Solutions to Math 42 Second Exam — February 20, 2014

1. (12 points)
o

(a) Evaluate / ze™ dz or explain why its value does not exist; show all reasoning.
0

(5 points) The function f(z) = ze~*" is continuous at 0, so we have an improper integral of type

I and we should compute
¢

. _ 2
lim ze ¥ dx.
t—o0 0

We use u-substitution: let u = —z2 so that du = —2z dz.

The bounds of integration become u(0) = 0 and u(t) = —t2, hence we obtain

—¢2
1
lim e (_du> = —— lim e“]at2 =
0

t—00 2 2 t—o0

1./ _p 1 1
=—3dm (¢ -1) =50-1 —-

YIn(1 + z)

(b) Determine whether / 5

0 X

dx converges or diverges; give complete reasoning.

(7 points) The function f(z) = ln(glc;m) is continuous and positive for all x > 0, but is not

continuous at 0 so we have an improper integral of type II. Here are three possible solutions:

Solution 1 (Limit Comparison Theorem): We take g(z) = 1 as a reference function, also

continuous and positive for all > 0: we have

. ln(ii;rz) . In(l+z) =z . In(1+2)
lim T = lim —— T = lim
a—0t o z—0+ x 1 z—0+ x

The last fraction is an indeterminate form of type 8 and both In(1 + z) and = are continuous
and positive when we take the limit for x — 07, hence using I’'Hopital’s Rule we obtain

1
In(1 L 1 1
fim 20D Te o - _—1>0.
x—0t x z—0t+ 1 z—0+ 1+ 1+0

Therefore by the Limit Comparison test for improper integrals of type II, our original integral
converges if and only if
1
1
I = / —dx
o T

It remains to compute the integral above. We have

converges.

1

1
I = lim ~dz= lim Inz]; = lim (In1—Int) = — (0 — 00) = +o0,
t=0t J; T t—0t t—0t

1
In(1
hence/0 n(x—;x)dm too.

Solution 2 (direct computation): We can do the indefinite integral by parts, using u = In(1+x),

=2 _ 1 _ 1.
dv =z~ dx, so that du = H_—qu;, v=—o

/ln(lx;k x) dp — _ln(lx—k x) N / x(ldf_ =
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1 1
Using the partial fraction decomposition ——— = — — the latter integral becomes
z(z+1) z= x+4+1

dx dx dx
/x(l—i—x) /m x+1 m =@ =21 o= O
so that
/ln(l—i—m)dw:_ln(l—i—m)_'_/ dx
i x z(1+ x)
In(1
:—n(xm—l—lnaj—ln(aj—l—l)—l—C

Now we have

1

0 _
In(1 In(1
/ L—;x)dx: lim n(—i_x)lenx—ln(a:le)]
0 T a—0t L xT @
[ In(1
~ lim |ln24+0—In2— 20+a) —lna—l—ln(a—i—l)]
a—07t |
. [ In(1+a) a+1 . - .
= ali)r& _—T + In ( ” )] = 00, so the integral , since

In(1 1
lim (—M> = —1 (using I'Hopital as above) and lim In (aj; ) = 00.

a—0t a a—0Tt
Solution 3 (Comparison Theorem): We should strongly suspect that this integral diverges,
because near the integrand’s discontinuity of z = 0, the function In(1 + x) is approximately x

(this is one of our basic linear approximations, or you can think of x as the start of the Taylor
In(1 + )

T
series for In(1 4 z)), which means that o is approximately — = —; and we can verify
T T z

1
dx
(as in solution 1) that the improper integral / — diverges. This is not a proof, but it helps
o Z

guide us toward making a successful comparison.

The one complication here is that In(1+z) < z for small z (again think about how this expresses

that the graph of the linear approximation lies above the graph of In(1 + x), since the latter is

In(1+ x)
=2

is larger and its integral diverges. But there is a simple fix: we claim that

1
concave down), so we can’t apply the Comparison Theorem to and —, since the latter

1
— forall O0<a<1.
2x

1 1
In(1+ z) dx
If t the C ison Test Id apply; and | ———=dx |di , si — di .
rue, the Comparison Test would apply; an /0 - x | diverges |, since /0 5, diverges

To see why () is true, note that (x) follows if we could show that

(%)

(xx) In(14+x) > g forall 0<z<1.

But the function f(z) =In(1+z) — g satisfies f(0) = 0, and

1 1
——>0 forall 0<z<1,

f’(l‘)=1+x 5

so f is increasing on [0, 1) and is therefore nonnegative on this interval (and it is also nonnegative
at x = 1 by direct computation), so the inequality (*x) is true, and this implies (x).
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2. (10 points) Determine, with justification, whether each series converges. If the series converges, find
its sum.
e 4n—1 . 5n+2
(a‘) 32n

n=1
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3. (10 points) Determine whether each of the series below converges or diverges. Indicate clearly which
tests you use and how you apply them.

o0 2/3

n
(@) Zn3/2—n+1

n=2
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Problem instructions, repeated: Determine whether each of the series below converges or diverges.
Indicate clearly which tests you use and how you apply them.

= 27pl
(b) Z (2n —1)!

n=1
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4. (10 points) One of three possibilities holds for each of the series below: (i) it converges absolutely, (ii)
it converges but does not converge absolutely, or (iii) it diverges. Determine which possibility holds
for each of the series below:; indicate clearly which tests you use and how you apply them.

oo

(a) Z (-=1)™Inn

n=3

2n
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Problem instructions, repeated: One of three possibilities holds for each of the series below: (i) it
converges absolutely, (ii) it converges but does not converge absolutely, or (iii) it diverges. Determine
which possibility holds for each of the series below; indicate clearly which tests you use and how you
apply them.

(b)

arctanmn
n=1 2+ (_1)71
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5. (12 points) Find, with complete justification, the interval of convergence of the power series

[ee)

(3 —2x)"
Z(n3+2
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6. (12 points) Match each function below with its power series, listed among the choices below. You do
not need to justify your answers. (Not all of the series have a match, but every function has a match.)

4 6 8 2 3
Ay g2 Tt e S
A R R W=ty 77
22 , 24, 20 ¢ 5 a0 T 2
1 x x? 3
E R F)1-— 2 4 6
®) 76 " 700 " 1000 * 10000 (E)1-a”+a"—a"+
5 7 9
3. .5 _ .7 3_ v r z
_ — H) 23— 4+ 2 ...
(G)z—a+2°—z' + (H) x 2—}—3 4+
23 2° 27 1z z? z?
)2 — 234 245 2 274 ... D — - - 4 =
) 2e = gra g~ F ) 10 ~ 100 " 1000 ~ 10000 "
2? 2
(K)1+2x+§x2+§x3+--- (L) 1 — 2z + 32 — 42® 4 - -
(2 points each)
Function Series (choose one of (A) through (L))
cos(2x) C
zIn(1 + z?) H
62:1: K
L J
10+
1
F
1+ 22
In(1 — z?%) A
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7. (12 points) Let f(z) = z%/%.
(a) Find Ty(z), the degree-2 Taylor polynomial for f centered at 16. (Note: 16'/4 = 2, so 16%/4 = 32.)

(b) Use Ty to obtain an approximation for 17°/4.

(c¢) Determine the accuracy of your approximation from part (b), explaining the steps of your reason-
ing, and giving your answer in sentence form.
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(d) Find a set of values of = for which #%/4 ~ Ty(z) with an error of no more than +0.01. (Hint: the
set should be an interval of the form [16 — d, 16 4 d].)

(4 points) In the proof of (c), we showed that for d = 1,

15 1
" = < =M 15 <z <17).
@) = |5pm| < o (15<w<1)
Therefore, for any 15 < z < 17,
Mlz—162 1 1 1
@) = To(a) < Mlz=16F 111 0

3! —6 32 15 —

Therefore 2%/* ~ Ty(z) correct within the error 0.01 for 15 < z < 17.

Answer: 15 < x < 17 is a range for which the estimate is good within 0.01.

Alternate solution (especially if the estimate in M in part (c) was not precise enough):
From the expression

M M
|f(z) = Ta(z)] < g!x—lﬁ\?’ = gd?’ |z — 16| < d

M
we have the error is less than — - (0.001) if we take d = 0.1. Therefore this estimate is good

enough for 0.01 if we prove M < 1 in the range 15.9 < z < 16.1. In fact, this is true, because

15

—15 < <1
~ 64

6427/4

if x > 1. Therefore, if 15.9 < x < 16.1, then |f(z) — T5(z)| < 0.01 as desired.
Answer: 15.9 <z < 16.1 is a range for which the estimate is good to within £0.01.
Alternate solution 2:

We want to find the range 16 — d < x < 16 + d for which

- M|z — 16|

|f(z) = Ta(z)] < i |z —16] < d

where M is the upper bound of |f”(z)| in the range 16—d < & < 16+d. Since |f"”| = 152~ 7/*/64

is decreasing, it attains its maximum at 16 — d. Therefore it is enough to find d that satisfies

B(16 —d)~"/4a?
3!

< 0.01

and any d that satisfies this inequality works. Therefore, if we put some small number, say
d=1/2 and use (16 — 0.5)"7/4 < 1,

15 1\* 15 001
64(16 —d)~7/4.31 \2)  64-6-8

and we have the error less than 0.01 for 15.5 < z < 16.5.



