
Solutions to Math 42 First Exam — February 2, 2012

1. (12 points) Evaluate each of the following integrals, showing all of your reasoning.

(a)
∫ π/4

0
cos4 θ dθ

(6 points) We use the half-angle formula twice:∫ π/4

0
cos4 θ dθ =

∫ π/4

0
(cos2 θ)2 dθ

=
∫ π/4

0

(
1
2

(1 + cos(2θ))
)2

dθ

=
1
4

∫ π/4

0
1 + 2 cos(2θ) + cos2(2θ) dθ

=
1
4

∫ π/4

0
1 + 2 cos(2θ) +

1
2

(1 + cos(4θ)) dθ

=
1
8

∫ π/4

0
3 + 4 cos(2θ) + cos(4θ) dθ

=
1
8

[
3θ + 2 sin(2θ) +

1
4

sin(4θ)
]π/4

0

=
1
8

(
3
π

4
+ 2 sin

(π
2

)
+

1
4

sin(π)
)
− 1

8

(
3 · 0 + 2 sin(0) +

1
4

sin(0)
)

=
1
8

(
3π
4

+ 2 + 0
)
− (0) =

3π
32

+
1
4

(b)
∫ √

x2 − 1
x

dx

(6 points) We can use the trigonometric substitution x = sec θ, dx = sec θ tan θ dθ (where either
0 ≤ θ ≤ π

2 or π ≤ θ ≤ 3π
2 so that tan θ is positive; thus

√
tan2 θ = tan θ). Then we get∫ √

x2 − 1
x

dx =
∫ √

sec2 θ − 1
sec θ

sec θ tan θ dθ

=
∫ √

tan2 θ

sec θ
sec θ tan θ dθ

=
∫

tan θ
sec θ

sec θ tan θ dθ

=
∫

tan2 θ dθ

=
∫

(sec2 θ − 1) dθ = tan θ − θ + C

Since x = sec θ = 1
cos θ , solving for θ yields θ = arccos 1

x . Note also that we also know that√
x2 − 1 = tan θ. Thus, ∫ √

x2 − 1
x

dx =
√
x2 − 1− arccos

1
x

+ C
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Alternate solution to 1(b): under the assumption x > 0, we could instead attack this problem
with the following u-substitution:

u =
√
x2 − 1, du =

x√
x2 − 1

dx

=⇒ x2 = u2 + 1, dx =
√
x2 + 1
x

du =
u

x
du

So ∫ √
x2 − 1
x

dx =
∫
u

x

u

x
du

=
∫
u2

x2
du

=
∫

u2

u2 + 1
du

Then we need to do polynomial long division. Or in this case we can use the following shortcut
version of long division:∫

u2

u2 + 1
du =

∫
u2 + 1− 1
u2 + 1

du

=
∫
u2 + 1
u2 + 1

du−
∫

1
u2 + 1

du

=
∫

du−
∫

1
u2 + 1

du

= u− arctanu+ C

=
√
x2 − 1− arctan

√
x2 − 1 + C

This looks like a different answer than the one we gave above, but in fact arccos 1/x and
arctan

√
x2 − 1 are the same for positive x. Here’s a quick proof: Suppose

y = arctan
√
x2 − 1

so 0 ≤ y ≤ π/2. Then √
x2 − 1 = tan y

=⇒ x2 − 1 = tan2 y

= sec2 y − 1

=⇒ x2 = sec2 y =
1

cos2 y

=⇒ x = |x| = 1
| cos y|

=
1

cos y
(x, cos y > 0)

=⇒ y = arccos
1
x
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2. (13 points) Evaluate each of the following integrals, showing all of your reasoning.

(a)
∫
x2 arctanx dx

(6 points) We use integration by parts, with

u = arctanx du =
1

x2 + 1
dx

v =
x3

3
dv = x2 dx

uv −
∫
v du =

x3

3
arctanx− 1

3

∫
x3

x2 + 1
dx

One way to attack this integral is by polynomial long division:

x

x2 + 1
)

x3

− x3 − x
− x

So we have ∫
x2 arctanx dx =

x3

3
arctanx− 1

3

∫
x− x

x2 + 1
dx

=
x3

3
arctanx− 1

3

∫
x dx+

1
3

∫
x

x2 + 1
dx

The last integral here can be computed using u-substitution, with u = x2 + 1.

=
x3

3
arctanx− x2

6
+

1
6

ln |x2 + 1|+ C

We can get rid of the absolute value signs because x2 + 1 is always positive:

=
x3

3
arctanx− x2

6
+

1
6

ln(x2 + 1) + C

(b)
∫

dx

(3− 2x− x2)3/2

(7 points) First complete the square in the denominator:

3− 2x− x2 = −(x2 + 2x− 3)

= −(x2 + 2x+ 1− 1− 3)

= −((x+ 1)2 − 4)

= 4− (x+ 1)2
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So ∫
dx

(3− 2x− x2)3/2
=
∫

dx

(22 − (x+ 1)2)3/2

Use the substitution

u = x+ 1
du = dx

Then ∫
dx

(22 − (x+ 1)2)3/2
=
∫

du

(22 − u2)3/2

=
∫

du(√
22 − u2

)3

Now we can use the trigonometric substitution

u = 2 sin θ
du = 2 cos θ dθ√

22 − u2 = 2 cos θ

−π
2
≤ θ ≤ π

2

And we get ∫
du(√

22 − u2
)3 =

∫
2 cos θ dθ
(2 cos θ)3

=
∫

dθ

4 cos2 θ

=
1
4

∫
sec2 θ dθ

=
1
4

tan θ + C

=
sin θ

4 cos θ
+ C

=
2 sin θ

4(2 cos θ)
+ C

=
u

4
√

4− u2
+ C

=
x+ 1

4
√

4− (x+ 1)2
+ C

=
x+ 1

4
√

3− 2x− x2
+ C
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3. (7 points) Evaluate
∫
x4 + x

x4 − 1
dx, showing all reasoning.

By long division, we have
x4 + x

x4 − 1
= 1 +

x+ 1
x4 − 1

.

Factorizing x4 − 1 gives x4 − 1 = (x+ 1)(x− 1)(x2 + 1). Hence, we have

x4 + x

x4 − 1
= 1 +

x+ 1
(x+ 1)(x− 1)(x2 + 1)

= 1 +
1

(x− 1)(x2 + 1)
.

Use method of partial fractions to decompose 1
(x−1)(x2+1)

: Let

1
(x− 1)(x2 + 1)

=
A

x− 1
+
Bx+ C

x2 + 1
,

1 = A(x2 + 1) + (Bx+ C)(x− 1).

• When x = 1, we have 1 = 2A+ (Bx+ C) · 0⇒ A = 1
2 .

• When x = 0, we have 1 = 1
2 + (B · 0 + C)(−1)⇒ C = −1

2 .

• When x = −1, we have 1 = 2(1
2) + (−B − 1

2)(−2)⇒ B = −1
2 .

Hence we have
x4 + x

x4 − 1
= 1 +

1
2(x− 1)

− x+ 1
2(x2 + 1)

,

and so ∫
x4 + x

x4 − 1
dx =

∫
1dx+

1
2

∫
1

x− 1
dx− 1

2

∫
x

x2 + 1
dx− 1

2

∫
1

x2 + 1
dx

= x+
1
2

ln |x− 1| − 1
4

ln(x2 + 1)− 1
2

arctanx+ C.
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4. (12 points)

(a) Determine whether
∫ ∞

1

2 + cosx
x lnx

dx converges or diverges; give complete reasoning.

(6 points) First note that −1 ≤ cosx ≤ 1 and hence 1 ≤ 2 + cosx ≤ 3. Therefore, we have

0 <
1

x lnx
≤ 2 + cosx

x lnx
≤ 3
x lnx

for x > 1.

With the Comparison Theorem in mind, this suggests that the fate of our integral is closely tied

to that of
∫ ∞

1

1
x lnx

dx. To compute the latter, which is improper for two reasons, we split:

∫ ∞
1

1
x lnx

dx =
∫ 2

1

1
x lnx

dx+
∫ ∞

2

1
x lnx

dx.

Let u = lnx, then du = 1
xdx. Since u→∞ as x→∞, we have∫ 2

1

1
x lnx

dx+
∫ ∞

2

1
x lnx

dx =
∫ ln 2

0

du

u
+
∫ ∞

ln 2

du

u
.

In fact each of the latter two integrals diverges (so we can stop after computing one of them):

lim
t→0+

∫ ln 2

t

du

u
= lim

t→0+
[ln |u|]ln 2

t = lim
t→0+

(ln ln 2− ln t) = −(−∞)

lim
s→∞

∫ s

ln 2

du

u
= lim

s→∞
[ln |u|]sln 2 = lim

s→∞
(ln s− ln ln 2) =∞.

Therefore,
∫ ∞

1

1
x lnx

dx diverges, and we can now apply the Comparison Theorem: since

0 <
1

x lnx
≤ 2 + cosx

x lnx
for x > 1

as we saw above, we can conclude that
∫ ∞

1

2 + cosx
x lnx

dx also diverges .

(b) Determine whether
∫ 1

0

√
sinx
x

dx converges or diverges; give complete reasoning.

(6 points) Use the inequality 0 < sinx ≤ x for 0 < x ≤ 1. We have

0 <
√

sinx ≤
√
x

⇐⇒ 0 <
√

sinx
x

≤
√
x

x
=

1√
x
.

Now
∫ 1

0

1√
x
dx converges because

∫ 1

0

1√
x
dx = lim

t→0+

∫ 1

t

1√
x
dx = lim

t→0+
2
√
x

∣∣∣∣1
t

= lim
t→0+

(
2− 2

√
t
)

= 2

It now follows by the Comparison Theorem that
∫ 1

0

√
sinx
x

dx also converges .
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5. (9 points) A molasses tank has exploded, spreading sticky goo across the ground in all directions. The
mass density ρ(z) of molasses (measured in kilograms per square meter) at each point on the ground
near the tank is assumed to depend only on the distance z (in meters) from the tank.

(a) Write an integral involving the function ρ which expresses the total mass of all molasses that lies
on the ground within a 60-meter radius of the tank.

(3 points) Let z be the radial distance to the tank. We slice the region into very thin rings
centered at the tank, each of radius z and width ∆z (meters), so that the area of a slice is
approximately 2πz∆z (square meters) and its mass is approximately 2πzρ(z)∆z (kilograms). In

the limit as ∆z → 0, the total mass is given by
∫ 60

0
2πzρ(z) dz .

(b) The density was measured experimentally at several points on the ground near the tank. The
values collected are:

z (m) 0 10 20 30 40 50 60
ρ(z) (kg/m2) 3 2.8 2.5 2 1.5 0.8 0.2

Use the Midpoint Rule to estimate the total mass of molasses as expressed by your integral in (a).
Use as much of the data in the table above as possible, and do not simplify your answer.

(3 points) The largest number of rectangles we can take for this data is n = 3 (for example we
do not know the values of ρ for z = 5, 15, 25...), so that the midpoints of our three intervals are
r = 10, 30, 50 and ∆z = 20. The midpoint approximation is∫ 60

0
2πzρ(z) dz ≈M3 = 20

(
2π
)(

(10)ρ(10) + (30)ρ(3) + (50)ρ(50)
)

kg

= 40π
(

(10)(2.8) + (30)(2) + (50)(.8)
)

kg

(c) Use Simpson’s Rule to estimate the total mass of molasses as expressed by your integral in (a).
Use all the data in the table above, and do not simplify your answer.

(3 points) Here we may take n = 6 and ∆z = 10.∫ 60

0
2πzρ(z) dz ≈ S6

=
(

20
3

)
(2π)

(
0(3) + 4(10)(2.8) + 2(20)(2.5) + 4(30)(2) + 2(40)(1.5) + 4(50)(0.8) + 60(0.2)

)
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6. (14 points) Let f(x) = e−e
x
. In this problem, we study approximations of the following integral:∫ 1

0
e−e

x
dx

(a) Write an algebraic expression involving only numbers that approximates the above integral using
the Trapezoidal Rule with 4 subintervals. You do not have to simplify this expression.

(4 points) The length of each subinterval is ∆x =
1− 0

4
=

1
4

, and the points at which we need
to evaluate the function are:

xi = 0 + i∆x =
i

4
for 0 ≤ i ≤ 4

The approximation is now given by

T4 =
∆x
2

[f(x0) + 2f(x1) + 2f(x2) + 2f(x3) + f(x4)]

=
1
4

2

(
e−e

0
4 + 2e−e

1
4 + 2e−e

2
4 + 2e−e

3
4 + e−e

4
4

)
=

1
8

(
e−1 + 2e−e

1
4 + 2e−e

1
2 + 2e−e

3
4 + e−e

)

(b) Compute f ′′(x), and show that

0 ≤ f ′′(x) ≤ 2
3

for all x in [0, 1].

(3 points) The first derivative is:
f ′(x) = −exe−ex

and the second derivative is:

f ′′(x) = −exe−ex
+ e2xe−e

x
= ex−e

x
(ex − 1)

Next we show that f ′′(x) ≥ 0, i.e., that f ′′ is non-negative on [0, 1]. We know that the exponential
function only takes positive values and therefore

ex−e
x
> 0

for any real number x. Furthermore, the exponential function is increasing and thus

ex ≥ e0 = 1 for x ≥ 0

and so
ex − 1 ≥ 0 for x ≥ 0

We conclude that the product f ′′(x) = ex−e
x
(ex − 1) is non-negative for x ≥ 0.
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Finally, we prove that f ′′(x) ≤ 2
3 for x ∈ [0, 1]. First observe that

d

dx
(x− ex) = 1− ex

is negative for x > 0. Thus x − ex is decreasing for x ≥ 0. Since the exponential function is
increasing, it follows that ex−e

x
is decreasing for x ≥ 0. In particular

e0−e
0 ≥ ex−ex ⇐⇒ e−1 ≥ ex−ex

for x ≥ 0. Moreover, we have already seen ex−e
x
> 0. Putting both inequalities together, we

conclude:
0 < ex−e

x ≤ e−1 for x ≥ 0

Furthermore, note that since the exponential function is increasing we have that

e0 − 1 ≤ ex − 1 ≤ e1 − 1⇐⇒ 0 ≤ ex − 1 ≤ e− 1

for 0 ≤ x ≤ 1. Putting together the last two inequalities, we conclude about the second derivative
of f :

f ′′(x) = ex−e
x
(ex − 1) ≤ e−1(e− 1) = 1− 1

e
≤ 1− 1

3
=

2
3

where we have used that e ≤ 3.

Grading remarks:

• Finding a correct expression for f ′′ was worth 0.5 points.

• Proving that the second derivative of f is non-negative was worth 1 point.

• Most people attempted to prove the required inequalities by simply calculating f ′′(0) and
f ′′(1) and assuming those values were the minimum and maximum of f ′′ on [0, 1]. That
would be relevant and true if f ′′ were monotonic (increasing or decreasing) on [0, 1], which
it is not.

(c) Using the fact stated in part (b), show that your Trapezoidal Rule approximation in part (a)
is accurate to within 1

250 . (You may cite the fact of part (b) even if you did not prove it.) In
addition, explain whether the approximation of part (a) gives an overestimate or underestimate
of the integral, or whether it is impossible to tell.

(4 points) We know that the error of the approximation found in part (a) using the Trapezoidal
Rule with 4 subintervals

ET =
∫ 1

0
f(x) dx− T4

is bounded by:

|ET | ≤
K2(1− 0)3

12 · 42

where K2 is any constant such that |f ′′(x)| ≤ K2 for all x ∈ [0, 1]. By (b), we can take K2 = 2
3 ,

and so

|ET | ≤
2
3

12 · 42
=

1
288

<
1

250

Finally, since f ′′(x) ≥ 0 for 0 ≤ x ≤ 1, the function f is concave up on [0, 1]. We conclude that
the Trapezoidal Rule gives an overestimate of the integral

∫ 1
0 f(x) dx.
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(d) Find a value of n which guarantees that a Trapezoidal Rule approximation of the above integral
using n subintervals is accurate to within 10−10. Your final answer should give a valid n in
simplified form, and be fully justified, but it need not be optimal in any sense. (You may again
apply the fact of part (b), even if you did not prove it.)

(3 points) The error of the Trapezoidal Rule approximation to the integral
∫ 1
0 f(x) dx using n

subintervals has error

ET =
∫ 1

0
f(x) dx− Tn

which is bounded by

|ET | ≤
K2(1− 0)3

12n2
=

K2

12n2

where we can take K2 = 2
3 as seen in (c). To guarantee that |ET | ≤ 10−10, we can demand

K2

12n2
≤ 10−10

Solving for n > 0 we obtain:

2
3

12n2
≤ 10−10 ⇐⇒ 1

18n2
≤ 10−10

⇐⇒ n2 ≥ 1010

18

⇐⇒ n ≥
√

1010

18
=

105

√
18

Since
√

18 > 4, one value that satisfies the above condition is
105

4
>

105

√
18

. Thus any value

for n greater than or equal to 105

4 = 25000, for example n = 25000 , gives an approximation to∫ 1
0 f(x) dx accurate to within 10−10.

Grading remarks: As stated in the question, a complete answer required a fully simplified positive
integer value for n.



Math 42, Winter 2012 Solutions to First Exam — February 2, 2012 Page 11 of 14

7. (10 points) Let R be the bounded region enclosed by the curves y =
√
x and y = x1/3 in the first

quadrant.

(a) Set up two distinct integrals, each in terms of a single variable, representing the area of R. For
each, justify your answer by drawing a picture and marking a sample slice. Don’t evaluate either
integral.

(5 points) The points of intersection of the two curves are (0, 0) and (1, 1).

For 0 ≤ x ≤ 1, we have x1/3 ≥ x1/2. Taking
slices perpendicular to the x-axis gives that
the area is equal to

A =
∫ 1

0

(
x1/3 − x1/2

)
dx.

We solve for x in terms of y; note that for
0 ≤ y ≤ 1, we have y2 ≥ y3. Taking slices
perpendicular to the y-axis gives that the area
is equal to

A =
∫ 1

0

(
y2 − y3

)
dy.
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(b) Set up two distinct integrals, each in terms of a single variable, which represent the volume of
the solid obtained by rotating R about the line x = 1. Justify your answer by drawing pictures,
labeling sample slices, and citing the methods used. Don’t evaluate either integral.

(5 points)

Taking slices perpendicular to the axis of rotation
and using the washer method gives that the area
of a slice at height y is

A(y) = π
(
r2outer − r2inner

)
= π

(
(1− y3)2 − (1− y2)2

)
so that the total volume is given by

V =
∫ 1

0
π
(

(1− y3)2 − (1− y2)2
)
dy.

Taking slices parallel to the axis of rotation and
using the cylindrical shell method gives that the
area of a slice at x is

A(x) = 2πrh

= 2π(1− x)(x1/3 − x1/2)

so that the total volume is given by

V =
∫ 1

0
2π(1− x)(x1/3 − x1/2) dx.
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8. (11 points) Consider the region R in the xy-plane below the curve y = xe−x and above the portion of
the x-axis with 0 ≤ x ≤ 2.

(a) Set up, but do not yet evaluate, an integral in terms of a single variable which represents the
volume of the solid of revolution obtained by rotating R about the y-axis. Justify your answer by
drawing a picture, labeling a sample slice, and citing the method used.

(3 points) We want to rotate about the y-axis and our function is in x, and not obviously
rewritable in terms of y. So we must use Shell method with radius x, height xe−x − 0. Our
volume is

2π
∫ 2

0
x(xe−x)dx = 2π

∫ 2

0
x2e−x dx .

(b) Evaluate the integral of part (a), showing all your steps.

(5 points) We’ll use integration by parts twice. For the first time we let u = x2, dv = e−xdx, so
we get du = 2xdx, v = −e−x:

2π
∫ 2

0
x2e−xdx = 2π

([
x2(−e−x)

]2
0
−
∫ 2

0
(−e−x)2xdx

)
= 2π

([
−x2e−x

]2
0

+
∫ 2

0
e−x2xdx

)
So we need to use integration by parts again. This time u = 2x, dv = e−xdx, which means
du = 2dx, v = −e−x:

2π
([
−x2e−x

]2
0

+
∫ 2

0
e−x2xdx

)
= 2π

([
−x2e−x

]2
0

+
[
2x(−e−x)

]2
0
−
∫ 2

0
−e−x2dx

)
= 2π

([
−x2e−x

]2
0

+
[
−2xe−x

]2
0

+
∫ 2

0
2e−xdx

)
= 2π

([
−x2e−x

]2
0

+
[
−2xe−x

]2
0

+
[
−2e−x

]2
0

)
= 2π

(
−4e−2 − 4(e−2)− 2e−2 + 0 + 0 + 2

)
= 2π

(
−10e−2 + 2

)
= 4π − 20π(e−2)

Note that e−2 < 1/5, so this answer is in fact positive as we expect since it’s a volume.
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(c) Suppose a three-dimensional solid V has the following properties: it has R as its base; and each
cross-section of V perpendicular to the x-axis is an isosceles right triangle with hypotenuse along
the base. Set up, but do not evaluate, an integral that gives the volume of V .

(3 points) We observe that the area of a right isosceles triangle with hypoteneuse y is
1
4
y2. There

are many ways to show this. Notice this is a 45− 45− 90 triangle, so the non-hypoteneuse sides

are length y/
√

2 in length, so
1
2

(b)(h) =
1
2

(y/
√

2)2. Alternatively, spliting the triangle along the

altitude perpendicular to the hypoteneuse still gives a 45 − 45 − 90 triangle with sides y/2, so

the area of the original triangle is
1
2
y
(y

2

)
. Using trigonometry (since we know the angles) also

works to find side lengths. Finally, notice that four identical triangles can be arranged to make
a square of side length y, and thus of area y2.

Now if we slice our solid V (with base R from the original problem statement) perpendicular to
the x-axis at coordinate x, we find that the resulting slice of R has length xe−x. This means

that the cross-section of V has area A(x) =
1
4

(xe−x)2. So the formula for V is

V =
∫ 2

0
A(x) dx =

∫ 2

0

1
4

(xe−x)2 dx.


