2007 Notes: Skip problems 1(e), 2, 6(b), and 6(e);
See other review resources for problems on "Work" (not covered below).

1. Evaluate each of the following integrals.
(a) $\int \frac{r}{r^{2}-4} d r$
(b) $\int \frac{1}{r^{2}-4} d r$
(c) $\int_{1}^{e} x \ln x d x$
(d) $\int \sin ^{4} x d x$
(e) $\int_{0}^{1} \frac{1}{\sqrt[5]{x}} d x$
(f) $\int_{\pi / 4}^{\pi / 2} \sin ^{2} \theta \cos \theta d \theta$
(g) $\int_{0}^{1} \frac{1}{\left(x^{2}+9\right)^{3 / 2}} d x$
(h) $\int \frac{x^{3}}{x^{3}-x^{2}-x+1} d x=\int \frac{x^{3}}{(x+1)(x-1)^{2}} d x$
(i) $\int_{1}^{4}(a t+b) \sqrt{t} d t$ (a and b are constants.)
2. Determine whether the improper integral

$$
\int_{3}^{\infty} \frac{\ln x}{\sqrt{x}} d x
$$

converges or diverges.
3. The following chart gives the rate of poplulation growth (i.e., the number of births minus the number of deaths per year) of a certain small town in the given years.

$$
\begin{array}{cccccc}
\text { Year: } & 1980 & 1985 & 1990 & 1995 & 2000 \\
\text { Rate of growth: } & 1 & -1 & 0 & 1 & 2
\end{array}
$$

Use Simpson's Rule to estimate how much the population grew from 1980 to 2000.
4. Consider the integral $\int_{0}^{1} \sin \left(x^{2}\right) d x$.
(a) Estimate the error made in approximating the value of this integral using $n=5$ trapezoids.
(b) How many trapezoids would be necessary to guarantee an error of at most $\frac{1}{200}$?
5. Consider the region R in the plane bounded between the curves $y=x$ and $y=x^{2}$.
(a) Find the area of R.
(b) Find the volume of the solid obtained by revolving R about the x-axis.
(c) Find the volume of the solid obtained by revolving R about the line $x=1$.
6. True / False: (You do not need to justify your answer.)
(a) Simpson's Rule usually, but not always, gives a more accurate approximation for a definite integral than both the Midpoint Rule and the Trapezoid Rule.
(b) If $f(x) \leq g(x)$ and $\int_{0}^{\infty} g(x) d x$ diverges, then $\int_{0}^{\infty} f(x) d x$ also diverges.
(c) $\int \sin ^{2} x d x=\frac{1}{3} \sin ^{3} x+C$.
(d) It is possible to antidifferentiate every rational function in terms of finitely many familiar functions.
(e) If $\int_{a}^{\infty} f(x) d x$ and $\int_{a}^{\infty} g(x) d x$ are both divergent, then $\int_{a}^{\infty}[f(x)+g(x)] d x$ is also divergent.

