
Solutions to Math 42 Second Exam — February 28, 2012

1. (10 points) For this problem, use the following information:
• If g is a normal (“bell-shaped” or “Gaussian”) prob-

ability density function, then g has the general form

g(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

• A partial list of approximate values of the function

F (z) =
∫ z

−∞

1√
2π
e−t

2/2 dt is given at right:

F (0.25) ≈ 0.60
F (0.5) ≈ 0.69
F (0.75) ≈ 0.77
F (1.0) ≈ 0.84
F (1.25) ≈ 0.89
F (1.5) ≈ 0.93

F (1.75) ≈ 0.960
F (2.0) ≈ 0.977
F (2.25) ≈ 0.988
F (2.5) ≈ 0.994
F (2.75) ≈ 0.997
F (3.0) ≈ 0.999

Suppose that a manufacturer of voltmeters tests its devices for quality control before shipment, and
discovers that the amount of imprecision in a randomly selected voltmeter is approximately normally
distributed with mean 0.25 mV and standard deviation 0.5 mV. (Note that by “imprecision” of a
device we mean the difference between a “true” voltage and the device’s measurement of that voltage;
this difference can be either positive or negative.)

In what follows, write X for the random variable that represents the imprecision of a voltmeter; we
have that its probability density function is given by g(x) with µ = 0.25(mV) and σ = 0.5(mV).

(a) Based on the above information, what is the probability that a randomly chosen voltmeter has a
positive value of imprecision? Your answer should be a number; justify it by writing an integral
expression that represents this probability and showing how to find its value.

(5 points) The probability that the random variable X is positive is given by:

Prob(X > 0) =
∫ ∞

0
g(x)dx

=
∫ ∞

0

1
σ
√

2π
e−

1
2
(x−µ
σ

)2dx

To realize this quantity in terms of F , we first make a “standardizing” substitution. Let

t =
x− µ
σ

, so that dt =
1
σ
dx

and the limits change as follows:

x = 0⇔ t =
0− 0.25

0.5
= −0.5 and x→∞⇔ t→∞.

Hence, we have

Prob(X > 0) =
∫ ∞
−0.5

1√
2π
e−t

2/2 dt

One way to proceed from here is to use the “symmetry” substitution u = −t (so that du = −dt
and the signs of the limits flip); we find

Prob(X > 0) = −
∫ −∞

0.5

1√
2π
e−u

2/2 du

=
∫ 0.5

−∞

1√
2π
e−u

2/2 du = F (0.5) ≈ 0.69
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Alternatively, we may use the relation F (−z) = 1 − F (z) (also a “symmetry”; see part (b) for
more details) to find that

Prob(X > 0) =
∫ ∞
−0.5

1√
2π
e−t

2/2 dt

= 1−
∫ −0.5

−∞

1√
2π
e−t

2/2 dt

= 1− F (−0.5)

= 1− (1− F (0.5)) = F (0.5) ≈ 0.69

(b) If the imprecision of a voltmeter is less than 1.0 mV in absolute value, then it is shipped out.
Otherwise, it is sent back to be recalibrated. Approximately what fraction of the voltmeters are
sent back for recalibration? (Again use an integral expression as part of your justification.)

(5 points) A randomly selected voltmeter is sent back for recalibration when |X| ≥ 1; we’ll first
express the probability that this occurs in terms of F , and then we’ll evaluate the expression.

Prob(|X| ≥ 1) = 1− Prob(−1 < X < 1)

= 1−
∫ 1

−1
g(x) dx

= 1−
∫ 1

−1

1
σ
√

2π
e−(x−µ)2/2σ2

dx

= 1−
∫ 1.5

−2.5

1√
2π
e−t

2/2 dt

[
t =

x− µ
σ

, dt =
1
σ
dx, etc.

]
= 1− (F (1.5)− F (−2.5))
= 1− F (1.5) + F (−2.5)

The limits above are changed because x = 1 if and only if t = 1−µ
σ = 1−0.25

0.5 = 1.5, and similarly
x = −1 if and only if t = −2.5. (Equivalently, using the formula Prob(X < a) = F (a−µσ ) yields:

Prob(|X| ≥ 1) = Prob(X < −1 or X > 1)
= Prob(X < −1) + Prob(X > 1)
= Prob(X < −1) + (1− Prob(X < 1))

= F

(
−1− 0.25

0.5

)
+ 1− F

(
1− 0.25

0.5

)
= F (−2.5) + 1− F (1.5), as before.)

Now in evaluating this expression, we use the fact that F (−2.5) = 1−F (2.5), which can be seen
by another “symmetric” substitution:

F (−2.5) =
∫ −2.5

−∞
e−t

2/2 dt = −
∫ 2.5

∞
e−u

2/2 du [u = −t, du = −dt, etc.]

=
∫ ∞

2.5
e−u

2/2 du

= 1−
∫ 2.5

−∞
e−u

2/2 du = 1− F (2.5)

Thus,
P (|X| ≥ 1) = 1− F (1.5) + 1− F (2.5) ≈ 1− 0.93 + 1− 0.994 = 0.076 .

So, the fraction of voltmeters sent back for recalibration is 0.076 = 76
1000 (or 7.6 percent).
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2. (10 points) Determine, with justification, whether each series converges. If the series converges, find
its sum.

(a)
∞∑
n=1

5n−1

32n

(5 points)

∞∑
n=1

5n−1

32n
=
∞∑
n=1

5n−1

9n

=
∞∑
n=1

1
9

(
5
9

)n−1

This is a geometric series with common ratio 5
9 . It converges because

∣∣5
9

∣∣ < 1. It converges to

1
9

1− 5
9

=
1
4

The Ratio Test can also be used to show that the series converges:

lim
n→∞

∣∣∣∣5n/32n+2

5n−1/32n

∣∣∣∣ = lim
n→∞

5n32n

5n−132n+2

= lim
n→∞

5
32

=
5
9
< 1

So the series converges. But the Ratio Test cannot be used to calculate the sum of the series.



Math 42, Winter 2012 Solutions to Second Exam — February 28, 2012 Page 4 of 10

(b)
∞∑
n=1

ln
(

1 +
2
n

)
(5 points) The Test for Divergence is inconclusive. All the terms are positive, so we can use the
Limit Comparison Test to compare

∑∞
n=1 ln

(
1 + 2

n

)
with

∑∞
n=1

1
n :

lim
n→∞

ln
(
1 + 2

n

)
1
n

= lim
n→∞

d
dn ln

(
1 + 2

n

)
d
dn

1
n

= lim
n→∞

(
1 + 2

n

)−1 (−2
n2

)
−1
n2

= lim
n→∞

(
1 +

2
n

)−1

(2)

= lim
n→∞

2
1 + 2

n

= 2 6= 0

so the series
∑∞

n=1 ln
(
1− 2

n

)
and

∑∞
n=1

1
n either both converge or both diverge. The latter is

the harmonic series, which diverges because it is a p-series with p = 1 ≤ 1. So
∑∞

n=1 ln
(
1 + 2

n

)
diverges.
One could use the direct Comparison Test instead of the Limit Comparison Test by proving that
for large enough n,

ln
(

1 +
2
n

)
>

1
n

(But it is not true that ln
(
1 + 2

n

)
> 2

n .)
Another way to tackle the problem is the telescoping sum approach:

∞∑
n=1

ln
(

1 +
2
n

)
=
∞∑
n=1

ln
(
n+ 2
n

)

=
∞∑
n=1

(ln(n+ 2)− ln(n))

= (ln(3)− ln(1)) + (ln(4)− ln(2)) + (ln(5)− ln(3)) + (ln(6)− ln(4)) + · · ·

Notice that every positive term cancels with the negative term five terms later, and every negative
term cancels with the positive term five terms earlier. So most of the terms in the n-th partial
sum sn cancel each other. If n is at least 2, then only four terms remain:

sn = − ln(1)− ln(2) + ln(n+ 1) + ln(n+ 2)

So we can calculate the sum directly by taking the limit of the partial sums:

∞∑
n=1

ln
(

1 +
2
n

)
= lim

n→∞
sn

= lim
n→∞

(
− ln(1)− ln(2) + ln(n+ 1) + ln(n+ 2)

)
=∞

Therefore the sum diverges.
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3. (12 points) In each of the following parts, give a formula for an so that the series
∞∑
n=1

an has the

specified property or properties, or state that such a series cannot exist. You do not need to justify
your answers. (Please treat each question as independent from the others; properties do not carry over
from part (a) to part (b), etc.)

(a) The series
∞∑
n=1

an diverges and lim
n→∞

an = 0.

(3 points) an = 1
n , for example:

∑∞
n=1

1
n is the divergent harmonic series (i.e. a p-series with

p = 1), yet limn→∞
1
n = 0.

(b) The series
∞∑
n=1

an converges and an < an+1 for all n ≥ 1.

(3 points) an = − 1
n2 : since

∑∞
n=1

1
n2 converges by the p-Series Rule (p = 2 > 1),

∑∞
n=1−

1
n2 also

converges. Also

an = − 1
n2

< − 1
(n+ 1)2

= an+1.

(c) The series
∞∑
n=1

an converges and lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1.

(3 points) an = 1
n2 :

∑∞
n=1

1
n2 converges again by the p-Series Rule (p = 2 > 1), yet

lim
n→∞

∣∣∣∣1/(n+ 1)2

1/n2

∣∣∣∣ = lim
n→∞

n2

(n+ 1)2
= 1.

(d) The series
∞∑
n=1

an converges absolutely and the series
∞∑
n=1

(an)2 diverges.

(3 points) Such a series cannot exist: if
∑∞

n=1 |an| converges, we have limn→∞ |an| = 0. After a
sufficiently large n, we have |an| < 1. Hence

0 ≤ (an)2 < |an| after a sufficient large n.

By the Comparison Test,
∑∞

n=1(an)2 converges.

Remarks on grading:

1. Since justification is not required, each part is graded on a 0/3-basis. No partial credit is
awarded.

2. No points will be deducted (this time) if the first few terms of the an’s are undefined (such as
an = 1

n2−1
; then a1 is undefined), but students who committed this mistake should be aware of

this issue next time.

3. If more than one answers are given but none of them is clearly indicated as the final answer,
then it will be at the discretion of the grader(s) to decide which one is the ‘first’ answer; all the
others will not be considered.
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4. (10 points) Determine whether each of the series below converges or diverges. Indicate clearly which
tests you use and how you apply them.

(a)
∞∑
n=1

n− 1
n3 − 2

(5 points) The series converges. To see this, let an =
n− 1
n3 − 2

and let bn =
1
n2

. Note that an, bn > 0

for n ≥ 2. Thus, we can apply the Limit Comparison Test. Note that

lim
n→∞

an
bn

= lim
n→∞

n2(n− 1)
n3 − 2

= lim
n→∞

(1− 1/n)
1− 2/n3

= 1.

Thus, by the Limit Comparison Test both
∑
an and

∑
bn converge or both diverge. But we

know that
∑ 1

n2 converges by the p-Series Rule, since p = 2 > 1. Thus,
∑∞

n=1
n−1
n3−2

also converges.

Note: It is also possible to show convergence using the Comparison Test. In both methods full
credit was given if the test was explicitly stated and the hypothesis of the tests were shown to
hold true (for example, positivity of the terms, inequality or limits, etc.)

(b)
∞∑
n=1

(2n)!
2n n!(n+ 1)!

(5 points) The series diverges by the Ratio Test. To see this, let an =
(2n)!

2nn!(n+ 1)!
. Then,

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (2n+ 2)!2nn!(n+ 1)!
(2n)!2n+1(n+ 1)!(n+ 2)!

∣∣∣∣
= lim

n→∞

(2n+ 2)(2n+ 1)
2(n+ 1)(n+ 2)

= lim
n→∞

(2 + 2/n)(2 + 1/n)
2(1 + 1/n)(1 + 2/n)

= 2 > 1.

Thus, the series diverges by the Ratio Test.



Math 42, Winter 2012 Solutions to Second Exam — February 28, 2012 Page 7 of 10

5. (13 points) Find, with complete justification, the interval of convergence of the power series
∞∑
n=2

(3− x)3n

3
3n

(lnn)

The interval of convergence is [0, 6). To see this, we first perform the ratio test:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (3− x)3n+3 · 33n · lnn
33n+3 · ln(n+ 1) · (3− x)3n

∣∣∣∣
= lim

n→∞

∣∣∣∣(3− x)3 · ln(n)
33 · ln(n+ 1)

∣∣∣∣
=
|3− x|3

27
lim
n→∞

∣∣∣∣ ln(n)
ln(n+ 1)

∣∣∣∣ form
∞
∞

so use l’Hopital

=
|3− x|3

27
lim
n→∞

∣∣∣∣ 1/n
1/(n+ 1)

∣∣∣∣
=
|3− x|3

27
lim
n→∞

∣∣∣∣n+ 1
n

∣∣∣∣
=
|3− x|3

27
· 1

=
|x− 3|3

27

By the ratio test, the sum converges if this value is less than 1, and diverges if if is greater than one.

Therefore
∑ (3− x)3n

33n lnn
converges for |x − 3| < 3, and diverges for |x − 3| > 3. This tells us that

the radius of convergence is R = 3; since the power series is centered at x = 3, we must check the
endpoints 0 and 6.

If x = 0, then the sum is
∞∑
n=2

1
ln(n)

.

For n > 2, 0 < ln(n) < n, so 0 < 1/n < 1/ ln(n). We know that
∞∑
n=2

1
n

diverges because it is a p-series with p = 1, so by the comparison test
∑

1/ ln(n) diverges also. x = 0
is not in the interval of convergence.

If x = 6, then the sum is
∞∑
n=2

(−1)3n

ln(n)
=
∞∑
n=2

(−1)3n

ln(n)
.

This is an alternating sum, and since ln(n) is an increasing sequence, 1/ ln(n) is a decreasing sequence;
also since ln(N) goes to infinity as n goes to infinity, we have

lim
n→∞

1/ ln(n) = 0.

By the alternating series test, the sum converges. The interval of convergence is therefore (0, 6].
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6. (12 points) Suppose the power series
∞∑
n=0

cn(x− 2)n converges for x = 7 but not for x = −4; no other

information about the values of cn is given. Decide which of the following series must converge, must
diverge, or may either converge or diverge (inconclusive). Circle your answer. You do not need to
justify your answers.

(2 points each) Let f(x) =
∞∑
n=0

cn(x− 2)n. The information above tells us partial information about

the radius of convergence R of f : specifically, we can conclude that 5 ≤ R ≤ 6.

(a)
∞∑
n=0

2ncn Converges Diverges Inconclusive

This is f(x) evaluated at x = 4, which lies inside the smallest possible radius of convergence
about the center 2, so we know the series converges.

(b)
∞∑
n=0

7ncn Converges Diverges Inconclusive

This is f(x) evaluated at x = 9, which lies outside the largest possible radius of convergence
about the center 2, so we know the series diverges.

(c)
∞∑
n=1

ncn Converges Diverges Inconclusive

This is f ′(x) evaluated at x = 3. Since f ′ has the same radius of convergence as f , and since 3
lies inside the smallest possible radius of convergence about 2, we know the series converges.

(d)
∞∑
n=0

6n
cn

n+ 1
Converges Diverges Inconclusive

This is
1
6

∫ x

2
f(t) dt evaluated at x = 8; we know that antiderivatives of f have the same radius

of convergence as f . In this case 8 lies at a distance of 6 from the center 2, and since we don’t
know whether R = 6 or R < 6, we don’t know whether the series converges. (In fact, even if we
knew R = 6, we wouldn’t know whether the endpoints — i.e., the points that lie exactly 6 units
from the center — lie in the interval of convergence of an antiderivative of f .)

(e)
∞∑
n=0

|cn| Converges Diverges Inconclusive

Since
∞∑
n=0

5ncn converges, we know that lim
n→∞

5ncn = 0, which means that for all sufficiently large

n we have that |5ncn| < 1, so that 0 < |cn| <
1
5n

. Thus, by the Comparison Test,
∞∑
n=0

|cn|

converges because
∑∞

n=0
1
5n does (the latter is a geometric series with common ratio 1

5 < 1).

(f)
∞∑
n=1

1
n+ (cn)4

Converges Diverges Inconclusive

Note that lim
n→∞

1/n
1/(n+ (cn)4)

= lim
n→∞

n+ (cn)4

n
= 1 + lim

n→∞

(cn)4

n
= 1 + 0 = 1 6= 0, so by the Limit

Comparison Test, the divergence of the harmonic series
∑∞

n=1
1
n implies that our series diverges.
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7. (11 points) Let f(x) = x1/3.

(a) Find T3(x), the degree-3 Taylor polynomial for f centered at 8.

(4 points) We have

T3(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)
2!

(x− a)2 +
f ′′′(a)

3!
(x− a)3

Thus, for a = 8 and f(x) = x1/3, we need to find f(8), f ′(8), f ′′(8), f ′′′(8).

f(x) = x1/3 =⇒ f ′(x) =
1
3
x−2/3

=⇒ f ′′(x) =
1
3
· −2

3
x−5/3

=⇒ f ′′′(x) =
1
3
· −2

3
· −5

3
x−8/3

Thus, f(8) = 2, and f ′(8) = 1
3 · 2

−2, and f ′′(8) = 1
3 ·
−2
3 · 2

−5, and f ′′′(8) = 1
3 ·

2
3 ·

5
3 · 2

−8.

Therefore, T3(x) = 2 +
1
1!
· 1

3
· 1

22
(x− 8)− 1

2!
· 1

3
· 2

3
· 1

25
(x− 8)2 +

1
3!
· 1

3
· 2

3
· 5

3
· 1

28
(x− 8)3 .

(b) Use T3 to obtain an approximation for the cube root of 7.9. (You do not need to simplify your
answer.)

(1 point) We seek T3(7.9), because T3(x) approximates f(x) = 3
√
x for x near 8. We find

T3(7.9) = 2 +
1
1!
· 1

3
· 1

22
(7.9− 8)− 1

2!
· 1

3
· 2

3
· 1

25
(7.9− 8)2 +

1
3!
· 1

3
· 2

3
· 5

3
· 1

28
(7.9− 8)3

= 2− 1
1!
· 1

3
· 1

22
· 1

10
− 1

2!
· 1

3
· 2

3
· 1

25
· 1

102
− 1

3!
· 1

3
· 2

3
· 5

3
· 1

28
· 1

103

(c) Determine the accuracy of your approximation from part (b), explaining the steps of your reason-
ing, and giving your final conclusion in sentence form.

(6 points) By Taylor’s Inequality,

|f(x)− T3(x)| = |R3(x)| ≤ M

4!
|x− 8|4 for x in [8− d, 8 + d]

where M ≥ |f (4)| for x ∈ [8 − d, 8 + d]. We want this to hold specifically for x = 7.9. So we
choose an interval containing 7.9; the smallest such is [7.9, 8.1], when d = 0.1.
We have f (4)(x) = 1

3 ·
−2
3 ·

−5
3 ·

−8
3 x
−11/3 = −80

81x
−11/3, and so |f (4)(x)| = 80

81x
−11/3. This is a

decreasing function, so is maximized on the above interval when x = 7.9. So we may choose
M = 80

81(7.9)−11/3. Note we may also choose M = 1 as a simpler if not as refined upper bound,
since 80/81 < 1 and 7.9 to a negative power is trivially less than 1 also.
Finally, we conclude

|R3(7.9)| ≤
80
81(7.9)−11/3

4!
(7.9− 8)4.

So our estimate in part (b) of the cube root of 7.9 was within
80
81(7.9)−11/3

4!
(7.9− 8)4 of the real

value.
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8. (10 points) Match each power series below to its graph, chosen from among the six displayed. (Note
that each series has a match, but exactly one of the graphs does not correspond to any power series in
the list). You do not need to justify your answers.

I II III

IV V VI

Series
I, II, III, IV,
V, or VI

f(x) = 1 + 2x− 2x3 +
2x5

2!
− 2x7

3!
+ · · · V

f(x) = x− x2

2!
+
x3

3!
− x4

4!
+
x5

5!
− · · · VI

f(x) = 1− x2

2!
− x4

4!
− x6

6!
− x8

8!
− · · · I

f(x) = 1 + x− x2

2!
− x3

3!
− x4

4!
− · · · IV

f(x) = x+
x2

2
+

x3

22 · 2!
+

x4

23 · 3!
+

x5

24 · 4!
+ · · · II


