Math 42- Winter 2007-Examl Solutions

1. (40 points) Evaluate each of the following integrals, showing all of your reasoning.
(a) $\int_{3}^{4} \frac{x}{\sqrt{25-x^{2}}} d x$

No need for trig substitution!
Just let $\left\{\begin{array}{l}u=25-x^{2} \\ d u=-2 x d x\end{array} . \quad\binom{\right.$ So if $x=3$, then $u=16}{$, and if $x=4$, , then $u=9}$
Then

$$
\begin{aligned}
\int_{3}^{4} \frac{x d x}{\sqrt{25-x^{2}}} & =\int_{16}^{9} \frac{-\frac{1}{2} d u}{\sqrt{u}}=-\frac{1}{2} \int_{16}^{9} u^{-1 / 2} d u \\
& \left.=-\frac{1}{2} \cdot 2 u^{1 / 2}\right]_{16}^{9}=-\frac{1}{2}(2 \cdot 3-2 \cdot 4)=1 .
\end{aligned}
$$

(If you did by trig substitution, you may have obtained $5 \cos \left(\arcsin \frac{3}{5}\right)-5 \cos \left(\arcsin \frac{4}{5}\right)$, which is also equal to 1.)
(b) $\int_{1}^{e^{2}} \ln z d z$

Integrate by parts: $u=\ln z \quad d u=\frac{d z}{z}$

$$
d v=d z \quad v=z
$$

Then $\int_{1}^{e^{2}} \ln z d z=u y-\int_{z=1}^{z=e^{2}}-\int_{i}^{z=e^{2}} v d u$

$$
\begin{aligned}
& =z \ln z]_{z=1}^{z=e^{2}}-\int_{z=1}^{z=e^{2}} d z \\
& =(z \ln z-z)]_{z=1}^{z=e^{z}} \\
& =e^{2} \ln e^{2}-e^{z}-(\ln 1-1)=e^{2}+1 .
\end{aligned}
$$

(c) $\int \cos ^{3} 2 t d t \quad$ First let $u=2 t$, so

$$
d u=2 d t
$$

Now using the pythagorean identity, we get

$$
\begin{aligned}
\int \cos ^{3} 2 t d t=\frac{1}{2} \int \cos ^{3} u d u & =\frac{1}{2} \int \cos u \cdot \cos ^{2} u d u \\
& =\frac{1}{2} \int \cos u \cdot\left(1-\sin ^{2} u\right) d u \\
& \left.=\frac{1}{2} \int \cos u d u-\frac{1}{2} \int \cos u \sin ^{2} u d u\right) u \sin n\left\{\begin{array}{l}
w=\sin u \\
d w=\cos u d u
\end{array}\right. \\
& =\frac{1}{2} \sin u-\frac{1}{6} \sin ^{3} u+C \\
& =\frac{1}{2} \sin 2 t-\frac{1}{6} \sin ^{3} 2 t+C
\end{aligned}
$$

(d) $\int z \arctan z d z$

Integrate by parts: $u=\arctan z \quad d u=\frac{d z}{1+z^{2}}$

$$
d v=z d z \quad v=\frac{1}{2} z^{2}
$$

Then $\quad \int z \arctan z d z=\int u d v=u v-\int v d u$

$$
=\frac{1}{2} z^{2} \arctan z-\int \frac{1}{2} \cdot \frac{z^{2}}{1+z^{2}} d z
$$

Now $\frac{z^{2}}{1+z^{2}}=1-\frac{1}{1+z^{2}}$ by long division, so

$$
\begin{aligned}
\int z \arctan z d z & =\frac{1}{2} z^{2} \arctan z-\frac{1}{2} \int \frac{z^{2}}{1+z^{2}} d z \\
& =\frac{1}{2} z^{2} \arctan z-\frac{1}{2} \int d z+\frac{1}{2} \int \frac{1}{1+z^{2}} d z \\
& =\frac{1}{2} z^{2} \arctan z-\frac{1}{2} z+\frac{1}{2} \arctan z+C
\end{aligned}
$$

(e) $\int \sin ^{2} 4 x d x$

Using the double-angle identity $\sin ^{2} t=\frac{1}{2}(1-\cos 2 t)$,
we obtain

$$
\begin{aligned}
\int \sin ^{2} 4 x d x & =\int \frac{1}{2}(1-\cos 8 x) d x \\
& =\frac{1}{2} \int d x-\frac{1}{2} \int \cos 8 x d x \\
& =\frac{x}{2}-\frac{\sin 8 x}{16}+C
\end{aligned}
$$

(f) $\int\left(4-x^{2}\right)^{-3 / 2} d x$

After trying some simpler substitutions that don't work well, fall back on a trig-based one: $\left\{\begin{array}{l}x=2 \sin \theta \\ d x=2 \cos \theta d \theta\end{array}\right.$

We get $\int\left(4-x^{2}\right)^{-3 / 2} d x=\int\left(4-4 \sin ^{2} \theta\right)^{-3 / 2} \cdot 2 \cos \theta d \theta$

$$
\begin{aligned}
& =\int\left[4 \cdot\left(1-\sin ^{2} \theta\right)\right]^{-3 / 2} \cdot 2 \cos \theta d \theta \\
& =\int\left(4 \cos ^{2} \theta\right)^{-3 / 2} \cdot 2 \cos \theta d \theta \\
& =\int \frac{2 \cos \theta d \theta}{8 \cos ^{3} \theta}=\frac{1}{4} \int \sec ^{2} \theta d \theta=\frac{1}{4} \tan \theta+C \\
& =\frac{1}{4} \tan \left(\arcsin \frac{x}{z}\right)+C
\end{aligned}
$$

(Note: this answer is equivalent to $\frac{x}{4 \sqrt{4-x^{2}}}+C$.)
2. (10 points) Evaluate the integral $\int \frac{4 x^{3}}{x^{3}-x^{2}+3 x-3} d x=\int \frac{4 x^{3}}{(x-1)\left(x^{2}+3\right)} d x$.

We first perform long division:

$$
\begin{array}{r}
\frac{4}{x ^ { 3 } - x ^ { 2 } + 3 x - 3 \longdiv { 4 x ^ { 3 } }} \begin{array}{r}
\frac{4 x^{3}-4 x^{2}+12 x-12}{4 x^{2}-12 x+12}
\end{array}
\end{array}
$$

Thus $\int \frac{4 x^{3}}{x^{3}-x^{2}+3 x-3} d x=\int 4 d x+\int \frac{4 x^{2}-12 x+12}{x^{3}-x^{2}+3 x-3} d x=4 x+\int \frac{4 x^{2}-12 x+12}{x^{3}-x^{2}+3 x-3} d x$.

We can manage the integrand of the second term by doing partial fraction decomposition:

$$
\frac{4 x^{2}-12 x+12}{x^{3}-x^{2}+3 x-3}=\frac{4 x^{2}-12 x+12}{(x-1)\left(x^{2}+3\right)}=\frac{A}{x-1}+\frac{B x+C}{x^{2}+3}
$$

Multiply by

$$
\begin{aligned}
\text { Multiply by } \\
(x-1)\left(x^{2}+3\right):
\end{aligned} \quad 4 x^{2}-12 x+12=A\left(x^{2}+3\right)+(B x+C)(x-1)
$$

If we let $x=1$, then $4-12+12=A(1+3)$, so $44=4$, ie. $A=1$.
Thus simplifies the system to::

$$
\begin{aligned}
4 x^{2}-12 x+12 & =x^{2}+3+(B x+C)(x-1) \\
\Rightarrow 3 x^{2}-12 x+9 & =(B x+C)(x-1) \\
& =B x^{2}+(C-B) x-C
\end{aligned}
$$

Thus, $B=3$ and $C=-9$.
We have $\int \frac{4 x^{2}-12 x+12}{x^{3}-x^{2}+3 x-3} d x=\int \frac{1}{x-1} d x+\int \frac{3 x-9}{x^{2}+3} d x=\ln |x-1|+\int \frac{3 x}{x^{2}+3} d x-9 \int \frac{1}{x^{2}+3} d x$.
We can accomplish the first integral by u-sebstitution: $\int \frac{3 x}{x^{2}+3} d x=\frac{3}{2} \ln \left(x^{2}+3\right)+C$.
The last integral is done by trig. sub: $\left\{\begin{array}{l}x=\sqrt{3} \tan \theta \\ d x=\sqrt{3} \sec ^{2} \theta \theta\end{array}\right\} \Rightarrow \int \frac{1}{x^{2}+3} d x=\int \frac{\sqrt{3} \sec ^{2} \theta d \theta}{3 \tan ^{2} \theta+3}=$

$$
=\frac{\sqrt{3}}{3} \int \frac{\sec ^{2} \theta}{\tan ^{2} \theta+1} d \theta=\frac{\sqrt{3}}{3} \int d \theta=\frac{\sqrt{3}}{3} \arctan \frac{x}{\sqrt{3}},
$$

$50 \int \frac{4 x^{3}}{(x-1)\left(x^{2}+3\right)} d x=4 x+\ln |x-1|+\frac{3}{2} \ln \left(x^{2}+3\right)-\frac{9 \sqrt{3}}{3} \arctan \frac{x}{\sqrt{3}}+C$.
3. ( 6 points) A rocket has vertical position 0 at time 0 . The following chart gives the rocket's upward velocity, in meters per second, at time $t$ seconds.

| $\mathbf{t}$ | 0 | 2 | 4 | 6 | 8 | 10 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{v}$ | 1 | 8 | 25 | 60 | 120 | 200 | 350 |

(a) Using all the data in the chart, write a sum representing an estimate of the rocket's height at time $t=12$, using the Trapezoidal Rule. You do not have to simplify or fully evaluate your expression.
The rocket's change in height equals $\int_{0}^{12} v(t) d t$; since initial height is $\mathrm{O}_{\mathrm{m}}$, this integral also equals the racket's height at $t=12 \mathrm{sec}$.

With intervals of widths $\Delta t=2 \mathrm{sec}$, there are $n=6$ such sub-intervals.
Thus, the trapezoidal approximation is $T_{G}$ :

$$
\begin{aligned}
\text { height }=\int_{0}^{12} v(t) d t \approx T_{6} & =\frac{\Delta t}{2}(v(0)+2 v(2)+2 v(4)+2 v(6)+2 v(8)+2 v(10)+v(12)) \\
& =\frac{2}{2}(1+2 \cdot 8+2 \cdot 25+2 \cdot 60+2 \cdot 120+2 \cdot 200+350) \text { meters }
\end{aligned}
$$

(b) Do the same using Simpson's Rule; again, you do not have to simplify the expression.

Since $n=6$, which is even, this is a valid value for Simpson's Rule.
The approximation is

$$
\begin{aligned}
\text { height }=\int_{0}^{12} v(t) d t \approx S_{6} & =\frac{\Delta t}{3}(v(0)+4 v(2)+2 v(4)+4 v(6)+2 v(8)+4 v(10)+v(12)) \\
& =\frac{2}{3}(1+4 \cdot 8+2 \cdot 25+4 \cdot 60+2 \cdot 120+4 \cdot 200+350) \text { meters. }
\end{aligned}
$$

4. (8 points) Consider the integral $\int_{0}^{2} \cos \left(x^{2}\right) d x$.
(a) Estimate the error made in approximating the value of this integral using the Midpoint Rule using $n=6$ subintervals. State your answer in a complete sentence.

The Midpoint Ruth error estimate involves $K_{z}$, so we need to estimate the Size of $\left|f^{\prime \prime}(x)\right|$ on $[0,2]$, for $f(x)=\cos \left(x^{2}\right)$.

Derivatives: $\quad f^{\prime}(x)=-2 x \sin \left(x^{2}\right) ; \quad f^{\prime \prime}(x)=-2 \sin \left(x^{2}\right)+(-2 x)(2 x)\left(\cos \left(x^{2}\right)\right)$;
so $\left|f^{\prime \prime}(x)\right|=\left|-\left(2 \sin \left(x^{2}\right)+4 x^{2} \cos \left(x^{2}\right)\right)\right| \leqslant 2 \cdot 1+4 \cdot 2^{2} \cdot 1=18$, due to the fact that $\left|\sin \left(x^{2}\right)\right| \leqslant 1$ and $\left|\cos \left(x^{2}\right)\right| \leqslant 1$, and $\left|x^{2}\right| \leqslant 4$ on the interval $[0,2]$.
That is, we may take $K_{2}=18$. The Error Bound Formula gives: $\left|E_{M}\right| \leqslant \frac{k_{z}(b-a)^{3}}{24 n^{2}}=\frac{18 \cdot 2^{3}}{24 \cdot 6^{2}}=\frac{1}{6}$; this means that the absolve value of or difference between actual value of $\int_{0}^{2} \cos \left(x^{2}\right) d x$ and approximated value, is no more than $\frac{1}{6}$ units.
(b) Again using the Midpoint Rule, how many subintervals $n$ would be necessary to guarantee an error of at most $\frac{1}{1000}$ ? Give a valid $n$ in simplified form. (As long as you justify your answer, you do not have to worry about finding the best possible value.)
Well use 18 for $K_{2}$, found in part (a).
We wish to find n such that $\frac{k_{2} \cdot(b-a)^{3}}{24 n^{2}} \leqslant \frac{1}{1000}$, because in this case, weed have $\left|E_{M}\right| \leqslant \frac{K_{2}(b-a)^{3}}{24 n^{2}} \leqslant \frac{1}{1000}$, as desired.

Thus, we must solve $\quad \frac{K_{2} \cdot(b-a)^{3}}{24 n^{2}}=\frac{18 \cdot 2^{3}}{24 n^{2}} \leqslant \frac{1}{1000} \quad$ for $n$ :
So, $\quad 18 \cdot 2^{3} \cdot 1000 \leqslant 24 n^{2}$,

$$
\text { or } \quad n^{2} \geqslant \frac{18.8000}{24}=6000 \text {, ie. } n \geqslant \sqrt{6000} \text {. }
$$

Of carse, $n$ must be a natmal number, so $n=80$ works (becmuse $80^{2}=6400>6000$ ), and in fact any $n$ greater than or equal to 78 would be acceptable with this value of $K_{2}$.
5. (10 points)
(a) Set up two distinct integrals, each in terms of a single variable, representing the area of the region in the first quadrant bounded by the curves $y=x^{2}$ and $y=x^{1 / 3}$. For each, make sure you justify your answer (draw a picture and mark a sample slice). Don't evaluate either integral.


Vertical slices: at coordinate $x$,

$$
\begin{aligned}
\Delta A & =\text { height }^{h}(x) \cdot \Delta x \\
& =\left(y_{\text {top }}-y_{\text {bottom }}\right) \cdot \Delta x \\
& =\left(x^{1 / 3}-x^{2}\right) \Delta x
\end{aligned}
$$

$50 \quad A=\int_{0}^{1}\left(x^{1 / 3}-x^{2}\right) d x$.


Horizontal slices: at coordinate $y$,

$$
\begin{aligned}
\Delta A & =\text { widll(y) }(y y \\
& =\left(x_{\text {right }}-x_{\text {left }}\right) \cdot \Delta y \\
& =\left(\sqrt{y}-y^{3}\right) \cdot \Delta y
\end{aligned}
$$

so $A=\int_{0}^{1}\left(\sqrt{y}-y^{3}\right) d y$.
(b) Set up two distinct integrals, each in terms of a single variable, representing the volume obtained by rotating the region from part (a) around the $x$-axis. For each, make sure you justify your answer (draw a picture, label a sample slice, and cite the method used). Don't evaluate either integral.


Vertical slices $\Rightarrow$ pep to rot axis $\Rightarrow$ Washers.
At coordmate $x$,

$$
\begin{aligned}
\Delta V & =A(x) \Delta x \\
& =\left(\pi R_{\text {outer }}^{2}-\pi R_{\text {inner }}^{2}\right) \Delta x \\
& =\pi\left(x^{2 / 3}-x^{4}\right) \Delta x
\end{aligned}
$$

so $V=\int_{0}^{1} \pi\left(x^{2 / 3}-x^{4}\right) d x$.


Horizontal slices $\Rightarrow$ parallel to rot axis
$\Rightarrow$ cylindrical shells.
At coordinate $y$,

$$
\begin{aligned}
\Delta V & =2 \pi(\text { length })(\text { radius })(\text { thickness }) \\
& =2 \pi\left(\sqrt{y}-y^{3}\right) \text { y } \Delta y,
\end{aligned}
$$

so $V=\int_{0}^{1} 2 \pi\left(\sqrt{y}-y^{3}\right) y d y$.
6. ( 10 points)
(a) Set up, but do not evaluate, an integral representing the area of the region bounded by the curves $x=y^{2}-2$ and $y=-x$. As justification, draw a picture with a sample slice labeled.

Curves intersect when $y^{2}-2=x=-y$, so $y^{2}+y-2=0$

$$
\Rightarrow(y+2)(y-1)=0 \text {, ie. } y=-2,1
$$

When $y=-2$ then $x=2$; when $y=1$, then $x-1$. Graphed below:


Much easier to set integral up in terms of $y$; i.e., make horizontal slices of thickness $\Delta y$,

Then

$$
\begin{aligned}
\Delta A & =\text { length }(y) \cdot \Delta y \\
& =\left(x_{\text {right }}-x_{\text {heft }}\right) \Delta y \\
& =\left(-y-\left(y^{2}-z\right)\right) \Delta y,
\end{aligned}
$$

and so

$$
A=\int_{-2}^{1}\left(-y-y^{2}+2\right) d y
$$

(b) Set up an integral representing the volume obtained by rotating the region from part (a) around the line $x=2$. Make sure you justify your answer (draw and label a diagram, and cite the method). Again, don't evaluate the integral.


Horizontal sloes $\Rightarrow$ Slice pere. to rotation axis $\Rightarrow$ Washers
At coordinate. $y, \quad \Delta V=A(y) \Delta y$

$$
\begin{aligned}
& =\left(\pi R_{\text {outer }}^{2}-\pi R_{\text {truer }}^{2}\right) \Delta y \\
& =\left(\pi\left(4-y^{2}\right)^{2}-\pi(2+y)^{2}\right) \Delta y
\end{aligned}
$$

so $\quad V=\int_{-2}^{1} \pi\left(\left(4-y^{2}\right)^{2}-(2+y)^{2}\right) d y$.
7. (8 points) One very rainy day, a bucket is raised from ground level to the top of a building 200 ft high, using a rope having a linear density of $0.1 \mathrm{lb} / \mathrm{ft}$. Initially (at ground level), the bucket weighs 5 pounds; however, with rain continuing to pour at a constant rate, the bucket takes on water and actually weighs 10 pounds by the moment it reaches the top of the building. Assuming the bucket is being raised at a constant rate, how much work is required to pull the bucket (with its rope) to the top?
Solution \# 1: Break into (A) work to lift rope; (B) work to lift bucket and water.
(A) Slice rope into small prices of length $\Delta x$ feet;
any such piece $x$ feet from the top has weight $(\Delta x)(0.1)$ ib and is lifted $x \mathrm{ft}$,
so work to lift the piece is $\Delta W=($ weight $)($ dist $)=0.1 \times \Delta x$,


Meaning total work for rope $\left.=W=\int_{0}^{200} 0.1 \times d x=(0.1) \frac{x^{2}}{2}\right]_{0}^{200}=2000 \mathrm{ff} \cdot 1 \mathrm{~b}$.
(B) After water has been lifted $y$ feet, weight of bucket is $5+\frac{5}{200} y \mathrm{lbs}$.
(This is because the constant rates imply weight is a linear function of bucket height, and
we know weight is 5 when $y=0$ and weight is 10 when $y=200$.)
Thus, process of lifting bucket is the exertion of a variable force $F(y)=5+\frac{5 y}{200}$ over the interval $0 \leqslant y \leqslant 200: \quad W=\int_{0}^{200} f(y) d y=\int_{0}^{200}\left(5+\frac{5 y}{200}\right) d y=5 y+\left.\frac{5 y^{2}}{400}\right|_{0} ^{200}=1500 f f \cdot b$.
Thus, total work $=(A)+(B)=2000+1500=3500 \mathrm{ff} \cdot 16$.
Solution \#2:- The whole process of lifting both bucket\& rope can be thought of as exerting a variable force over a distance.
After the bucket has been hoisted a distance $y$, the weight still hanging is (see above discussion):

$$
F(y)=\underbrace{5+\frac{5 y}{200}}_{\text {bucket }}+\underbrace{(200-y)(0.1)}_{\text {rope, length times density }}
$$

Thus, $\Delta W=F(y) \Delta y$ is the work to lift this weight a small distance $\Delta y$,
 and so $W=\int_{0}^{200} F(y) d y=\int_{0}^{200}\left(5+\frac{5 y}{200}+(200-y)(0.1)\right) d y=($ etc. $)=3500 \mathrm{ff} \cdot(b)$, as before.
8. (8 points) A giant clay ant hill in northeastern Argentina has the shape of a perfect cone, with its circular base on the ground. The base has a 1 -foot radius, and the ant hill is 3 feet in height. The density of the material is a uniform $30 \mathrm{lb} / \mathrm{ft}^{3}$. How much work have the ants done to assemble this ant hill, lifting all material vertically from ground-level?


If we slice the cone into horizontal cross-sections of thickness $\Delta h$ (small), we can use the


Photo source: Wikipedia formula "work = force. distance" to compute the work to liffeach slice, since the force and distance are constant on each slice.

Note that the slice located $h$ feet from the top of the cone (and therefore 3-h feet from the ground) has radius $r$, where $\frac{r}{h}=\frac{1}{3}$, i.e. $r=\frac{h}{3}$.

Thus,

$$
\Delta W=\text { work to lift each slice }=\text { force } \text { distance }
$$

$$
=(\text { weight of sloe }) \text { (distance to lift slice) }
$$

$=($ density $)$ (volume of slice) (distance to lift)
$=($ density) $)$ (area) (thickness) (dist. to lift)

$$
=(30)\left(\pi\left(\frac{h}{3}\right)^{2}\right) \Delta h \cdot(3-h)
$$

so total work $=W=\int_{h=0}^{h=3} 30 \pi \cdot \frac{h^{2}}{9} \cdot(3-h) d h=\frac{30 \pi}{9} \int_{0}^{3}\left(3 h^{2}-h^{3}\right) d h=\left.\frac{30 \pi}{9}\left(h^{3}-\frac{h^{4}}{4}\right)\right|_{0} ^{3}$
(There are other ways to set up the integral, but the outcome is the same.)

$$
=\frac{45 \pi}{2} \mathrm{ft} \cdot 16
$$

