Math 42 - Practice Problems for Exam 2

Note: Please be sure also to check out the collection of probability questions from old exams linked where you found this practice exam.

1. Evaluate the following integrals, showing all work.
(a) $\int_{0}^{1} \frac{1}{\sqrt[5]{x}} d x$
(b) $\int_{0}^{2} \frac{1}{\sqrt{x}} d x$
2. Determine whether the improper integral $\int_{3}^{\infty} \frac{\ln x}{\sqrt{x}} d x$ converges or diverges.
3. Determine whether the improper integral $\int_{1}^{\infty} \frac{\cos ^{2} x}{x^{3}} d x$ converges or diverges.
4. [Deleted for 2007]
5. True / False: (You do not need to justify your answer.)
(a) $\int_{1}^{\infty} \frac{1}{x^{\sqrt{2}}} d x$ is convergent.
(b) If $\sum c_{n} 2^{n}$ is divergent, then $\sum c_{n}(-3)^{n}$ is divergent.
(c) If $\sum a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$.
6. Find the sums of the following series.
(a) $\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$
(b) $\sum_{k=1}^{\infty} \frac{2^{k-1}-3}{5^{k+1}}$
7. Determine whether each of the following series converges.
(a) $\sum_{n=1}^{\infty} e^{-1 / n}$
(b) $\sum_{n=1}^{\infty} \frac{2 n}{(n+3)^{3 / 2}}$
(c) $\sum_{n=1}^{\infty} n e^{-n}$
(d) $\sum_{k=1}^{\infty} \frac{3}{k^{2}+7}$
8. Determine whether each of the following series converges or diverges.
(a) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$
(b) $\sum_{n=0}^{\infty}(-1)^{n} \frac{n^{3}+3 n+2}{n^{3}+6}$
(c) $\sum_{n=1}^{\infty} \frac{n}{2^{n}(n+1)}$
9. Find the sums of each of the following series.
(a) $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n}}{4^{n}(2 n)!}$
(b) $\sum_{n=1}^{\infty} \frac{1-2^{n}}{4^{n}}$
10. Find the interval of convergence of $\sum_{n=1}^{\infty} \frac{(-2)^{n}}{\sqrt{n}}(x+3)^{n}$.
11. Find a power series expansion, centered at 0 , for $f(x)=\frac{x}{2+x}$ and its radius of convergence.
12. Isaac Newton showed that $\left(1-x^{2}\right)^{-1 / 2}=\sum_{n=0}^{\infty} \frac{(2 n)!}{4^{n}(n!)^{2}} x^{2 n} \quad$ for $-1<x<1$.
(a) Using this formula, find a power series expansion for $\arcsin x$.
(b) Use your power series from part (a) with $x=1 / 2$ to find an infinite series whose sum is π.
13. Use power series expansions to compute $\lim _{x \rightarrow 0} \frac{e^{x^{2}}-1}{\cos x-1}$.
14. (a) Find the third-degree Taylor polynomial for $f(x)=x^{4 / 3}$ about $a=27$.
(b) Estimate the maximum error involved in estimating f with the Taylor polynomial you found in part (a) for $25 \leq x \leq 29$.
