note: $16^{1 / 4}=2$, so $16^{5 / 4}=32$.)
(3 points) We have $f(x)=x^{5 / 4} \cdot f^{\prime}(x)=\frac{5}{4} x^{1 / 4}, f^{\prime \prime}(x)=\frac{5}{4} \cdot \frac{1}{4} x^{-3 / 4}$. Therefore

$$
\begin{aligned}
T_{2}(x) & =f(16)+\frac{f^{\prime}(16)}{1!}(x-16)+\frac{f^{\prime \prime}(16)}{2!}(x-16)^{2} \\
& =32+\frac{5}{2}(x-16)+\frac{5}{256}(x-16)^{2} .
\end{aligned}
$$

(b) Use T_{2} to obtain an approximation for $17^{5 / 4}$.
(1 point)

$$
17^{5 / 4} \approx T_{2}(17)=32+\frac{5}{2}+\frac{5}{256} .
$$

(c) Determine the accuracy of your approximation from part (b), explaining the steps of your reasoning, and giving your answer in sentence form.

(4 points) From Taylor's inequality

$$
\left|f(x)-T_{2}(x)\right| \leq \frac{M|x-16|^{3}}{3!} \quad|x-16| \leq d
$$

for any $d>0$, where M is the upper bound of $\left|f^{\prime \prime \prime}(x)\right|$ on $[16-d, 16+d]$.
Because we need to estimate $\left|f(17)-T_{2}(17)\right|$ it is enough to take $d=1$.
We have $f^{\prime \prime \prime}(x)=\frac{5}{4} \cdot \frac{1}{4} \cdot \frac{-3}{4} x^{-7 / 4}$. Therefore we need to find a constant M that satisfies

$$
\left|f^{\prime \prime \prime}(x)\right|=\left|\frac{-15}{64 x^{7 / 4}}\right|=\frac{15}{64 x^{7 / 4}} \leq M \quad(\text { for all } x \text { with } 15 \leq x \leq 17)
$$

However, $x^{7 / 4}$ is increasing, so the whole expression is decreasing and attains its maximum at $x=15$. Thus we may take M to be any value greater than $\frac{15}{64} \cdot 15^{-7 / 4}=\frac{15^{1 / 4}}{64 \cdot 15}$. It is clear that $15^{1 / 4} \leq 16^{1 / 4}=2$. Therefore we may take $M=\frac{1}{32 \cdot 15}$. Therefore,

$$
\left|f(17)-T_{2}(17)\right| \leq \frac{M|17-16|^{3}}{3!}=\frac{1}{32 \cdot 15 \cdot 6}=\frac{1}{2880}<\frac{1}{2000}=0.0005 .
$$

Answer: The estimate in part (b) is accurate up to three decimal places, i.e., the absolute value of error is less than 0.0005 .
Remark: You don't need to be this precise though.
(d) Find a set of values of x for which $x^{5 / 4} \approx T_{2}(x)$ with an error of no more than ± 0.01. (Hint: the set should be an interval of the form $[16-d, 16+d]$.)
(4 points) In the proof of (c), we showed that for $d=1$,

$$
\left|f^{\prime \prime \prime}(x)\right|=\left|\frac{-15}{64 x^{7 / 4}}\right| \leq \frac{1}{32 \cdot 15}=M \quad(15 \leq x \leq 17)
$$

Therefore, for any $15 \leq x \leq 17$,

$$
\left|f(x)-T_{2}(x)\right| \leq \frac{M|x-16|^{3}}{3!} \leq \frac{1}{6} \cdot \frac{1}{32} \cdot \frac{1}{15} \leq 0.01
$$

Therefore $x^{5 / 4} \approx T_{2}(x)$ correct within the error 0.01 for $15 \leq x \leq 17$.
Answer: $15 \leq x \leq 17$ is a range for which the estimate is good within 0.01 .
Alternate solution (especially if the estimate in M in part (c) was not precise enough):
From the expression

$$
\left|f(x)-T_{2}(x)\right| \leq \frac{M}{3!}|x-16|^{3} \leq \frac{M}{3!} d^{3} \quad|x-16| \leq d
$$

we have the error is less than $\frac{M}{6} \cdot(0.001)$ if we take $d=0.1$. Therefore this estimate is good enough for 0.01 if we prove $M<1$ in the range $15.9 \leq x \leq 16.1$. In fact, this is true, because

$$
\left|\frac{-15}{64 x^{7 / 4}}\right| \leq \frac{15}{64}<1
$$

if $x \geq 1$. Therefore, if $15.9 \leq x \leq 16.1$, then $\left|f(x)-T_{2}(x)\right|<0.01$ as desired.
Answer: $15.9 \leq x \leq 16.1$ is a range for which the estimate is good to within ± 0.01.

Alternate solution 2:

We want to find the range $16-d \leq x \leq 16+d$ for which

$$
\left|f(x)-T_{2}(x)\right| \leq \frac{M|x-16|^{3}}{3!} \quad|x-16| \leq d
$$

where M is the upper bound of $\left|f^{\prime \prime \prime}(x)\right|$ in the range $16-d \leq x \leq 16+d$. Since $\left|f^{\prime \prime \prime}\right|=15 x^{-7 / 4} / 64$ is decreasing, it attains its maximum at $16-d$. Therefore it is enough to find d that satisfies

$$
\frac{\frac{15}{64}(16-d)^{-7 / 4} d^{3}}{3!} \leq 0.01
$$

and any d that satisfies this inequality works. Therefore, if we put some small number, say $d=1 / 2$ and use $(16-0.5)^{-7 / 4}<1$,

$$
\frac{15}{64(16-d)^{-7 / 4} \cdot 3!} \cdot\left(\frac{1}{2}\right)^{3}=\frac{15}{64 \cdot 6 \cdot 8}<0.01
$$

and we have the error less than 0.01 for $15.5 \leq x \leq 16.5$.

