
Solutions to Math 42 Second Exam — February 21, 2013

1. (10 points) Determine, with justification, whether each series converges. If the series converges, find
its sum.

(a)

∞∑
n=2

1

n2 − 1

(5 points) We see that n2 − 1 = (n+ 1)(n− 1), so we will use a partial fraction decomposition:

1

n2 − 1
=

1

(n+ 1)(n− 1)
=

A

n+ 1
+

B

n− 1
.

We multiply through by (n+ 1)(n− 1) and group like terms:

1 = A(n− 1) +B(n+ 1) = An−A+Bn+B = (A+B)n+ (B −A)n.

Thus, we have that A + B = 0 and B − A = 1. Adding these two equations yields 2B = 1, so
that B = 1

2 and A = −B = −1
2 . So we can rewrite our sum as

∞∑
n=2

1

n2 − 1
=
∞∑
n=2

(
− 1

2(n+ 1)
+

1

2(n− 1)

)
=

1

2

∞∑
n=2

(
1

n− 1
− 1

n+ 1

)
Writing out the first few partial sums, we notice telescoping:

s2 = 1
2

(
1− 1

3

)
s3 = 1

2

[(
1− 1

3

)
+
(
1
2 −

1
4

)]
= 1

2

(
1 + 1

2 −
1
3 −

1
4

)
s4 = 1

2

[(
1− 1

3

)
+
(
1
2 −

1
4

)
+
(
1
3 −

1
5

)]
= 1

2

(
1 + 1

2 −
1
4 −

1
5

)
s5 = 1

2

[(
1− 1

3

)
+
(
1
2 −

1
4

)
+
(
1
3 −

1
5

)
+
(
1
4 −

1
6

)]
= 1

2

(
1 + 1

2 −
1
5 −

1
6

)
...

sn = 1
2

(
1 + 1

2 −
1
n −

1
n+1

)
.

Thus,

s = lim
n→∞

sn = lim
n→∞

1

2

(
1 +

1

2
− 1

n
− 1

n+ 1

)
=

1

2

(
1 +

1

2

)
=

3

4
.

(b)
∞∑
n=1

(
4n

(−5)n−1
− 1

2n

)
(5 points) We will work with each part of the sum separately. First,

∞∑
n=1

4n

(−5)n−1
=
∞∑
n=0

4n+1

(−5)n
= 4

∞∑
n=0

4n

(−5)n
= 4

∞∑
n=0

(
−4

5

)n
.

This is a geometric series with r = −4
5 , so it converges to 4

(
1

1−(− 4
5
)

)
= 4

(
1

( 9
5
)

)
= 4

(
5
9

)
= 20

9 .

The second part is also a geometric series

∞∑
n=1

1

2n
=
∞∑
n=1

(
1

2

)n
=

∞∑
n=0

(
1

2

)n+1

=
1

2

∞∑
n=0

(
1

2

)n
.

Since r = 1
2 , this also converges to 1

2

(
1

1− 1
2

)
= 1

2

(
1

( 1
2
)

)
= 1. Since each of the two series converges,

then the original series (the difference of the two geometric series) converges to 20
9 − 1 = 11

9 .
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2. (10 points) Determine whether each of the series below converges or diverges. Indicate clearly which
tests you use and how you apply them.

(a)

∞∑
n=1

2n2 + 4

5n3 − 1

(5 points) Notice that for n ≥ 1, we have 5n3 − 1 > 0, so

2n2 + 4

5n3 − 1
≥ 2n2

5n3
=

2

5n
=

2

5

(
1

n

)
> 0.

We know that
∑∞

n=1
1
n diverges because it is a p-series with p = 1 (it is also the harmonic series).

So letting bn = 2
5n , we have that

∞∑
n=1

bn =
2

5

∞∑
n=1

1

n
,

which diverges. Then, if an = 2n2+4
5n3−1 , we have that

∑∞
n=1 an and

∑∞
n=1 bn are series with positive

terms, an > bn, and
∑∞

n=1 bn diverges. Hence,

∞∑
n=1

an =

∞∑
n=1

2n2 + 4

5n3 − 1

also diverges by the Comparison Test.
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(b)
∞∑
n=1

(−2)n

(n+ 1)!

(5 points) We will use the Ratio Test on an =
(−2)n

(n+ 1)!
. We have that

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(−2)n+1

(n+ 2)!
· (n+ 1)!

(−2)n

∣∣∣∣ = lim
n→∞

∣∣∣∣ −2

n+ 2

∣∣∣∣ = 0

because the denominator goes to ∞ while the numerator stays constant. Hence,

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1,

so by the Ratio Test, the series
∞∑
n=1

an =
∞∑
n=1

(−2)n

(n+ 1)!

converges absolutely, and therefore converges.
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3. (10 points) Determine whether each of the series below converges or diverges. Indicate clearly which
tests you use and how you apply them.

(a)

∞∑
n=1

2ne−n

(5 points)
Method 1: Ratio Test
We will apply the ratio test to an = 2ne−n. We have that

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣2(n+ 1)e−(n+1)

2ne−n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣2(n+ 1)en

2nen+1

∣∣∣∣ = lim
n→∞

∣∣∣∣2n+ 2

ne

∣∣∣∣
= lim

n→∞

∣∣∣∣∣2 + 2
n

2e

∣∣∣∣∣ =
1

e
lim
n→∞

∣∣∣∣∣2 + 2
n

2

∣∣∣∣∣ =
1

e
,

since lim
n→∞

2

n
= 0. Since 1

e < 1, the Ratio Test tells us that

∞∑
n=1

an =

∞∑
n=1

2ne−n converges.

Method 2: Integral Test
We let f(x) = 2xe−x, so that f(n) = an = 2ne−n. Now f(x) is continuous and positive for x ≥ 1
because x and e−x are continuous functions, and x is positive when x ≥ 1, and e−x is positive
for all x. We can show that f(x) is decreasing on [1,∞) by showing that f ′(x) < 0 for x > 1:

f ′(x) = 2x(e−x)′ + 2(x)′e−x = −2xe−x + 2e−x = 2(1− x)e−x,

and if x > 1, then 1− x < 0 and e−x is always positive, so the product 2(1− x)e−x is negative.
Now we consider the integral ∫ ∞

1
f(x) dx =

∫ ∞
1

2xe−x dx.

We will integrate by parts letting u = 2x and dv = e−x so that du = 2dx and v = −e−x. Then∫ ∞
1

2xe−xdx = lim
t→∞

∫ t

1
2xe−xdx = lim

t→∞
2x(−e−x)]t1 −

∫ t

1
−2e−xdx

= lim
t→∞
−2xe−x]t1 +

∫ t

1
2e−xdx = lim

t→∞
−2xe−x]t1 − 2e−x]t1

= lim
t→∞
−2(x+ 1)e−x]t1 = lim

t→∞
−2(t+ 1)e−t + 4e−1.

But now,

lim
t→∞
−2(t+ 1)e−t = lim

t→∞

−2(t+ 1)

et

is an indeterminate form, so we apply L’Hospital’s rule:

lim
t→∞

−2(t+ 1)

et
= lim

t→∞

−2

et
= 0.

Hence, the improper integral converges, so by the Integral Test, the series

∞∑
n=1

an =

∞∑
n=1

2ne−n

converges.
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(b)
∞∑
n=2

2 cosn

n4 − 1

(5 points) The terms an =
2 cosn

n4 − 1
are not always positive, so a regular Comparison or Limit

Comparison Test will not work. Instead, we will first check the series for absolute convergence.
We can see that

|an| =
∣∣∣∣2 cosn

n4 − 1

∣∣∣∣ ≤ 2

n4 − 1

for n ≥ 2. Letting bn = 2
n4−1 , we can now see that |an| ≤ bn, so we will try to show that bn

converges. Now, bn = 2
n4−1 looks like 1

n4 , so taking cn = 1
n4 , we will apply the Limit Comparison

Test. Note that bn > 0 and cn > 0 for n ≥ 2, so we can apply the test. Then

lim
n→∞

bn
cn

= lim
n→∞

2

n4 − 1
· n

4

1
= lim

n→∞

2n4

n4 − 1
= lim

n→∞

2

1− 1
n4

.

Then 1
n4 goes to 0 as n goes to infinity, so

lim
n→∞

2

1− 1
n4

= 2.

In particular, limn→∞
bn
cn

is not 0, so either both
∑∞

n=2 bn and
∑∞

n=2 cn converge, or both series
diverge. Notice that

∞∑
n=2

cn =
∞∑
2

1

n4

is a p-series with p = 4 > 1, so it converges. Hence,
∑∞

n=2 bn converges. But

∞∑
n=2

bn =

∞∑
n=2

2

n4 − 1
≥
∞∑
n=2

∣∣∣∣2 cosn

n4 − 1

∣∣∣∣ =

∞∑
n=2

|an|

and both bn and |an| are positive, so by the comparison test,
∑∞

n=2 |an| converges. Therefore,

∞∑
n=2

an =

∞∑
n=2

2 cosn

n4 − 1

converges absolutely, and so it converges.
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4. (15 points) (Two pages)

(a) Show that the series s =
∞∑
n=1

sin2 n

n3
converges.

(4 points) If n ≥ 1, start with the observation that

0 ≤ | sinn| ≤ 1

Squaring all sides and dividing by n3 > 0, we obtain

0 ≤ sin2 n ≤ 1 =⇒ 0 ≤ sin2 n

n3
≤ 1

n3

Therefore we can use the Comparison Test: We have an = sin2 n
n3 and bn = 1

n3 . We’ve shown that
an ≤ bn for all n ≥ 1 and that an and bn are nonnegative for all n ≥ 1. Now

∑
bn =

∑∞
n=1

1
n3

converges because it is a p-series with p = 3 > 1. So by the Comparison Test,
∑
an =

∑∞
n=1

sin2 n
n3

converges as well.

(The Comparison Test as stated in our text requires that the terms an and bn be positive, not
merely nonnegative. We can show that they are positive: indeed, sinx = 0 holds only when x is
an integer multiple of π. But π is irrational, so no integer is equal to an integer multiple of π.
So sinn 6= 0 for all n ≥ 1, and so an = sin2 n

n3 6= 0 for all n ≥ 1. Combining this with the fact
that an ≥ 0, we’ve shown that an > 0. And since bn ≥ an, we’ve shown that bn > 0 as well.)

(b) We can approximate s by computing the tenth partial sum of the series, which is found to be

s10 = 0.8325298 . . .

Express the remainder (error) R10 = s−s10 as a series of its own, and explain why R10 is positive.

(3 points)

R10 = s− s10 =

∞∑
n=1

sin2 n

n3
−

10∑
n=1

sin2 n

n3
=

∞∑
n=11

sin2 n

n3

R10 is positive because we’ve expressed it as a series all of whose terms are positive. (See the

last paragraph of the solution to (a) for an explanation of why sin2 n
n3 is positive for all n ≥ 1.)

(c) Show that R10 ≤ 1
200 . (Hint: Use the Comparison Test to relate R10 to a series that can be

analyzed with the Integral Test.)

(4 points) We have

R10 =
∞∑

n=11

sin2 n

n3
≤

∞∑
n=11

1

n3
(1)

since sin2 n
n3 ≤ 1

n3 for all n ≥ 1 (see (a)). Now f(x) = 1
x3

is continuous, positive, and decreasing
on [10,∞), so we can do things related to the Integral Test. Crucially, we can say that

∞∑
n=11

1

n3
≤
∫ ∞
10

1

x3
dx (2)

This is a consequence of the Integral Test Remainder Theorem, which says that the 10th partial
sum of

∑∞
n=1

1
n3 approximates the sum with an error bounded above by

∫∞
10

1
x3
dx. That is,

∞∑
n=11

1

n3
=

∞∑
n=1

1

n3
−

10∑
n=1

1

n3
≤
∫ ∞
10

1

x3
dx
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Alternatively, (2) can be seen directly from the
following graph of y = 1

x3
; note that the integral

is an overestimate of the sum (not to scale):

Putting together (1) and (2), we have

R10 ≤
∫ ∞
10

1

x3
dx = lim

b→∞

∫ b

10

1

x3
dx = lim

b→∞

[
− 1

2x2

]b
10

= lim
b→∞

(
− 1

2b2
+

1

200

)
=

1

200

Remark: Note that it would be incorrect to say that∫ ∞
11

sin2 x

x3
dx ≤

∞∑
n=11

sin2 n

n3
≤
∫ ∞
10

sin2 x

x3
dx

because (sin2 x)/x3 is not a decreasing function.

(d) Put the information in parts (b) and (c) together to write a statement of the form

A ≤
∞∑
n=1

sin2 n

n3
≤ B

for appropriate values A and B. (A and B should be expressed as numbers, not as infinite
summations or unevaluated integrals, but do not have to be in simplified form.)

(2 points) Recall R10 = s− s10 =

( ∞∑
n=1

sin2 n
n3

)
− s10 by definition. Using (b) and (c), we have

0 ≤ R10 ≤
1

200
⇐⇒ 0 ≤

( ∞∑
n=1

sin2 n

n3

)
− s10 ≤

1

200

⇐⇒ s10 ≤
∞∑
n=1

sin2 n

n3
≤ s10 +

1

200

This last statement has the desired form, with A = s10 and B = s10 + 1
200 .

(e) Use (d) to give an improved approximation for s. In a mathematically precise statement, express
the error in this new approximation.

(2 points) From part (d) we know that s must lie in the interval [A,B] = [s10, s10 + 1
200 ]. Our

best approximation for s will be the midpoint of this interval:

s ≈ A+B

2
=
s10 +

(
s10 + 1

200

)
2

= s10 +
1

400
= 0.8325298 . . .+ 0.0025 = 0.8350298 . . .

The error in this approximation is at most half the length of the interval:

|error| = |s− 0.8350298 . . . | ≤ B −A
2

=

(
s10 + 1

200

)
− s10

2
=

1

400
= 0.0025
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5. (13 points) Find, with complete justification, the interval of convergence of the power series

∞∑
n=0

2n(x+ 3)n√
n+ 1

To find the interval of convergence for the given series, we apply the Ratio Test. This tells us that a
series converges whenever lim

n→∞
|an+1/an| < 1, so we find that the series converges whenever

1 > lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣2n+1(x+ 3)n+1

√
n+ 2

·
√
n+ 1

2n(x+ 3)n

∣∣∣∣
= 2|x+ 3| lim

n→∞

√
n+ 1

n+ 2

= 2|x+ 3|.

In other words, we know the series converges whenever |x+ 3| < 1
2 ; that is, whenever

−7

2
< x < −5

2

The only other values of x at which this series might converge are those values where the Ratio Test
is inconclusive, namely the two endpoints. We check them for convergence separately. First, we
evaluate the series at x = −5/2:

∞∑
n=0

2n(x+ 3)n√
n+ 1

∣∣∣∣
x=−5/2

=

∞∑
n=0

2n(1/2)n√
n+ 1

=

∞∑
n=0

1√
n+ 1

.

There are a few ways we might show that this series diverges, but perhaps the fastest way is to note
that it is just the p-series with p = 1

2 ≤ 1 in disguise since

∞∑
n=0

1√
n+ 1

=
∞∑
n=1

1√
n
.

Now consider the series evaluated at the endpoint x = −7/2:

∞∑
n=0

2n(x+ 3)n√
n+ 1

∣∣∣∣
x=−7/2

=
∞∑
n=0

2n(−1/2)n√
n+ 1

=

∞∑
n=0

(−1)n√
n+ 1

.

This is a series with alternating signs, and letting bn = 1/
√
n+ 1, it is clear that it satisfies the

hypotheses of the Alternating Series Test (namely that 0 ≤ bn+1 ≤ bn for all n, and that lim
n→∞

bn = 0),

so this series converges. We thus conclude that the interval of convergence is[
−7

2
,−5

2

)
=

{
x : −7

2
≤ x < −5

2

}
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6. (12 points) Suppose the power series
∞∑
n=0

cnx
n converges for x = 3, but diverges for x = −5; no other

information about the values of cn is given. Decide which of the following series must converge, must
diverge, or may either converge or diverge (inconclusive). Circle your answer. You do not need to
justify your answers.

(2 points each) Let f(x) =

∞∑
n=0

cnx
n. The information above tells us partial information about the

radius of convergence R of f about its center 0: specifically, we can conclude that 3 ≤ R ≤ 5.

(a)

∞∑
n=0

4ncn Converges Diverges Inconclusive

This is f(x) evaluated at x = 4, which we do not know to lie inside or outside f ’s radius of
convergence about the center 0. Thus, we don’t know whether the series converges or diverges.

(b)
∞∑
n=0

(−2)ncn Converges Diverges Inconclusive

This is f(x) evaluated at x = −2, which lies inside the smallest possible radius value R.

(c)
∞∑
n=1

n3ncn Converges Diverges Inconclusive

This is 3f ′(x) evaluated at x = 3. We know f ′ has the same radius of convergence, R, as f ;
however, since R ≥ 3, we might have R = 3. In the latter case, we would not know whether the
endpoints — i.e., the values x = ±3 — lie in the interval of convergence of f ′.

(d)

∞∑
n=0

6ncn
n+ 1

Converges Diverges Inconclusive

This is 1
6

∫ x
0 f(t) dt evaluated at x = 6, which lies outside the largest possible radius of conver-

gence about 0 for f , and thus for any antiderivative of f . Therefore, the series diverges.

(e)

∞∑
n=0

(cn)2 Converges Diverges Inconclusive

Since

∞∑
n=0

3ncn converges, we know lim
n→∞

3ncn = 0, which means that for all sufficiently large n

we have |3ncn| < 1, so that 0 ≤ |cn| < 1
3n , and thus 0 ≤ (cn)2 < 1

9n . Thus, by the Comparison

Test,

∞∑
n=0

(cn)2 converges because

∞∑
n=0

1

9n
does (the latter is geometric with common ratio 1

9 < 1).

(f)
∞∑
n=0

n!cn Converges Diverges Inconclusive

The series diverges, because lim
n→∞

n!cn 6= 0. For, consider what would be true if lim
n→∞

n!cn = 0:

then for all sufficiently large n we’d have |n!cn| < 1, or equivalently |cn| < 1
n! . But then the series

∞∑
n=0

(−5)ncn would converge absolutely by comparison with
∞∑
n=0

5n

n!
(convergent by Ratio Test),

since 0 ≤ |(−5)ncn| < 5n

n! for all sufficiently large n; and this directly contradicts the given fact

that

∞∑
n=0

(−5)ncn diverges! Thus, lim
n→∞

n!cn 6= 0; so

∞∑
n=0

n!cn diverges by the Test for Divergence.
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7. (12 points) Determine, showing all reasoning, a power series centered at 0 for each of the functions
given below, and give the radius of convergence.

(a) g(x) =
x

4 + x2

(6 points) We have that

g(x) =
x

4 + x2
=
x

4
· 1

1− (−x2/4)
=
x

4

∞∑
n=0

(
−x2

4

)n
=
x

4

∞∑
n=0

(−1)n
x2n

4n

=

∞∑
n=0

(−1)n
x2n+1

4n+1
.

To find the radius of convergence, we could apply the Ratio Test:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(−1)n+1x2n+3

4n+2
· 4n+1

(−1)nx2n+1

∣∣∣∣ =

∣∣∣∣x24
∣∣∣∣ < 1⇒ |x2| = |x|2 < 4⇒ |x| < 2.

Alternatively, we could observe that by the Geometric Series Rule, the steps we take above to
convert 1

1−(−x2/4) into a geometric series are only valid for | − x2/4| < 1, or equivalently for

|x| < 2.

Either way, the radius of convergence is 2 .

(b) h(x) =
1

(1− x)2

(6 points) We have (using the chain rule!) that

h(x) =
1

(1− x)2
=

d

dx

(
1

1− x

)
=

d

dx

∞∑
n=0

xn =
∞∑
n=1

nxn−1 .

To find the radius of convergence, we could similarly apply the Ratio Test. However, we could
also observe that since neither differentiation nor integration changes the radius of convergence

of a series, and since the radius of convergence for the geometric series
∞∑
n=0

xn is 1, then the

radius of convergence for the given series is also 1 .
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8. (12 points) Let f(x) = cosx.

(a) Find T4(x), the degree-4 Taylor polynomial for f centered at
π

4
.

(
Hint: cos

π

4
=

1√
2
.

)
Show all

steps of your reasoning.

(5 points) The first few derivatives of f(x) and corresponding Taylor coefficients cn =
f (n)

(
π
4

)
n!

:

f(x) = cosx =⇒ c0 =
cos π4

0!
=

1√
2

f ′(x) = − sinx =⇒ c1 =
− sin π

4

1!
= − 1√

2

f ′′(x) = − cosx =⇒ c2 =
− cos π4

2!
= − 1

2!
√

2

f ′′′(x) = sinx =⇒ c3 =
sin π

4

3!
=

1

3!
√

2

f (4)(x) = cosx =⇒ c4 =
cos π4

4!
=

1

4!
√

2

Therefore, the degree-4 Taylor polynomial of f, centered at π/4, is

T4(x) =
1√
2
− 1√

2

(
x− π

4

)1
− 1

2!
√

2

(
x− π

4

)2
+

1

3!
√

2

(
x− π

4

)3
+

1

4!
√

2

(
x− π

4

)4
.

(b) Use T4 to obtain an approximation for cos
π

6
. Give your approximation as an expression involving

only numbers, not unevaluated trig functions; but you do not need to put it in simplified form.

(2 points) We take T4
(
π
6

)
as our approximation to cos π6 . Namely,

cos
π

6
≈ T4

(π
6

)
=

1√
2
− 1√

2

(π
6
− π

4

)1
− 1

2!
√

2

(π
6
− π

4

)2
+

1

3!
√

2

(π
6
− π

4

)3
+

1

4!
√

2

(π
6
− π

4

)4

(c) Determine the accuracy of your approximation from part (b), explaining all your reasoning, and
giving your final conclusion in sentence form. (Again, use only numbers, not unevaluated trig
functions, but you don’t need a simplified expression.)

(5 points) Taylor’s Inequality, on the interval
[
π
6 ,

π
3

]
=
[
π
4 −

π
12 ,

π
4 + π

12

]
centered at π

4 , tells us
that

|f(x)− T4(x)| ≤ M

5!

∣∣∣x− π

4

∣∣∣5 for any x ∈
[π

6
,
π

3

]
provided that the number M is chosen to be greater than or equal to the maximum value of
|f (5)(x)| = | sinx| on the interval [π/6, π/3]. Because | sinx| is never greater than 1, we can
certainly choose M = 1. Therefore,∣∣∣cos

π

6
− T4

(π
6

)∣∣∣ ≤ 1

5!

∣∣∣π
6
− π

4

∣∣∣5 .
In words, this means that our approximation of cos π6 using T4

(
π
6

)
as in part (b) is accurate to

within
1

5!

∣∣∣π
6
− π

4

∣∣∣5.


