If $y=\frac{\ln t+3}{t}$, then $y(1)=\frac{\ln 1+3}{1}=3 \mathrm{~V}$ and $y^{\prime}=\frac{t\left(\frac{1}{t}\right)-(\ln t+3)}{t^{2}}=\frac{-2-\ln t}{t^{2}}$,

$$
\text { so } \quad \begin{aligned}
t^{2} y^{\prime}+t y & =(-2-\ln t)+(\ln t+3) \\
& =1
\end{aligned}
$$

2. (5 points) Show that

$$
y=\frac{1}{\sqrt{5-t^{2}}}
$$

is the solution of the initial value problem

$$
y^{\prime}=t y^{3}, \quad y(1)=\frac{1}{2} .
$$

The differential equation is separable, so we can solve it from scratch, but there's no need to do that here. We just calculate:

$$
y(1)=\frac{1}{\sqrt{5-1}}=\frac{1}{\sqrt{4}}=\frac{1}{2}
$$

and
2. ccd

$$
\begin{aligned}
y^{\prime} & =\frac{d}{d t}\left(\left(5-t^{2}\right)^{-1 / 2}\right)=-\frac{1}{2}\left(5-t^{2}\right)^{-3 / 2}(-2 t) \\
& =\left(5-t^{2}\right)^{-3 / 2} t=\frac{t}{\left(5-t^{2}\right)^{3 / 2}} \\
& =\left(\frac{1}{\sqrt{5-t^{2}}}\right)^{3} \cdot t
\end{aligned}
$$

Note: we need to check that the differential equation $y^{\prime}=t y^{3}$ is true for all t, not just when $t=1$.

$$
\begin{aligned}
& \frac{d y}{d t}=\frac{e^{-y^{2}}}{y} \cdot \frac{t+1}{t^{2}} \\
& \int y e^{y^{2}} d y=\int \frac{t+1}{t^{2}} d t=\int\left(t^{-2}+t^{-1}\right) d t \\
&=-t^{-1}+\ln |t|+C \\
& u=y^{2} \quad d u=2 y d y \\
& \int y e^{y^{2}} d y= \frac{1}{2} \int e^{u} d u=\frac{1}{2} e^{u}=\frac{1}{2} e^{y^{2}} \\
& \frac{1}{2} e^{y^{2}}=-\frac{1}{t}+\ln |t|+C
\end{aligned}
$$

3. etd

$$
\begin{aligned}
& y(1)=2 \Rightarrow \\
& \frac{1}{2} e^{4}=-1+0+C \quad C=1+\frac{1}{2} e^{4} \\
& e^{y^{2}}=-\frac{2}{t}+\ln |t|+2 C \\
& y^{2}=\ln \left[-\frac{2}{t}+\ln |t|+2 C\right] \\
& y=\sqrt{\ln \left(-\frac{2}{t}+\ln |t|+2+e^{4}\right)} \\
& \text { n no }^{n} \pm \text { since we know } y(1)=2>0 .
\end{aligned}
$$

Correction: The expression should read $\sqrt{\ln \left(-\frac{2}{t}+2 \ln |t|+2+e^{4}\right)}$; a coefficient "2" was omitted.
(4.)

$$
\begin{aligned}
& \frac{d y}{d t}=t e^{-t} y^{2} \\
& \int \frac{1}{y^{2}} d y=\int t e^{-t} d t \\
& \begin{array}{l}
u=t \quad d v=e^{-t} d t \\
d u=d t \quad v=-e^{-t}
\end{array}
\end{aligned}
$$

$$
\int t e^{-t} d t
$$

$$
=-t e^{-t}+\int e^{-t} d t=-t e^{-t}-e^{-t}+C
$$

(watch the signs!)
$=-e^{-t}(t+1)+C . \mathbb{N}$ Note: C is a constant of

So $-\frac{1}{y}=-e^{-t}(t+1)+C$.

$$
\begin{aligned}
& y(0)=2:-\frac{1}{2}=-e^{0}(0+1)+C=-1+C \\
& \Rightarrow C=-\frac{1}{2}+1=\frac{1}{2} \\
&-\frac{1}{y}=-e^{-t}(t+1)+\frac{1}{2} \\
& \frac{1}{y}=e^{-t}(t+1)-\frac{1}{2} \Rightarrow y=\frac{1}{e^{-t}(t+1)-\frac{1}{2}}
\end{aligned}
$$ appears when you evaluate the integrals. If you just stick on $+C$ after solving for y you'll get the wong answer!

(5) a) The natural growth gives us $\frac{1}{10} P$ millions of people added each year, but also $\frac{1}{10} \sqrt{p}$ pillion n are leaving each year. So

$$
P^{\prime}=\frac{1}{10} P-\frac{1}{10} \sqrt{P}=\frac{1}{10} \sqrt{P}(\sqrt{P}-1)
$$

b) Equilibrium is when P is constant so $P^{\prime}=0$.

$$
0=\frac{1}{10} \sqrt{P}(\sqrt{P}-1) \text { if } P=0 \text { or } P=1
$$

So 0 or 1 million are equiliboia.
c) Thinking about (but not taking the time to drawl the direction field, slopes are positive if $P>1$ and negative if $0<p<1$.
If $P_{0}=\frac{1}{2}$, the population will go down to 0 .
If $P_{0}=1$, the population will hold steady at 1 million.
If $P_{\sigma}=4$, the population will increase forever.
d)

$$
\begin{aligned}
t_{0}=0 & P_{0}
\end{aligned}=4 . ~ \begin{aligned}
t_{1}=5 \quad & P_{1}
\end{aligned}=4+5 \cdot \frac{1}{10} \sqrt{4}(\sqrt{4}-1) .
$$

e)

$$
\begin{aligned}
& \frac{d P}{d t}=\frac{1}{10} \sqrt{P}(\sqrt{P}-1) \\
& \int \frac{d P}{\sqrt{P}(\sqrt{P}-1)}=\int \frac{1}{10} d t=\frac{1}{10} t+C \\
& \| u=\sqrt{P} \quad d u=\frac{1}{2} P^{-1 / 3 P}=\frac{1}{2 \sqrt{P}} d P \\
& \int \frac{2 d u}{u-1}=2 \ln |u-1|=2 \ln |\sqrt{P}-1| \\
& \text { So } \quad \ln |\sqrt{P}-1|=\frac{1}{5} t+C e^{(\text {different } C} \text { from before) } \\
& \quad|\sqrt{P}-1|=e^{\frac{1}{5} t+c}=e^{c} e^{\frac{1}{5} t} \\
& \sqrt{P}-1= \pm e^{c} e^{\frac{1}{5} t}=A e^{\frac{1}{5} t}, A= \pm e^{c} .
\end{aligned}
$$

Now use $P(0)=4$:

$$
\begin{aligned}
& \sqrt{4}-1=A e^{0} \Rightarrow A=1 \\
& \sqrt{P}-1=e^{\frac{1}{5} t} \\
& \sqrt{P}=1+e^{\frac{1}{5} t} \\
& P=\left(1+e^{\frac{1}{5} t}\right)^{2}
\end{aligned}
$$

6. (20 points; 2 pages) A certain population of animals is dependent on a seasonally varying food supply. The rate at which the population grows is proportional to both the current population size P and to $\cos \left(\frac{\pi}{6} t\right)$; ie., it is proportional to their product. (Here t is the time measured in months.)
Suppose the initial relative growth rate (i.e., $\frac{1}{P} P^{\prime}$ when $t=0$) is $\frac{1}{6}$ per month, and the initial population is 1000 .
(a) Write a differential equation which models the growth of this population.

From the sentence "The rate at which.."
we know

$$
P^{\prime}=k P \cos \left(\frac{\pi}{6} t\right), \quad k \text { some constant. }
$$

Since $\frac{1}{p} p^{\prime}=\frac{1}{6}$ when $t=0$, we know

$$
\begin{aligned}
& \frac{1}{6}=\frac{1}{p} p^{\prime}=k \cos (0)=k, \quad \text { so } \\
& p^{\prime}=\frac{1}{6} P \cos \left(\frac{\pi}{6} t\right)
\end{aligned}
$$

(b) Suppose the initial population is 1000 . Use Euler's method with $h=3$ to estimate the population after 12 months.

$$
\begin{array}{rlrl}
t_{0}=0 & P_{0} & =1000 \\
t_{1}=3 & P_{1} & =P_{0}+3 P^{\prime}\left(t_{0}, P_{0}\right) \\
& =1000+3 \cdot \frac{1}{6} \cdot 1000 \overbrace{\cos (0)}^{1} \\
& =1000+3 \cdot \frac{1}{6} \cdot 1000=1500 . \\
t_{2}=6 \quad P_{2} & =1500+3 \cdot \frac{1}{6} \cdot 1500 \underbrace{\cos \left(\frac{3 \pi}{6}\right)}_{0} \\
& =1500 \\
t_{3}=9 \quad P_{3} & =1500+3 \cdot \frac{1}{6} \cdot 1500 \overbrace{\cos (\pi)}^{-1} \\
& & 1500-750=750 \\
t_{4}=12 \quad P_{4} & =750+3 \cdot \frac{1}{6} \cdot 750 \overbrace{\cos \left(\frac{9 \pi}{6}\right)}^{0} \\
& =750 .
\end{array}
$$

(c) Solve the differential equation to find an exact expression for the population after t months.

$$
\begin{aligned}
& \frac{d P}{d t}=\frac{1}{6} P \cos \left(\frac{\pi}{6} t\right) \\
& \int \frac{1}{P} d P=\int \frac{1}{6} \cos \left(\frac{\pi}{6} t\right) d t \\
&(P>0) \quad \ln P=\frac{1}{6} \cdot \frac{6}{\pi} \sin \left(\frac{\pi}{6} t\right)+C \\
& P=e^{\frac{1}{\pi} \sin \left(\frac{\pi}{6} t\right)} e^{c}=A e^{\frac{1}{\pi} \sin \left(\frac{\pi}{6} t\right)} \quad\left(A=e^{C}\right) . \\
& 1000=P(0)=A e^{\frac{1}{\pi} \sin (0)}=A \\
& P=1000 e^{\frac{1}{\pi} \sin \left(\frac{\pi}{6} t\right)} \text { so } \\
& \text { (d) Find the exact 0nonlation after 12 months, and compare to the Euler's method }
\end{aligned}
$$

(d) Find the exact population after 12 months, and compare to the Euler's method estimate.

$$
\begin{aligned}
P(12) & =1000 e^{\frac{1}{\pi} \sin (2 \pi)}=1000 e^{0} \\
& =1000
\end{aligned}
$$

Euler's method gave an underestimate.
(7) a) $P^{\prime}=0$ if $\quad P=1000$, or $P=200$.

Note: Technically speaking, the value $P=0$ is not an equilibrium solution, because this value actually makes the expression for P^{\prime} undefined (look at the last factor). But we'd accept this as a third equilibrium value, because in the real-world context of modeling population growth, a population of size zero will continue to stay of size zero as time progresses, and that's one definition of equilibrium.
b)

$$
\begin{aligned}
t_{1}=0 \quad P_{1} & =400 \\
t_{2}=5 \quad P_{2} & =P_{1}+5 \frac{P_{1}}{10}\left(1-\frac{P_{1}}{1000}\right)\left(1-\frac{200}{P_{1}}\right) \\
& =400+5 \cdot 40\left(1-\frac{2}{5}\right)\left(1-\frac{1}{2}\right) \\
& =400+200 \cdot \frac{3}{5} \cdot \frac{1}{2} \\
& =400+60=460 . \\
t_{3}=10 \quad P_{3} & =460+5.460\left(1-\frac{460}{1000}\right)\left(1-\frac{200}{460}\right) \\
& =\underbrace{460+5.460\left(\frac{540}{1000}\right)\left(\frac{260}{460}\right)}_{\approx P(10) .}
\end{aligned}
$$

8. (15 points) Suppose a population of fish in a lake grows according to a logistic model with carrying capacity 1000 and initial relative growth rate $k=1 / 10$, but in addition 50 fish are caught per unit time.
(a) Write a differential equation that models the growth of this population of fish.

$$
\frac{d P}{d t}=\frac{P}{10}\left(1-\frac{P}{1000}\right)-50 .
$$

Note: $\frac{d P}{d t}$ is a rate, and the rate at which fish are caught is $50 \frac{\text { fish }}{\text { united time, }}$ so the last term is just -50 , not $-50 t$.
(b) Suppose the population at time $t=0$ is 400 . Use Euler's Method with $h=2$ to estimate the population at time $t=4$.

Make sure the 2

$$
t_{1}=0 \quad P_{2}=400
$$ multiplies this whole thing!

$t_{2}=2 \quad P_{2}=400+2\left[\frac{400}{10}\left(1-\frac{400}{1000}\right)-50\right]$

$$
=400+2\left[40 \cdot \frac{6}{10}-50\right]
$$

$$
=400+2[24-50]=348
$$

$$
\begin{aligned}
t_{3}=4 \quad P_{3} & =348+2\left[\frac{348}{10}\left(1-\frac{348}{1000}\right)-50\right] \\
& =248+2 \cdot \frac{348}{10} \cdot \frac{652}{1000}
\end{aligned}
$$

TRUE: since $y^{\prime}<0$.
TRUE: $P=K$ is the only nonzero equilibrium.
(True / False All solutions of the differential equation $y^{\prime}=2+\cos (t y)$ are increasing functions.

Since $-1<\cos \theta<1$ always,
here we know $y^{\prime}>2-1=1>0$,
so, y is increasing.
(rue / False If y is the solution of the initial value problem

$$
y^{\prime}=3 y\left(1-\frac{y}{20}\right), \quad y(0)=4
$$

then $\lim _{t \rightarrow \infty} y(t)=20$. Similar to Chapter 8 True-False Quiz $\# 5$.
This is a general fact we discussed about the logistic equation (see p.539), or from the Formula. Sheet:

$$
\lim _{t \rightarrow \infty} \frac{20}{1+A e^{-3 t}}=\frac{20}{1+0}=20 \quad\left(A=\frac{20-4}{4}=4\right) .
$$

$$
\begin{aligned}
& \text { True. } f^{\prime}(t)=\frac{t \cdot \frac{1}{t}-\ln t}{t^{2}}=\frac{1-\ln t}{t^{2}}, \\
& \quad \text { so if } y=f(t) \\
& t^{2} y^{\prime}+t y=(1-\ln t)+\ln t=1 \mathrm{~V}
\end{aligned}
$$

10. (15 points) Solve the initial value problem

$$
\frac{d y}{d t}=3 y-2 t y, \quad y(0)=5
$$

Show all of your work, with full mathematical justification.
$\frac{d y}{d t}=3 y-2 t y=y(3-2 t)$, so by separation of variables,

$$
\begin{aligned}
& \frac{d y}{y}=(3-2 t) d t, \quad \text { and } \\
& \int \frac{d y}{y}=\int(3-2 t) d t, \text { so } \\
& \ln |y|=3 t-t^{2}+C .
\end{aligned}
$$

Thus $|y|=e^{3 t-t^{2}+c}=e^{c} \cdot e^{3 t-t^{2}}$, so

$$
y=e^{C} e^{3 t-t^{2}} \text { or } y=-e^{c} e^{3 t-t^{2}}
$$

But $y=5$ when $t=0$, so we must have $e^{c}=5$, and thus $y=5 e^{3 t-t^{2}}$ is the only solution to the initial value problem.
11. (12 points) The population of a species of elk on an Alaskan island has been observed to be closely predicted by a logistic model. The following specific observations have also been made:

- When the elk population was 600 , the population was growing at a rate of 20 percent per year, or 120 elk per year.
- When the population was 800 , the growth was 10 percent per year; i.e., 80 elk per year. Find the carrying capacity of the population, giving complete mathematical justification.

The population function $P(t)$ in terms of time (in years) satisfies

$$
\frac{d P}{d t}=k P\left(1-\frac{P}{N}\right)
$$

for some k and N.
But we know that if $P=600$, then $\frac{d P}{d t}=120$ (ie. $\frac{1}{P} \frac{d P}{d t}=0.20$), and if $P=800$, then $\frac{d P}{d t}=80$ (ie. $\frac{1}{P} \frac{d P}{d t}=0.10$),
so we can say

$$
\begin{aligned}
120 & =k \cdot 600 \cdot\left(1-\frac{600}{N}\right) \text { and } \\
80 & =k \cdot 800 \cdot\left(1-\frac{800}{N}\right) .
\end{aligned}
$$

Combining these, we find

$$
\frac{0.20}{1-\frac{600}{N}}=k=\frac{0.10}{1-\frac{800}{N}}
$$

so that $(0.20)\left(1-\frac{800}{N}\right)=(0.10)\left(1-\frac{600}{N}\right)$,
or $\quad 0.2-\frac{160}{N}=0.1-\frac{60}{N}$.
Thus $0.1=\frac{100}{N}$, so that $N=1000$ (elks). $\left.\quad \begin{array}{l}\text { See next page for an } \\ \text { alternate solution. }\end{array}\right)$

Alternate solution.
(more algebraically involved due to more unknown values)
The logistic equation $\frac{d P}{d t}=k P\left(1-\frac{P}{N}\right)$ has general solution $P(t)=\frac{N}{1+A e^{-k t}}$, and thus $P^{\prime}(t)=\frac{N A k e^{-k t}}{\left(1+A e^{-k t}\right)^{2}}$ and $\frac{P^{\prime}(t)}{P(t)}=\frac{A k e^{-k t}}{1+A e^{-k t}}$.

Let's take $t=0$ for the time when $P=600$ and $P^{\prime}=120$ and $\frac{P^{\prime}}{P}=0.2$, and some $t=T$ for when $P=800$ and $P^{\prime}=80$ and $\frac{P^{\prime}}{P}=0.1$.
Thus, $\quad 600=\frac{N}{1+A}$ and $0.2=\frac{A k}{1+A}$, and

$$
800=\frac{N}{1+A e^{-k T}} \text { and } \quad 0.1=\frac{A k e^{-k T}}{1+A e^{-k T}} .
$$

Combining the first two equations, we find $\frac{N}{A K}=\frac{600}{0.2}=3000$, and using this fact together with the combination of the second two equs, we find $\frac{N}{A k e^{-k T}}=\frac{800}{0.1}$, ie. $e^{k T}=\frac{8000}{N / A k}=\frac{8000}{3000}=\frac{8}{3}$.
It now follows that $600=\frac{N}{1+A} \Rightarrow A=\frac{N}{600}-1$,
as well as $800=\frac{N}{1+4 e^{-k T}} \Rightarrow A=\left(e^{k T}\right)\left(\frac{N}{800}-1\right)=\left(\frac{8}{3}\right)\left(\frac{N}{800}-1\right)$,
So that $\frac{N}{600}-1=\left(\frac{8}{3}\right)\left(\frac{N}{800}-1\right)=\frac{N}{300}-\frac{8}{3}$,
ie. $\quad \frac{N}{300}-\frac{N}{600}=\frac{8}{3}-1$, so that

$$
2 N-N=600 \cdot\left(\frac{8}{3}-1\right)=600 \cdot \frac{5}{3}=1000 \text {, ie. } N=1000 \text { elk. }
$$

12. (15 points) Two species, X and Y , compete with each other for the same limited resources. Their population sizes, $x(t)$ and $y(t)$, measured in the thousands and modeled as functions of time t (in years), obey the following system of differential equations:

$$
\begin{aligned}
& \frac{d x}{d t}=2 x-x y \\
& \frac{d y}{d t}=3 y-x y
\end{aligned}
$$

(a) Find the equilibrium solutions of this system. Show your work.

Equilibrium solution is a pair $(x(t), y(t))$ where bath members are constant fur,
so $\frac{d x}{d t}=\frac{d y}{d t}=0$. Solving

$$
\left\{\begin{array}{l}
0=2 x-x y=x(2-y) \\
0=3 y-x y=y(3-x)
\end{array}\right.
$$

we find that $x=0$ requires $y=0$, and $y=2$ requires $x=3$. (thousands)
Thus, the solutions are $\begin{aligned} & (x, y)=(0,0) \text { and } \\ & (x, y)=(3,2) \text {. }\end{aligned}$
(b) At time $t=0$ suppose $x(0)=2$ and $y(0)=4$. Find the rates of change of the two populations at this moment. What will happen in the long run, as t increases? Justify your answer.

At this moment, $\frac{d x}{d t}=2 \cdot 2-2.4=-4 \frac{\text { thous }}{y^{r}}$, and $\frac{d y}{d t}=3 \cdot 4-2 \cdot 4=4 \frac{\text { thous }}{y^{r}}$.
(In particular, species Y is growing and species X is diminishing.)

- Since $\frac{d x}{d t}=x(2-y)$, we note that $\frac{d x}{d t}<0$ whenever $y>2$ (and there remain any surviving species X).
- Meanwhile, $\frac{d y}{d t}=y(3-x)$, so $\frac{d y}{d t}>0$ as long as $x<3$ (and there exist a positive amount of species Y).
- Thus, after $t=0$, as y increases to well above Z and x decreases to well below 3, the trend of "Y increasing, X decreasing" will continue to play out. It makes sense to expect X to die out eventually (or at least declare that "X approaches O while Y approaches ∞ " mathematically).

13. (18 points) Match the direction fields below with their differential equations, and give your reasoning. Each field is graphed for $-5 \leq x \leq 5,-5 \leq y \leq 5$.

IV

II

V

III

Equation	$\begin{aligned} & \text { I, II, III, IV, } \\ & \text { V, or VI } \end{aligned}$	Brief reason - Sample answers only: others passible
$d y / d x=1+y^{2}$	II	Equation\& graph both have no dependence on x-variable (or horizontal pasition), and graphs I \& I (which also have this property) can be elliminatiod because we also need dya
$d y / d x=x$	VI	One of two equations/graphs to have no dependence on y-varible (or vertical pasition); can match II to equation below and argue by process of elimination.
$d y / d x=\sin x$	TV	Only equation/graph to have periodicity in horizontal direction.:
$d y / d x=y$	I	Slope negative for all points where $y<0$ and pasitive where $y>0$.
$d y / d x=x-y$	III	All other equations/graphs have dependence on only a single Variable. In addition, graph III is unchanged along diaganal lines of the form $x-y=$ constant.
$d y / d x=4-y$	V	Slope negative if $y>4$ and paritive if $y<4$.

14. (16 points) Each picture below depicts a few possible solution curves to a differential equation chosen from the list at the bottom of the page. Match each equation to its sketch of solutions. Here a, b, and k are fixed positive constants. The scales on the axes (t is horizontal; y is vertical) have been omitted because they don't affect the answers.

I

III

II

IV

Equation	I, II, III, or IV	Brief reason - samples
$d y / d t=k y$	IV	Equation has "exponential growth" function as solution; only II has a cove fitting this description.
$d y / d t=(a-b y) y$	II	This is the logistic equation, so we expect solutions reflecting a rise to some carrying capacity; II is only fit.
$d y / d t=a-b y$	III	If $y>a / b, ~ w e ~ r e q u i r e ~ s l o p e ~ f o ~ b e ~ n e g a t i v e, ~ a n d ~ i f ~$ then she must be pasifive. Only graph III can fit this requirement.
$d y / d t=(a-b t) y$	In \quadThere is a single value of t (namely $\left.t=\frac{a}{b}\right)$ where any solution curve most be flat; graph I appears to fit.	

15. (20 points) Match the slope fields below with their differential equations, and give your reasoning. Here k is a positive constant, and the scales on all axes are the same. (The horizontal variable is t; the vertical is y.)

I

III

II

IV

Equation	I, II, III, IV, or "none"	Brief reason
$d y / d t=k \sin y$	IV	Graph IV has slopes equal when looking across a horiz. line.- its equation must be independent of t.
$d y / d t=k \sin t$	I	Graph I has slopes equal when looking along each vertical line -- its equation most be independent of y.
$d y / d t=k t \sin y$	III	Graph III has at leart four lines along which all slape lines ave 0 : the horiz lines $y=\pi, y=0, y=-\pi$, as well as the vertical line $t=0$. This equation is the only one that is zero for all these areas.
$d y / d t=k \sin (t y)$	none	Could do this last \& argue by elimination; alternatively notice that the equation is symmetric when $t \& y$ are interchanged, which rules out all graphs except II, and slope should be O when $t=0$, which
$d y / d t=k \sin (t+y)$	π	Graph II has property that when $t+y$ is fixed constant, reles oot If. slope is the same: its equation must depend on $t+y$. Alternative: anly graph with positive slope at both $(0, \pi / 2) \&(\pi, 0)$.

16. (20 points) The Millenium Falcon, widely believed to be the fastest spaceship in the galaxy, is trying to fly past the Death Star without getting pulled in by the Death Star's powerful tractor beam. The beam is activated at time $t=0$, and the distance $x(t)$, in kilometers, between the spaceship and the Death Star after t seconds satisfies the differential equation

$$
\frac{d x}{d t}=-7 x(x-100)(x-10000)
$$

(a) What is the physical meaning of "equilibrium solution" in this context? Find all equilibrium solutions.

Since "equilibrium solution" refers to solutions where $x(t)$ is constant, this corresponds to situations where the Falcon is maintaining a constant distance from the Death Star (so it isn't moving; ie. it's standing still).
To find equilibrium solutions, set $x(t)=A$, so that $\frac{d x}{d t}=0$, and plug in:

$$
0=-7 A(A-100)(A-10000)
$$

which means that the passible values for A are 0,100 , and 10000. (km)
(These are the distances, in km , where the Falcon can maintain a constant distance from the Death Star.)
(b) For what positive values of x is x increasing? decreasing? Give complete answers.

Since $x(t)$ is increasing when $\frac{d x}{d t}$ is positive, and decreasing when $\frac{d x}{d t}$ is negative, we must check for which values of x is $\frac{d x}{d t}=-7 x(x-100)(x-10000)$ positive or negative:

$$
\left.\begin{array}{cr}
\frac{\text { region }}{} & \frac{\text { sign of }-7 x(x-100)(x-10000)}{0<x<100}
\end{array} \Theta \cdot \Theta \cdot \Theta=\Theta\right)
$$

Thus x is increasing when $100<x<10000$, and decreasing when $0<x<100$.
(c) Predict the fate of the Falcon as t approaches infinity; your answer will likely depend on the initial distance $x_{0}=x(0)$. That is, are there values of x_{0} for which the ship escapes? Is sucked into the Death Star? Or some other possibility? A complete description should provide predictions that together cover every possible (positive) value of the initial distance x_{0}.
Here are the outcomes:

$$
\begin{gathered}
x_{0}=\frac{x_{0}(\text { kilometers })}{0 \text { or } 100 \text { or } 10000} \\
0<x_{0}<100 \\
100<x_{0}<10000 \\
x_{0}>10000
\end{gathered}
$$

Result as time approaches ∞
Falcon holds steady at this distance for all t.
Falcon is pulled into the Death Star.
Falcon pulls away to approach a distance of 10000 km . (Never getsforther)
Falcon is polled in to a distance of 10000 km (but never pulled closer).

Justification (using parts (a) \& (b)):

- The first case is just the set of equilibrium solutions from part (a).
- If $0<x_{0}<100$, then $\frac{d x}{d t}<0$ at $t=0$, so the Falcon starts being pulled in.

As its distance x decreases, then since x remains between 0 and 100 , the derivative $\frac{d x}{d t}$ will continue to be negative, and x will continue to decrease; thus, the Falcon is pulled into the Death Star as t increases.

- If $100<x_{0}<10000$, then $\frac{d x}{d t}>0$ at $t=0$, so the Falcon will begin by pulling away from the Death Star. As its distance x increases and nears $x=10000$, then although the sigh of $\frac{d x}{d t}$ will continue to be positive, the size of $\frac{d x}{d t}=-7 x(x-100)(x-10000)$ will became small, since $x-10000$ will be small (near 0). Thus the Falcon will pull away at a slower and slower rate, approaching (asymptatically) the equilibrium distance of 10000 km as t increases.
- The reasoning for $x_{0}>10000$ is analogous to the previous case, but $\frac{d x}{d t}$ will be negative. Again, $\frac{d x}{d t}$ will be near O as x nears lob00, so the Falcon slows as it is pulled to a distance of $x=10000 \mathrm{~km}$.

17. (20 points)
(a) The graph of a function $y=y(x)$ in the $x y$-plane has the property that the slope of the curve at each point is proportional to the y-coordinate of that point. Moreover, the curve passes through the point $(4,-9)$, and the value of the second derivative of the function at this point is -1 . Find the function (or family of functions) with these properties.
$y(x)$ satisfies:

$$
\begin{gathered}
y^{\prime}(x)=k \cdot y \\
y(4)=-9 \\
y^{\prime \prime}(4)=-1
\end{gathered}
$$

The general solution to the differential equation is $y(x)=C e^{k x}$, Which means that $y^{\prime}(x)=C k e^{k x}$ and

$$
y^{\prime \prime}(x)=C k^{2} e^{k x}
$$

Thus the initial conditions give

$$
\begin{aligned}
& -9=y(4)=C e^{k \cdot 4} \text { and } \\
& -1=y^{\prime \prime}(4)=C k^{2} e^{k \cdot 4}
\end{aligned}
$$

Therefore $\frac{-9}{-1}=\frac{C e^{k \cdot 4}}{C k^{2} e^{k \cdot 4}}=\frac{1}{k^{2}}$, so $k= \pm \frac{1}{3}$.
If $k=\frac{1}{3}$, then $C=\frac{-9}{e^{4 k}}=\frac{-9}{e^{4 / 3}}$, so $y(x)=\frac{-9}{e^{4 / 3}} \cdot e^{x / 3}$,
and if $k=-\frac{1}{3}$, then $c=\frac{-9}{e^{-4 / 3}}=-9 e^{4 / 3}$, so $y(x)=-9 e^{4 / 3} \cdot e^{-x / 3}$.
These are the only two solution curves.
(b) Find the general solution $y(t)$ to

$$
\frac{d y}{d t}=\frac{1}{10}(10-3 y)(10+3 y) .
$$

(Hint: an integral table may be helpful, but it can be avoided by instead showing that the function $P(t)=10+3 y(t)$ satisfies a certain Logistic differential equation involving $d P / d t$.)

If $P(t)=10+3 y(t)$, then solving for y gives $y(t)=\frac{1}{3} P(t)-\frac{10}{3}$.
Thus $\frac{d y}{d t}=\frac{1}{3} \cdot \frac{d P}{d t}$, and

$$
\begin{aligned}
& 10-3 y=10-3\left(\frac{1}{3} P-\frac{10}{3}\right)=20-P, \text { while } \\
& 10+3 y=P
\end{aligned}
$$

The differential equation $\frac{d y}{d t}=\frac{1}{10}(10-3 y)(10+3 y)$ thus becomes

$$
\begin{aligned}
& \frac{1}{3} \frac{d P}{d t}=\frac{1}{10}(20-P) \cdot P, \quad \text { or } \\
& \frac{d P}{d t}=6 P\left(1-\frac{P}{20}\right) .
\end{aligned}
$$

This is a logistic equation with $M=20$ and $k=6$, so the solution is

$$
\begin{aligned}
& P(t)=\frac{20}{1+A e^{-6 t}} \quad \text { or } P(t)=0 ; \text { in terms of } y \text { this means } \\
& y(t)=\frac{1}{3} P(t)-\frac{10}{3}=\begin{array}{l}
\frac{1}{3} \cdot \frac{20}{1+A e^{-6 t}}-\frac{10}{3} \quad \text { (A is any constant) } \\
\text { or } y=-10 / 3 .
\end{array}
\end{aligned}
$$

Alternate solution te part (b), using separation of variables \& integration:

$$
\int \frac{d y}{(10-3 y)(10+3 y)}=\int \frac{1}{10} d t=\frac{t}{10}+C \text {, and left-hand side requires partial fractions. }
$$

If $\frac{1}{(10-3 y)(10+3 y)}=\frac{A}{10-3 y}+\frac{B}{10+3 y}$, then $1=A(10+3 y)+B(10-3 y)=(10 A+10 B)+(3 A-3 B) y$,
so $\quad \begin{aligned} 3 A-3 B & =0, \\ 10 A+10 B & =1\end{aligned} \Rightarrow \quad \begin{aligned} & A=B \\ & A+B=\frac{1}{10}\end{aligned} \Rightarrow A=B=\frac{1}{20}$.
Thus $\int \frac{d y}{(10-3 y)(10+3 y)}=\int\left(\frac{1 / 20}{10-3 y}+\frac{1 / 20}{10+3 y}\right) d y=-\frac{1}{60} \ln |10-3 y|+\frac{1}{60} \ln |10+3 y|=\frac{1}{60} \ln \left|\frac{10+3 y}{10-3 y}\right|$.
We get $\quad \frac{1}{60} \cdot \ln \left|\frac{10+3 y}{10-3 y}\right|=\frac{t}{10}+C$, so solving for y yields

$$
\begin{gathered}
\left|\frac{10+3 y}{10-3 y}\right|=e^{6 t+6 C}=B e^{6 t} \text { for } B>0 ; \text { thus, } \\
\frac{10+3 y}{10-3 y}=B e^{6 t} \text { for any } B \neq 0 \text { (pos or neg); finally we get } \\
10+3 y=(10-3 y) \cdot B e^{6 t}=10 B e^{6 t}-\left(3 B e^{6 t}\right) y, \text { so } \\
y\left(3+3 B e^{6 t}\right)=10 B e^{6 t}-10, \text { and } \\
y=\frac{10\left(B e^{6 t}-1\right)}{3\left(B e^{6 t}+1\right)} . \quad(B \neq 0) .
\end{gathered}
$$

Since separation of variables can miss equilibrium solutions, we separately note that $\frac{d y}{d t}=0$ implies $y=\frac{10}{3}$ or $y=-\frac{10}{3}$, so these eve two other solutions.

Or, we note that the case $B=0$ covers the sedition $y=\frac{-10}{3}$ alveally, so a complete solution is described by:
(This is algebraically equivalent to the first solution; no simplification is needed beyond this.)

$$
y(t)=\frac{10}{3} \cdot \frac{B e^{6 t}-1}{B e^{6 t}+1} \text {, B any number, }
$$

or

$$
y(t)=\frac{10}{3}
$$

18. (15 points) On a strange tropical island, two native species, the mattababy and the henway, participate in a very predictable relationship. The mattababy population is described over time by a function $x(t)$, where t is measured in days; the henway population is described by a function $y(t)$. Naturalists coming to the island observe that the rates of growth of the two species are given by the equations

$$
\begin{aligned}
& \frac{d x}{d t}=-4 x+0.02 x y \\
& \frac{d y}{d t}=-3 y+0.01 x y
\end{aligned}
$$

(a) Is the relationship between the two species one of mutual competition, mutual cooperation, or predator-prey (and if the latter case, which plays which role)? Justify your answer by explaining how the equations show what effect each species has on the other.

In the presense of $y=0$ henways, the mattababy population obeys $\frac{d x}{d t}=-4 x$, which is exponential decay. But with a positive y, the growth rate of mattababies $\left(\frac{d x}{d t}\right)$ increases, due to the "+0.02xy" term. Thus henways have a positive effect on the mattababy growth rate. Similarly, the "to.01xy" term in the hennas growth rate $\frac{d y}{d y}$ indicates that mattababies have a positive effect on henways. It follows that this is a relationship of mutual cooperation.
(b) Find all equilibrium solutions to the above system. Show your work.

Equilibrium solutions when $\frac{d x}{d t}=\frac{d y}{d t}=0$, so

Thus $x=0$ or $1-\frac{0.02}{4} y=0$, ie. $x=0$ or $y=200$. If $x=0$,
then we must have $0=-3 y\left(1-\frac{0.0}{3} \cdot 0\right)=-3 y$, so $y=0$.
If instead $y=200$, then $0=-3 \cdot 200 \cdot\left(1-\frac{0.01}{3} x\right)$, so $x=300$.
Thus the solutions are $(x, y)=(0,0)$ and $(x, y)=(300,200)$.

