
Solutions to Math 42 Second Exam — February 20, 2014

1. (12 points)

(a) Evaluate

∫ ∞
0
xe−x

2
dx or explain why its value does not exist; show all reasoning.

(5 points) The function f(x) = xe−x
2

is continuous at 0, so we have an improper integral of type
I and we should compute

lim
t→∞

∫ t

0
xe−x

2
dx.

We use u-substitution: let u = −x2 so that du = −2x dx.

The bounds of integration become u(0) = 0 and u(t) = −t2, hence we obtain

lim
t→∞

∫ −t2
0

eu
(
−du

2

)
= −1

2
lim
t→∞

eu]−t
2

0 =

= −1

2
lim
t→∞

(
e−t

2 − 1
)

= −1

2
(0− 1) =

1

2
.

(b) Determine whether

∫ 1

0

ln(1 + x)

x2
dx converges or diverges; give complete reasoning.

(7 points) The function f(x) = ln(1+x)
x2

is continuous and positive for all x > 0, but is not
continuous at 0 so we have an improper integral of type II. Here are three possible solutions:

Solution 1 (Limit Comparison Theorem): We take g(x) = 1
x as a reference function, also

continuous and positive for all x > 0: we have

lim
x→0+

ln(1+x)
x2

1
x

= lim
x→0+

ln(1 + x)

x2
· x

1
= lim

x→0+

ln(1 + x)

x
.

The last fraction is an indeterminate form of type 0
0 and both ln(1 + x) and x are continuous

and positive when we take the limit for x→ 0+, hence using l’Hôpital’s Rule we obtain

lim
x→0+

ln(1 + x)

x
= lim

x→0+

1
1+x

1
= lim

x→0+

1

1 + x
=

1

1 + 0
= 1 > 0.

Therefore by the Limit Comparison test for improper integrals of type II, our original integral
converges if and only if

I =

∫ 1

0

1

x
dx

converges.

It remains to compute the integral above. We have

I = lim
t→0+

∫ 1

t

1

x
dx = lim

t→0+
lnx]1t = lim

t→0+
(ln 1− ln t) = − (0−∞) = +∞,

hence

∫ 1

0

ln(1 + x)

x2
dx diverges too.

Solution 2 (direct computation): We can do the indefinite integral by parts, using u = ln(1+x),
dv = x−2 dx, so that du = 1

1+xdx, v = − 1
x :∫

ln(1 + x)

x2
dx = − ln(1 + x)

x
+

∫
dx

x(1 + x)
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Using the partial fraction decomposition
1

x(x+ 1)
=

1

x
− 1

x+ 1
the latter integral becomes

∫
dx

x(1 + x)
=

∫
dx

x
−
∫

dx

x+ 1
= lnx− ln(x+ 1) + C

so that ∫
ln(1 + x)

x2
dx = − ln(1 + x)

x
+

∫
dx

x(1 + x)

= − ln(1 + x)

x
+ lnx− ln(x+ 1) + C

Now we have∫ 1

0

ln(1 + x)

x2
dx = lim

a→0+

[
ln(1 + x)

x
+ lnx− ln(x+ 1)

]1
a

= lim
a→0+

[
ln 2 + 0− ln 2− ln(1 + a)

a
− ln a+ ln(a+ 1)

]
= lim

a→0+

[
− ln(1 + a)

a
+ ln

(
a+ 1

a

)]
=∞, so the integral diverges , since

lim
a→0+

(
− ln(1 + a)

a

)
= −1 (using l’Hôpital as above) and lim

a→0+
ln

(
a+ 1

a

)
=∞.

Solution 3 (Comparison Theorem): We should strongly suspect that this integral diverges,
because near the integrand’s discontinuity of x = 0, the function ln(1 + x) is approximately x
(this is one of our basic linear approximations, or you can think of x as the start of the Taylor

series for ln(1 + x)), which means that
ln(1 + x)

x2
is approximately

x

x2
=

1

x
; and we can verify

(as in solution 1) that the improper integral

∫ 1

0

dx

x
diverges. This is not a proof, but it helps

guide us toward making a successful comparison.

The one complication here is that ln(1+x) ≤ x for small x (again think about how this expresses
that the graph of the linear approximation lies above the graph of ln(1 + x), since the latter is

concave down), so we can’t apply the Comparison Theorem to
ln(1 + x)

x2
and

1

x
, since the latter

is larger and its integral diverges. But there is a simple fix: we claim that

(∗) ln(1 + x)

x2
≥ 1

2x
for all 0 < x ≤ 1.

If true, the Comparison Test would apply; and

∫ 1

0

ln(1 + x)

x2
dx diverges , since

∫ 1

0

dx

2x
diverges.

To see why (∗) is true, note that (∗) follows if we could show that

(∗∗) ln(1+x) ≥ x

2
for all 0 ≤ x ≤ 1.

But the function f(x) = ln(1 + x)− x

2
satisfies f(0) = 0, and

f ′(x) =
1

1 + x
− 1

2
> 0 for all 0 ≤ x < 1,

so f is increasing on [0, 1) and is therefore nonnegative on this interval (and it is also nonnegative
at x = 1 by direct computation), so the inequality (∗∗) is true, and this implies (∗).
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2. (10 points) Determine, with justification, whether each series converges. If the series converges, find
its sum.

(a)
∞∑
n=1

4n−1 − 5n+2

32n

(5 points) Note that
∞∑
n=1

4n−1

32n
=

1

9

∞∑
n=1

4n−1

9n−1

is a geometric series with common ratio 4
9 < 1, so it is convergent. It converges to

1

9
× 1

1− 4
9

=
1

9
× 9

5
=

1

5

Similarly,
∞∑
n=1

5n+1

32n
=

53

9

∞∑
n=1

5n−1

9n−1

is also a geometric series with common ratio 5
9 < 1, so it is convergent. It converges to

53

9

1

1− 5
9

=
53

9

9

4
=

53

4
=

125

4

Thus,
∞∑
n=1

4n−1

32n
− 5n+1

32n

is convergent since it is a difference of two convergent series and it converges to

1

5
− 125

4
= −621

20

(b)

∞∑
n=1

1
√
n+
√
n+ 1

(5 points) Note that for any integer n,

√
n+
√
n+ 1 <

√
n+
√
n+ 3n =

√
n+ 2

√
n = 3

√
n

so
1

√
n+
√
n+ 1

>
1

3
√
n
> 0

We know that
∑∞

n=1
1√
n

diverges since it is a p-series with p = 1/2 < 1. Thus, by Comparison

Test,
∑∞

n=1
1√

n+
√
n+1

diverges as well.

Alternatively, one can use Limit Comparison Test by comparing it with bn = 1√
n

. Clearly, all

terms are positive. Next, we check the limit condition;

lim
n→∞

1√
n+
√
n+1

1√
n

=
1

1 +
√

n+1
n

=
1

2
6= 0

Thus, by LCT, either both series converges or both diverges. But we know that
∑∞

n=1
1√
n

diverges since it is a p-series with p = 1
2 < 1. Therefore,

∑∞
n=1

1√
n+
√
n+1

diverges as well.
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3. (10 points) Determine whether each of the series below converges or diverges. Indicate clearly which
tests you use and how you apply them.

(a)

∞∑
n=2

n2/3

n3/2 − n+ 1

(5 points) Comparison Test. Let an = n2/3

n3/2−n+1
be the n-th term and let bn = n2/3

n3/2 be the

reference series. Notice that bn = n2/3

n3/2 = n−5/6 forms the p-series for p = 5/6. Since 5/6 < 1,
the series

∑∞
n=2 bn diverges by the p-series test.

We claim that 0 < bn < an for all n ≥ 2. To see this, notice for all n ≥ 2, we have −n+ 1 < 0,
which implies

n3/2 − n+ 1 < n3/2, (1)

and for all n > 1 we have n3/2 > n, which implies n3/2 − n+ 1 is positive. Thus we can flip (1)
to obtain

0 <
1

n3/2
<

1

n3/2 − n+ 1
.

Multiplying this inequality by n2/3, we get 0 < bn < an, for all n ≥ 2. Since both an, bn are
positive and

∑∞
n=2 bn diverges, the Comparison Test applies, concluding that

∑∞
n=2 an diverges.

Note: we need to check that n3/2 − n + 1 is positive in order to flip (1). For example, −2 < 3
but 1

3 6< −
1
2 .

Limit Comparison Test. Let an and bn be the same as before. Calculate lim
n→∞

an
bn

:

lim
n→∞

an
bn

= lim
n→∞

n2/3

n3/2−n+1

n2/3

n3/2

= lim
n→∞

n2/3

n3/2 − n+ 1

n3/2

n2/3

= lim
n→∞

n13/6

n13/6 − n5/3 + n2/3

= lim
n→∞

1

1− n−1/2 + n−3/2

=1.

To apply the Limit Comparison Test, we further check that an and bn are positive for all n ≥ 2.
bn is clearly positive for all n ≥ 2, and an is positive for all n ≥ 2 because n3/2 > n. By the
Limit Comparison Test the series

∑∞
n=2 an and

∑∞
n=2 bn both converge or both diverge. The

latter diverges by the p-series test for p = 5/6 < 1. Hence
∑∞

n=2 an also diverges.
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Problem instructions, repeated: Determine whether each of the series below converges or diverges.
Indicate clearly which tests you use and how you apply them.

(b)
∞∑
n=1

2n n!

(2n− 1)!

(5 points) Use the Ratio Test. Let an = 2nn!
(2n−1)! .

lim
n→∞

|an+1|
|an|

= lim
n→∞

2n+1(n+1)!
(2n+1)!

2nn!
(2n−1)!

= lim
n→∞

2n+1(n+ 1)!

(2n+ 1)!

(2n− 1)!

2nn!

= lim
n→∞

2n+1

2n
(n+ 1)!

n!

(2n− 1)!

(2n+ 1)!

= lim
n→∞

2

1

n+ 1

1

1

2n(2n+ 1)

= lim
n→∞

1 + 1/n

n(2 + 1/n)

=0 < 1.

By the Ratio Test, the series converges absolutely, and hence it converges.
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4. (10 points) One of three possibilities holds for each of the series below: (i) it converges absolutely, (ii)
it converges but does not converge absolutely, or (iii) it diverges. Determine which possibility holds
for each of the series below; indicate clearly which tests you use and how you apply them.

(a)

∞∑
n=3

(−1)n lnn

2n

(6 points) Let bn =
lnn

2n
which is positive for n ≥ 3.

Then the given series is an alternating series
∞∑
n=3

(−1)nbn, and thus we use the alternating series

test for convergence.

1. As x→∞, lnx and x both tends to infinity.

By l’Hôpital’s Rule lim
x→∞

lnx

2x
= lim

x→∞

(lnx)′

(2x)′
= lim

x→∞

1
x

2
= 0.

Therefore lim
n→∞

bn = 0.

2. Let f(x) =
lnx

2x
.

Then f ′(x) =
1

2
· x(lnx)′ − (lnx)x′

x2
=

1− lnx

2x2
< 0 when x ≥ 3 because lnx > ln e = 1.

Therefore f(x) is decreasing and f(n+ 1) < f(n); and thus bn+1 < bn for all n ≥ 3.

Thus by the alternating series test, the series converges.

We now test if the series converges absolutely, which is to test if the series

∞∑
n=3

∣∣∣∣(−1)n lnn

2n

∣∣∣∣ =
∞∑
n=3

lnn

2n

converges.

We have
lnn

2n
>

1

2n
> 0 for n ≥ 3 and we know that

∞∑
n=3

1

2n
diverges from the p-series Test.

Therefore using the comparison test on two series
∞∑
n=3

lnn

2n
and

∞∑
n=3

1

2n
, the series

∞∑
n=3

lnn

2n
diverges

as well.

Answer: (ii) the series converges, but does not converge absolutely
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Problem instructions, repeated: One of three possibilities holds for each of the series below: (i) it
converges absolutely, (ii) it converges but does not converge absolutely, or (iii) it diverges. Determine
which possibility holds for each of the series below; indicate clearly which tests you use and how you
apply them.

(b)

∞∑
n=1

arctann

2 + (−1)n

(4 points) Let an =
arctann

2 + (−1)n
.

For odd n, say n = 2k−1, a2k−1 = arctan(2k−1) whereas on even n, say n = 2k, a2k =
arctan 2k

3
.

Then taking limits for odd and even n separately, lim
k→∞

a2k =
π

6
whereas lim

k→∞
a2k−1 =

π

2
.

Thus lim
n→∞

an does not exist, since it may not approach to two distinct number.

Using the test for divergence, the series
∑
andiverges.

Alternate solution:

For any n ≥ 1, we have arctann ≥ arctan 1 ≥ π

4
and 1 ≤ 2 + (−1)n ≤ 3.

Therefore
arctann

2 + (−1)n
≥ π

12
for all n ≥ 1.

Since
∑∞

n=1
π
12 diverges, so is

∞∑
n=1

arctann

2 + (−1)n
from the comparison test.

Answer: (iii) the series diverges.
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5. (12 points) Find, with complete justification, the interval of convergence of the power series

∞∑
n=0

(3− 2x)n

(n3 + 2) 5n

The first thing to do is compute the radius of convergence by using the ratio test (6 points). Let

an =
(3− 2x)n

(n3 + 2)5n
,

we have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (3− 2x)n+1

((n+ 1)3 + 2) 5n+1
· (n3 + 2)5n

(3− 2x)n

∣∣∣∣ = lim
n→∞

(∣∣∣∣3− 2x

5

∣∣∣∣ · n3 + 2

(n+ 1)3 + 2

)
.

Now |3−2x|
5 is independent of n, so we can take it outside of the limit sign, while in the fraction

n3+2
(n+1)3+2

both the numerator and the denominator are polynomials of the same degree (3), hence the

limit as n → ∞ is the quotient of the coefficients of the terms of highest degree (that is, degree 3).
Thus we have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣3− 2x

5

∣∣∣∣ · 1

1
=

∣∣∣∣3− 2x

5

∣∣∣∣ .
The ratio test says that the power series converges absolutely for∣∣∣∣3− 2x

5

∣∣∣∣ < 1

and diverges for ∣∣∣∣3− 2x

5

∣∣∣∣ > 1.

In particular, ∣∣∣∣3− 2x

5

∣∣∣∣ < 1

is true if and only if
−5 < 3− 2x < 5

which is equivalent to
4 > x > −1.

Now we have to check the endpoints 4 and −1 (3 points each).

For x = −1, one gets
∞∑
n=0

(3− 2(−1))n

(n3 + 2)5n
=

∞∑
n=0

(3 + 2)n

(n3 + 2)5n
=

∞∑
n=0

1

n3 + 2
.

Letting now bn = 1
n3+2

, it is clear that

0 <
1

n3 + 2
<

1

n3
for all n ≥ 1;

moreover
∞∑
n=1

1

n3
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is a convergent p-series for p = 3 > 1, hence by comparison test also

∞∑
n=0

1

n3 + 2

converges, which means that the endpoint −1 belongs to the interval of convergence.

For x = 4, one gets

∞∑
n=0

(3− 2(4))n

(n3 + 2)5n
=

∞∑
n=0

(−5)n

(n3 + 2)5n
=

∞∑
n=0

(−1)n 5n

(n3 + 2)5n
=

∞∑
n=0

(−1)n

(n3 + 2)
.

We obtain then an alternating series and we apply the absolute convergence test: the series

∞∑
n=0

∣∣∣∣ (−1)n

(n3 + 2)

∣∣∣∣ =

∞∑
n=0

1

(n3 + 2)

converges as shown above, hence
∞∑
n=0

(−1)n

(n3 + 2)

converges absolutely and thus converges (by absolute convergence test). In particular, the endpoint
4 also belongs to the interval of convergence.

The interval of convergence is then [−1, 4].
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6. (12 points) Match each function below with its power series, listed among the choices below. You do
not need to justify your answers. (Not all of the series have a match, but every function has a match.)

(A) −x2 − x4

2
− x6

3
− x8

4
− · · · (B) 1− x

2
+
x2

3
− x3

4
+ · · ·

(C) 1− 22

2!
x2 +

24

4!
x4 − 26

6!
x6 + · · · (D) −x3 − x5

2
− x7

3
− x9

4
− · · ·

(E)
1

10
+

x

100
+

x2

1000
+

x3

10000
+ · · · (F) 1− x2 + x4 − x6 + · · ·

(G) x− x3 + x5 − x7 + · · · (H) x3 − x5

2
+
x7

3
− x9

4
+ · · ·

(I) 2x− 23

3!
x3 +

25

5!
x5 − 27

7!
x7 + · · · (J)

1

10
− x

100
+

x2

1000
− x3

10000
+ · · ·

(K) 1 + 2x+
22

2!
x2 +

23

3!
x3 + · · · (L) 1− 2x+ 3x2 − 4x3 + · · ·

(2 points each)

Function Series (choose one of (A) through (L))

cos(2x) C

x ln(1 + x2) H

e2x K

1

10 + x
J

1

1 + x2
F

ln(1− x2) A
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7. (12 points) Let f(x) = x5/4.

(a) Find T2(x), the degree-2 Taylor polynomial for f centered at 16. (Note: 161/4 = 2, so 165/4 = 32.)

(3 points) We have f(x) = x5/4. f ′(x) =
5

4
x1/4, f ′′(x) =

5

4
· 1

4
x−3/4. Therefore

T2(x) = f(16) +
f ′(16)

1!
(x− 16) +

f ′′(16)

2!
(x− 16)2

= 32 +
5

2
(x− 16) +

5

256
(x− 16)2.

(b) Use T2 to obtain an approximation for 175/4.

(1 point)

175/4 ≈ T2(17) = 32 +
5

2
+

5

256
.

(c) Determine the accuracy of your approximation from part (b), explaining the steps of your reason-
ing, and giving your answer in sentence form.

(4 points) From Taylor’s inequality

|f(x)− T2(x)| ≤ M |x− 16|3

3!
|x− 16| ≤ d

for any d > 0, where M is the upper bound of |f ′′′(x)| on [16− d, 16 + d].

Because we need to estimate |f(17)− T2(17)| it is enough to take d = 1.

We have f ′′′(x) =
5

4
· 1

4
· −3

4
x−7/4. Therefore we need to find a constant M that satisfies

|f ′′′(x)| =
∣∣∣∣ −15

64x7/4

∣∣∣∣ =
15

64x7/4
≤M (for all x with 15 ≤ x ≤ 17).

However, x7/4 is increasing, so the whole expression is decreasing and attains its maximum at

x = 15. Thus we may take M to be any value greater than
15

64
· 15−7/4 =

151/4

64 · 15
. It is clear that

151/4 ≤ 161/4 = 2. Therefore we may take M = 1
32·15 . Therefore,

|f(17)− T2(17)| ≤ M |17− 16|3

3!
=

1

32 · 15 · 6
=

1

2880
<

1

2000
= 0.0005.

Answer: The estimate in part (b) is accurate up to three decimal places, i.e., the absolute value
of error is less than 0.0005.

Remark: You don’t need to be this precise though.
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(d) Find a set of values of x for which x5/4 ≈ T2(x) with an error of no more than ±0.01. (Hint: the
set should be an interval of the form [16− d, 16 + d].)

(4 points) In the proof of (c), we showed that for d = 1,

|f ′′′(x)| =
∣∣∣∣ −15

64x7/4

∣∣∣∣ ≤ 1

32 · 15
= M (15 ≤ x ≤ 17).

Therefore, for any 15 ≤ x ≤ 17,

|f(x)− T2(x)| ≤ M |x− 16|3

3!
≤ 1

6
· 1

32
· 1

15
≤ 0.01.

Therefore x5/4 ≈ T2(x) correct within the error 0.01 for 15 ≤ x ≤ 17.

Answer: 15 ≤ x ≤ 17 is a range for which the estimate is good within 0.01.

Alternate solution (especially if the estimate in M in part (c) was not precise enough):

From the expression

|f(x)− T2(x)| ≤ M

3!
|x− 16|3 ≤ M

3!
d3 |x− 16| ≤ d

we have the error is less than
M

6
· (0.001) if we take d = 0.1. Therefore this estimate is good

enough for 0.01 if we prove M < 1 in the range 15.9 ≤ x ≤ 16.1. In fact, this is true, because∣∣∣∣ −15

64x7/4

∣∣∣∣ ≤ 15

64
< 1

if x ≥ 1. Therefore, if 15.9 ≤ x ≤ 16.1, then |f(x)− T2(x)| < 0.01 as desired.

Answer: 15.9 ≤ x ≤ 16.1 is a range for which the estimate is good to within ±0.01.

Alternate solution 2:

We want to find the range 16− d ≤ x ≤ 16 + d for which

|f(x)− T2(x)| ≤ M |x− 16|3

3!
|x− 16| ≤ d

where M is the upper bound of |f ′′′(x)| in the range 16−d ≤ x ≤ 16+d. Since |f ′′′| = 15x−7/4/64
is decreasing, it attains its maximum at 16− d. Therefore it is enough to find d that satisfies

15
64(16− d)−7/4d3

3!
≤ 0.01

and any d that satisfies this inequality works. Therefore, if we put some small number, say
d = 1/2 and use (16− 0.5)−7/4 < 1,

15

64(16− d)−7/4 · 3!
·
(

1

2

)3

=
15

64 · 6 · 8
< 0.01

and we have the error less than 0.01 for 15.5 ≤ x ≤ 16.5.


