
Solutions to Math 42 Second Exam — February 17, 2011

1. (10 points) In a certain California town, the probability density function for a random day’s total
rainfall is given by

f(x) =
{

0 if x < 0
A(x+ 1)−3/2 if x ≥ 0

where x is measured in millimeters, and A is a positive constant.

(a) Find A, given that f is a probability density function.

(5 points) The problem asks that we find the value of the positive real number A for which the
function f defined by

f(x) =
{

0 if x < 0
A(x+ 1)−

3
2 if x ≥ 0

is a probability density function, thus verifying∫ +∞

−∞
f(x) dx = 1

Observe that ∫ +∞

−∞
f(x) dx =

∫ 0

−∞
f(x) dx+

∫ +∞

0
f(x) dx

=
∫ 0

−∞
0 dx+

∫ +∞

0
A(x+ 1)−

3
2 dx

= 0 +
∫ +∞

0
A(x+ 1)−

3
2 dx

=
∫ +∞

0
A(x+ 1)−

3
2 dx

as long as the last improper integral converges. In order to compute this improper integral,
observe that an anti-derivative of the integrand is∫

A(x+ 1)−
3
2 dx = −2A(x+ 1)−

1
2 (1)

Therefore ∫ +∞

−∞
f(x) dx =

∫ +∞

0
A(x+ 1)−

3
2 dx

= lim
t→+∞

∫ t

0
A(x+ 1)−

3
2 dx

= lim
t→+∞

(
−2A(x+ 1)−

1
2

]t
0

= lim
t→+∞

(
−2A√
t+ 1

+ 2A
)

= 2A− lim
t→+∞

2A√
t+ 1

= 2A

In conclusion, the improper integral converges and equals∫ +∞

−∞
f(x) dx = 2A

Since f is a probability density function then∫ +∞

−∞
f(x) dx = 1 ⇒ 2A = 1 ⇒ A =

1
2
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(b) What is the median amount of daily rainfall in this town?

(5 points) The median for the probability density function f is defined as a real number m such
that ∫ m

−∞
f(x) dx =

1
2

First we observe that for any negative real number a < 0∫ a

−∞
f(x) dx =

∫ a

−∞
0 dx = 0

and therefore we must have m ≥ 0. Therefore∫ m

−∞
f(x) dx =

∫ 0

−∞
f(x) dx+

∫ m

0
f(x) dx

=
∫ 0

−∞
0 dx+

∫ m

0
A(x+ 1)−

3
2 dx

=
∫ m

0
A(x+ 1)−

3
2 dx

similarly to before. We continue the calculation using the anti-derivative (1)∫ m

−∞
f(x) dx =

∫ m

0
A(x+ 1)−

3
2 dx

=
(
−2A(x+ 1)−

1
2

]m
0

= 2A− 2A√
m+ 1

= 1− 1√
m+ 1

where we used the calculation of the value of A from part (a). We can now obtain the final
answer: ∫ m

−∞
f(x) dx =

1
2
⇔ 1− 1√

m+ 1
=

1
2

⇔ 1√
m+ 1

=
1
2

⇔
√
m+ 1 = 2

⇔ m+ 1 = 4
⇔ m = 3

In conclusion, the median amount of daily rainfall in the town from the problem is 3 mm.
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2. (10 points)

(a) Determine with justification if the series

∞∑
n=1

1
n(n+ 3)

converges, and if so, find the sum.

(5 points) By the method of partial fractions, we have that for n ≥ 1:

1
n(n+ 3)

=
1

3n
− 1

3(n+ 3)
.

Next, for n ≥ 1 set an = 1
n(n+3) and bn = 1

3n . Hence, an = bn − bn+3. So, if N ≥ 4, then

sN =
N∑

n=1

an

=
N∑

n=1

(bn − bn+3)

= b1 + b2 + b3 − bN+1 − bN+2 − bN+3

=
1
3

+
1
6

+
1
9
− 1

3(N + 1)
− 1

3(N + 2)
− 1

3(N + 3)

=
11
18
−− 1

3(N + 1)
− 1

3(N + 2)
− 1

3(N + 3)
N→∞−−−−→ 11

18
.

So, we conclude that
∞∑

n=1

1
n(n+ 3)

=
11
18
,

and in particular, the series is convergent.
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(b) Express 2.0134 = 2.0134134134134 . . . as a ratio of integers.

(5 points)

2.0134 = 2 +
134
104

+
134
107

+
134
1010

+ . . .

= 2 +
134
104

∞∑
n=0

10−3n

= 2 +
(

134
104

)(
1

1− 10−3

)
(sum of a geometric series with common ratio 10−3)

= 2 +
134

104 − 10

= 2 +
134
9990

=
9990 + 67

4995

=
10057
4995

.
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3. (10 points) Determine whether each of the series below converges or diverges. Indicate clearly which
tests you use and how you apply them.

(a)
∞∑

n=1

(−4)2n

n3 5n

(5 points) The presence of n in the exponents indicates that the Ratio Test is likely appropriate.
Applying the Ratio Test:

lim
n→∞

|an+1

an
| = lim

n→∞
|

(−4)2(n+1)

(n+1)35n+1

(−4)2n

n35n

| = lim
n→∞

42n+2n35n

42n(n+ 1)35n+1

= lim
n→∞

16n3

5(n+ 1)3
=

16
5

lim
n→∞

1
(1 + 1

n)3
=

16
5
.

Because the limit exists and is greater than 1, the series diverges by the Ratio Test.
Alternative solution path: one could use the Test for Divergence (the terms are all positive and
increase towards infinity), but that’s actually harder in this case.
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(b)
∞∑

n=1

ln
(

n

2n+ 1

)
(5 points) Consider the limit of the terms as n approaches infinity. limn→∞( n

2n+1) = 1
2 , so

limn→∞ ln( n
2n+1) = ln(1

2) 6= 0. So the terms do not converge to zero. Therefore the series
diverges by the Test for Divergence.
Note: Several people tried to turn this into a telescoping sum, writing each term as lnn−ln(2n+1)
and then noticing that all the odd terms “eventually cancel,” leaving only the even terms. It’s
an ingenious idea, but it doesn’t quite work. The problem with this is that the odd terms don’t
cancel fast enough - there is no clean expression for sn, the nth partial sum, because there are a
growing number of un-canceled odd terms. So our telescoping sum method does not work. And
we cannot rearrange all the terms of the series at once to say that “the odd terms all cancel;”
that kind of rearrangement does not work unless the series is absolutely convergent, which this
one is not. (In fact, if that kind of rearrangement worked, you could prove that 0 = 1, which
would be a problem!)



Math 42, Winter 2011 Solutions to Second Exam — February 17, 2011 Page 7 of 13

4. (10 points) Determine whether each of the series below converges or diverges. Indicate clearly which
tests you use and how you apply them.

(a)
∞∑

n=1

1
n+
√
n

(5 points)
First solution: Comparison. We note that n+

√
n ≤ 2n. Therefore

1
2n
≤ 1
n+
√
n

It follows that
∞∑

n=1

1
2n

≤
∞∑

n=1

1
n+
√
n

Since the harmonic series
∑

1/n diverges, it follows by comparison that the series
∑

1/(n+
√
n)

also diverges.
Second solution: Limit comparison. Note that,

lim
n→∞

1/(n+
√
n)

1/n
= lim

n→∞

1
1 + 1/

√
n

= 1 > 0

Since the limit is positive, and both functions 1/(n+
√
n) and 1/n are of constant sign, the limit

comparison test applies. Thus, by the limit comparison test the series
∑

1/n and
∑

1/(n+
√
n)

either both diverge, or both converge. Since
∑

1/n diverges (it’s a p-series with p = 1) it follows
that

∑
1/(n+

√
n) diverges too.

Third solution: Integral test. The function 1/(n +
√
n) is decreasing, and positive. Hence

the integral test applies, meaning that
∑

1/(n+
√
n) and

∫∞
2 1/(x+

√
x)dx either both converge

or both diverge. Making the u-substitution given by u =
√
x, we find that du = (1/2

√
x)dx, hence

dx = 2udu, and so∫ ∞
1

dx

x+
√
x

=
∫ ∞
√

1

2udu
u2 + u

=
∫ ∞
√

1

2du
u+ 1

= 2 [ln (|u+ 1|)]∞1 = ∞

The integral diverges, hence the series
∑

1/(n+
√
n) diverges too.
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(b)
∞∑

n=1

sin2 π

n

(5 points)
First solution: Comparison. We note that sin(π/n) is positive, for integer n, and that in
addition sin(x) ≤ x. Thus sin(π/n) ≤ π/n. Since sin(π/n) is positive, we can square the above
relation and obtain sin2(π/n) ≤ (π/n)2. It follows that

∞∑
n=1

sin2(π/n) ≤
∞∑

n=1

π2

n2

Since
∑

1/n2 converges (it’s a p-series with p = 2) it follows by comparison that the series∑
sin2(π/n) is also convergent.

Second solution: Limit comparison.
We compare sin2(π/n) with π2/n2 . We note that

lim
n→∞

sin(π/n)
π/n

= 1 since lim
x→0

sin(x)
x

= lim
x→0

cos(x)
1

= cos(0) = 1

Therefore, squaring limn→∞ sin(π/n)/(π/n) = 1 we obtain,

lim
n→∞

sin2(π/n)
π2/n2

= 1

It follows by the limit comparison test (which does apply since the above limit is positive, and
both functions are of constant sign) that the series

∑
π2/n2 and the series

∑
sin2(π/n) either

both converge or both diverge. Since the series
∑

1/n2 converges (it’s a p-series with p = 2 > 1)
it follows that

∑
sin2(π/n) is also convergent.
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5. (12 points) Suppose that the series
∞∑

n=1

an converges absolutely.

Decide which of the following series must converge, must diverge, or may either converge or diverge
(inconclusive). Circle your answer. You do not need to justify your answers.

(2 points each) The given information implies that
∞∑

n=1

|an| converges, and also that lim
n→∞

an = 0.

(a)
∞∑

n=1

(
an +

1
n2

)
Converges Diverges Inconclusive

Since both series are separately convergent (note
∑∞

n=1
1
n2 is a p-series with p = 2 > 1), it follows

that the series consisting of the sums of their n-th terms is also convergent.

(b)
∞∑

n=1

(−1)nan Converges Diverges Inconclusive

As
∞∑

n=1

|(−1)nan| =
∞∑

n=1

|an| converges, the Absolute Convergence Rule implies
∞∑

n=1

(−1)nan converges.

(c)
∞∑

n=1

1
1 + a2

n

Converges Diverges Inconclusive

Since lim
n→∞

1
1 + a2

n

=
1

1 + 0
= 1 6= 0, the series diverges, by the Test for Divergence.

(d)
∞∑

n=1

|an|
n

Converges Diverges Inconclusive

We have 0 ≤ |an|
n
≤ |an| for n ≥ 1, and since

∞∑
n=1

|an| converges, it follows that
∞∑

n=1

|an|
n

also converges

by the Comparison Test.

(e)
∞∑

n=1

n2 an Converges Diverges Inconclusive

By the p-series Rule, we get convergence if an = n−4, but divergence if an = n−3.

(f)
∞∑

n=1

n! an Converges Diverges Inconclusive

We get convergence if an =
1

(n!)2
, but divergence if an =

1
n2

.
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6. (13 points) Find, with complete justification, the interval of convergence of the power series

∞∑
n=1

(−1)n

√
n

(3x− 1)n

We have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(3x− 1)n+1

√
n+ 1

·
√
n

(3x− 1)n

∣∣∣∣
= lim

n→∞
|3x− 1|

√
n

n+ 1

= |3x− 1|
(

lim
n→∞

n

n+ 1

)1/2

= |3x− 1| (1)1/2

= |3x− 1|

(where we have used that the square root function is continuous on its domain). Therefore, by the
Ratio test, the power series converges for |3x− 1| < 1 and diverges for |3x− 1| > 1. We have

|3x− 1| < 1 ⇐⇒ 1
3
|3x− 1| < 1

3
⇐⇒ |x− 1

3
| < 1

3

so the radius of convergence is R = 1/3. The power series is centered at x = 1/3, so we must check
the endpoints x = 1/3− 1/3 = 0 and x = 1/3 + 1/3 = 2/3.

For x = 0, the power series becomes

∞∑
n=1

(−1)n

√
n

(−1)n =
∞∑

n=1

(−1)2n

√
n

=
∞∑

n=1

1√
n
,

which is a p-series with p = 1/2 < 1, and hence diverges.

For x = 2/3, the power series becomes

∞∑
n=1

(−1)n

√
n

(1)n =
∞∑

n=1

(−1)n

√
n

This is an alternating series with bn = 1√
n
> 0 for all n, and it satisfies

1. bn+1 =
1√
n+ 1

<
1√
n

= bn for all n, and

2. lim
n→∞

bn = lim
n→∞

1√
n

= 0.

Therefore by the alternating series test, the series converges. This tells us that the interval of con-
vergence is (0, 2

3 ].
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7. (13 points) In each of the parts below, show all the steps in your reasoning.

(a) Write
1

1 + x2
as a power series about 0, and state the interval of convergence. (Hint: use geometric

series.)

(3 points) Notice that 1
1+x2 = 1

1−(−x2)
is the sum of a geometric series with radius r = −x2 and

a = 1. Thus we have

1
1 + x2

=
∞∑

n=0

arn =
∞∑

n=0

(−x2)n =
∞∑

n=0

(−1)nx2n

The geometric series converges only when |r| < 1 ⇔ | − x2| < 1 ⇒ |x|2 < 1 ⇒
√
|x|2 <

√
1 ⇒

|x| < 1. Thus, the interval of convergence is (−1, 1).
(Note : For those who used the ratio test to find the interval, the ratio test would only tell you
the open interval for convergence, (-1, 1), and one would need to check the endpoints x = −1
and x = 1 explicitly to justify divergence at these points. The point is that our knowledge of
geometric series could save us from going through the ratio test and checking endpoints, which
was already done when we first investigated geometric series anyway. )

(b) Find a power series for arctanx. What is the radius of convergence?

(3 points) Using part (a), we can use the theorem that allows us to pass the integral inside the
summation of a power series within the interval −1 < x < 1:

arctanx =
∫

1
1 + x2

dx =
∫ ∞∑

n=0

(−1)nx2ndx =
∞∑

n=0

(−1)n

∫
x2ndx

= C +
∞∑

n=0

(−1)n x
2n+1

2n+ 1

When x = 0, the terms in the summation above are 0⇒ 0 = arctan(0) = C + 0 so C = 0. Thus,
we have

arctanx =
∞∑

n=0

(−1)n x
2n+1

2n+ 1
.

Since this series was obtained by integrating a power series with a radius of convergence of 1,
we know by a theorem in the book, that the radius of the integrated series remains the same, so
R = 1.
(Note: Some justification for the radius of convergence is needed here since it’s not obvious and
we have a special theorem to determine it for integrated power series. Notice that the interval of
convergence for the integrated power series is not the same as in (a) and is actually [−1, 1]. The
fact that the series actually converges to arctan(x) at x = 1,−1 is more subtle to prove. Using
the ratio test to obtain the radius also works. )
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(c) Express the number
∫ 0.1

0

arctanx
x

dx as a series.

(4 points) Using part (b), the interval (0, 0.1) is within the radius of convergence for arctan x
x , so

we compute∫ 0.1

0

arctanx
x

dx =
∫ 0.1

0

1
x

∞∑
n=0

(−1)n x
2n+1

2n+ 1
dx =

∫ 0.1

0

∞∑
n=0

(−1)n x2n+1

x(2n+ 1)
dx =

∫ 0.1

0

∞∑
n=0

(−1)n x2n

2n+ 1
dx

=
∞∑

n=0

(−1)n

∫ 0.1

0

x2n

2n+ 1
dx =

∞∑
n=0

(−1)n

[
x2n+1

(2n+ 1)2

]0.1

0

=
∞∑

n=0

(−1)n (0.1)2n+1

(2n+ 1)2

(d) Find, with complete justification, a partial sum of the series in part (c) that approximates the
value of the integral to within 10−8. (You do not need to simplify the sum.)

(3 points) Here we will use the Alternating Series estimation theorem with bn = (0.1)2n+1

(2n+1)2
=

1
102n+1(2n+1)2

. We can clearly see that bn > 0, bn+1 ≤ bn and limn→∞ bn = 0 so the hypothesis of
the theorem are fulfilled. Also notice that b2 = 1

105(25)
> 10−8 and

b3 =
1

107(49)
=

1
108(4.9)

<
1

108
.

So letting Rn denote the remainder of the n’th partial sum of the series in (c), the theorem tells
us that

|R2| ≤ b3 < 10−8

using the earlier calculation. Thus the partial sum

2∑
n=0

(−1)n (0.1)2n+1

(2n+ 1)2
= 0.1− (0.1)3

9
+

(0.1)5

25

approximates the series to within 10−8.
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8. (10 points)

(a) Find, showing all your steps, the Taylor series for ex with center 0.

(4 points) Use Taylor’s recipe: the Taylor series for f(x) about 0 is

∞∑
n=0

f (n)(0)
n!

xn.

And if f(x) = ex, then f (n)(x) = ex for all n, so f (n)(0) = e0 = 1 for all n. So we see that the
Taylor series we want is

∞∑
n=0

1
n!
xn.

(b) Use series to find lim
x→0

e−x2 − 1
ex − x− 1

. (You may take for granted the fact that the Taylor series for

ex converges to ex.)

(6 points) From part a) (and, technically, the fact that the Taylor series for ex converges to ex),
we know that ex =

∑∞
n=0

xn

n! . Replacing x with −x2, we see that:

e−x2
=
∞∑

n=0

(−x2)n

n!
=
∞∑

n=0

(−1)nx
2n

n!
= 1− x2

1!
+
x4

2!
− . . . .

Now that we know power series expansions for everything involved in the limit, plug them in;
we see that

lim
x→0

e−x2 − 1
ex − x− 1

= lim
x→0

(1− x2

1! + x4

2! − . . .)− 1

(1 + x
1! + x2

2! + x3

3! + x4

4! + . . .)− x− 1

= lim
x→0

−x2

1! + x4

2! − . . .
x2

2! + x3

3! + x4

4! + . . .

= lim
x→0

−1 + x2

2! − . . .
1
2 + x

3! + x2

4! + . . .

=
−1

(1/2)
= −2.

(Notice that we canceled an x2 from all terms in the numerator and denominator in the third-
to-last step).


