
Math 42: Fall 2015
Midterm 2

November 3, 2015

NAME: Solutions

Time: 180 minutes

For each problem, you should write down all of your work carefully and legibly to receive
full credit. When asked to justify your answer, you should use theorems and/or mathemat-
ical reasoning to support your answer, as appropriate.

Failure to follow these instructions will constitute a breach of the Stanford Honor Code:

• You may not use a calculator or any notes or book during the exam.
• You may not access your cell phone during the exam for any reason.
• You are bound by the Stanford Honor Code, which stipulates among other things

that you may not communicate with anyone other than the instructor during the
exam, or look at anyone else’s solutions.

I understand and accept these instructions.

Signature:

Discussion Section: (Please circle)

9:30-10:20 10:30-11:20 11:30-12:20 12:30-1:20 ACE 1:30-3:20

There is a list of formulas and four pages of blank paper at the end of the
exam.

Problem Value Points
1 12
2 9
3 16
4 12
5 7
6 12
7 9
8 9
9 7
10 7
Total 100
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1. (Short answer) You do not have to justify your answer to the following questions.

a. (3 pts.) (True or false) Because the radius of convergence of the Taylor series for f(x) =
ex centered at a = 0 is ∞, the radius of convergence of the Taylor series for g(x) = 1/ex is
0.

False. 1/ex = e−x, which has radius of convergence ∞.

b. (3 pts.) Let T7(x) be the degree 7 Taylor polynomial for a function f(x), centered at
a = 2. If f(x) = T7(x) for all x, what is f (9)(3)?

Since f(x) = T7(x) for all x, f(x) is at most a degree 7 polynomial. Thus, its ninth deriva-

tive is exactly zero at any point. In particular, f (9)(3) = 0.

c. (3 pts.) (True or false) Simpson’s rule is always more accurate than the trapezoid rule.

False. Consider the approximations to

∫ 1

−1
|x| dx with n = 2. The trapezoid rule gives

1
2
(| − 1| + 2|0| + |1|) = 1 and Simpson’s rule gives 1

3
(| − 1| + 4|0| + |1|) = 2

3
. The integral

is equal to 1, so the trapezoid rule is exactly correct, whereas Simpson’s rule is off by 1/3.
For “most” integrals, Simpson’s rule will be much more accurate, but it doesn’t have to
be.

d. (3 pts.) The graph of f(x) = e−1/x is given below. Consider its Taylor series centered
at a = 2 (but please do not find it!). Does the series converge at x = 5?

−2 2 4 6

1

2

3

4

a

Vert. Asymp. at x = 0

2 2

Last possible pt. of convergence

Must diverge

Since f(x) is not defined at x = 0, the radius of convergence of the series centered at
a = 2 is at most |2 − 0| = 2. Thus, the interval of convergence is at most (0, 4], so

the series does not converge at x = 5.
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2. a. (6 pts.) Find the Taylor series centered at a = 0 for f(x) = x ln(1 + x). Express your
answer in terms of sigma/summation notation.

Notice that ln(1 + x) is related to the geometric series

1

1 + x
= 1− x+ x2 − x3 + x4 − . . .

=
∞∑
n=0

(−1)nxn,

provided |x| < 1. In particular, we have that

ln(1 + x) =

∫
1

1 + x
dx

= C +
∞∑
n=0

(−1)nxn+1

n+ 1
.

We find C by plugging in the “easy point” x = 0, which yields C = ln(1) = 0. Thus, we

have that ln(1 + x) =
∞∑
n=0

(−1)nxn+1

n+ 1
. Multiplying this by x yields

x ln(1 + x) =
∞∑
n=0

(−1)nxn+2

n+ 1
.

b. (3 pts.) What is the radius of convergence of the series in part a.?

First method: We use the ratio test, finding that

lim
n→∞

|an+1|
|an|

= lim
n→∞

|x|n+3/(n+ 2)

|x|n+2(n+ 1)|

= lim
n→∞

|x|n+3

|x|n+2

n+ 1

n+ 2

= |x|.
Thus, the ratio test implies the series converges if |x| < 1 and not if |x| > 1, so the radius

of convergence is R = 1.

Second method: To find the series in part a., we used the formula for the sum of a geo-
metric series, which converged if |x| < 1. That is, the radius of convergence for 1

1+x
is

R = 1. Integration doesn’t change the radius of convergence, nor does multiplication by x,
so the radius of convergence for x ln(1 + x) must be R = 1.
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3. a. (6 pts.) Find the Taylor series centered at a = 2 for f(x) = x−2. Express your
answer in terms of sigma/summation notation.

This isn’t a series we know, nor can we easily relate it to a geometric series, so we take a
bunch of derivatives and look for patterns. We find the following:

n f (n)(x) f (n)(2) cn = f (n)(2)/n!
0 x−2 2−2 2−2

1 −2 · x−3 −2 · 2−3 −2 · 2−3
2 2 · 3 · x−4 2 · 3 · 2−4 2 · 3 · 2−4/2! = 3 · 2−4
3 −2 · 3 · 4 · x−5 −2 · 3 · 4 · 2−5 −2 · 3 · 4 · 2−5/3! = −4 · 2−5
4 2 · 3 · 4 · 5 · x−6 2 · 3 · 4 · 5 · 2−6 2 · 3 · 4 · 5 · 2−6/4! = 5 · 2−6
...

...
...

...
...

n (−1)n(n+ 1)! · x−n−2 (−1)n(n+ 1)! · 2−n−2 (−1)n(n+ 1)! · 2−n−2/n! = (−1)n(n+ 1) · 2−n−2

Thus, the Taylor series for f(x) at a = 2 is given by

∞∑
n=0

cn(x− a)n =
∞∑
n=0

(−1)n(n+ 1)

2n+2
(x− 2)n.

b. (4 pts.) Find the interval of covergence of the series in part a.

We start by finding the radius of convergence via the ratio test. We compute that

lim
n→∞

|an+1|
|an|

= lim
n→∞

(n+ 2)|x− 2|n+1/2n+3

(n+ 1)|x− 2|n/2n+2

= lim
n→∞

n+ 2

n+ 1
· |x− 2|n+1

|x− 2|n
· 2n+2

2n+3

=
|x− 2|

2
.

Thus, the series converges if |x−2|
2

< 1, or |x − 2| < 2, and the radius of convergence is 2.
Since we’re centered at a = 2, the interval of convergence will be of the form 0, 4 . We
need to figure out what happens at the endpoints, x = 0 and x = 4.

x = 0 : We plug in x = 0 and find
∞∑
n=0

(−1)n(n+ 1)

2n+2
(−2)n =

∞∑
n=0

n+ 1

4
, which diverges by

the test for divergence (the terms don’t go to 0).

x = 4 : We plug in x = 4 and find
∞∑
n=0

(−1)n(n+ 1)

2n+2
2n =

∞∑
n=0

(−1)n(n+ 1)

4
, which again

diverges by the test for divergence.

Thus, the interval of convergence is (0, 4).
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c. (6 pts.) How close is the approximation f(x) ≈ T2(x) on the interval [1.9, 2.1]? (Hint:
You do not need to have done parts a. or b. to do this part.)

We use Taylor’s inequality, which states that

|f(x)− TN(x)| ≤ M

(N + 1)!
dN+1.

We apply this with N = 2 and d = 0.1. M is thus given by the max of |f (3)(x)| on
[1.9, 2.1]. From part a. (or just computing it), we find that

f (3)(x) = −24 · x−5 =
−24

x5
.

The max of |f (3)(x)| comes from minimizing the denominator, i.e. taking x = 1.9. Thus,
M = 24/(1.9)5. Putting this all together, we find that

|f(x)− T2(x)| ≤ 24/(1.9)5

3!
(0.1)3 =

4 · (0.1)3

(1.9)5
≈ 0.00016 (if you were curious).

4. Evaluate the following integrals.

a. (6 pts.)

∫ 1

0

x

(x+ 1)(x+ 2)
dx.

We use partial fractions. Thus, we want to solve

x

(x+ 1)(x+ 2)
=

A

x+ 1
+

B

x+ 2
,

or, cross multiplying,
x = A(x+ 2) +B(x+ 1).

Plugging in x = −2 yields −2 = −B, or

B = 2,

and plugging in x = −1 yields
A = −1.

Thus, ∫ 1

0

x

(x+ 1)(x+ 2)
dx =

∫ 1

0

[
−1

x+ 1
+

2

x+ 2

]
dx

=
[
− ln |x+ 1|+ 2 ln |x+ 2|

]∣∣∣1
0

=
[
− ln(2) + 2 ln(3)

]
−
[
− ln(1) + 2 ln(2)

]
= 2 ln(3)− 3 ln(2).
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b. (6 pts.)

∫
6

x(x+ 1)(x+ 3)
dx.

We use partial fractions once again. Thus, we’re trying to solve

6

x(x+ 1)(x+ 3)
=
A

x
+

B

x+ 1
+

C

x+ 3
,

or
6 = A(x+ 1)(x+ 3) +Bx(x+ 3) + Cx(x+ 1).

We plug in x = 0, x = −1, and x = −3 to find

A = 2, B = −3, and C = 1,

respectively. Thus,∫
6

x(x+ 1)(x+ 3)
dx =

∫ [
2

x
− 3

x+ 1
+

1

x+ 3

]
dx

= 2 ln |x| − 3 ln |x+ 1|+ ln |x+ 3|+ C.

5. (7 pts.) Consider the integral

∫ 1

−1
ex

2

dx. How many subintervals are needed so that the

midpoint approximation is within 0.0002 = 1/5000?

As written: We apply the midpoint approximation error estimate, which says that the
error with n subintervals is at most

K(b− a)3

24n2
,

where K is anything ≥ |f ′′(x)| on [a, b]. We take f(x) = ex
2

and compute that

f ′(x) = 2x ex
2

and f ′′(x) = 2ex
2

+ (2x)2 ex
2

= (2 + 4x2)ex
2

.

Each constituent part of f ′′(x) is maximized when x = 1 or −1, so we may take K = 6e.
Thus, the error is at most

6e · 23

24n2
=

2e

n2
.

We set 2e
n2 ≤ 1/5000 and cross multiply to get

10000e ≤ n2,

which becomes

n ≥
√

10000e = 100
√
e.

As I intended, with ex
2−1 instead: Notice that ex

2−1 = ex
2
/e, so this function, and

hence its derivatives, are 1/e times the above. Thus, we can take K = 6 here instead of

K = 6e. When the dust settles, we find n ≥ 100.
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6. a. (7 pts.) Find the area of the region bounded by the curves x = 3y + 3 and x =
y2 + 3y + 2.

There’s a graph below, but suppose we didn’t know it. We start by finding the points of
intersection. We set 3y + 3 = y2 + 3y + 2 and solve, finding y2 = 1, so y = ±1. Our area is
thus given by

A =

∫ 1

−1
(Right− Left) dy.

We need to find which function’s on the right and which is on the left. Here’s an easy way
to do that: plug in y = 0 to each curve. The line has x = 3 and the parabola has x = 2, so
the line has to be on the right. Thus,

A =

∫ 1

−1

[
(3y + 3)− (y2 + 3y + 2)

]
dy

=

∫ 1

−1

[
1− y2

]
dy

=

[
y − y3

3

] ∣∣∣1
−1

=
4

3
.

Here’s the graph of the curves, from which it’s apparent that the line is on the right.

2 4 6

−1

1

b. (5 pts.) For what value of b does the the line y = b divide the above region into two
halves of equal area?

We want the area above the line to be equal to the area below it, so we’re solving∫ b

−1

[
1− y2

]
dy =

∫ 1

b

[
1− y2

]
dy.

Equivalently, we can set one of these integrals equal to half of the total area, which we
computed in part a. to be 4/3. We do this for the first integral, which is∫ b

−1

[
1− y2

]
dy =

[
y − y3

3

] ∣∣∣b
−1

=

[
b− b3

3

]
−
[
−2

3

]
= b− b3

3
+

2

3
.

Setting this equal to 2/3, we find b − b3

3
= 0, so b = 0 or ±

√
3. Both

√
3 and −

√
3 are

outside our region, so b = 0.

Alternatively, notice that the integrand is an even function. Thus, by symmetry, b = 0
gives half the area.
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7. (9 pts.) The area between the curves y = ex, y = ex
√
x, and x = 0 is rotated around

the x-axis. What is the volume of the resulting solid?

We need at least a rough picture to decide which method to use. We know what y = ex

looks like, so it’s y = ex
√
x that’s confusing. Notice that at x = 0, we have y = 0. We find

the point(s) of intersection by setting ex = ex
√
x. This gives

√
x = 1, so x = 1 is the only

point of intersection. These two bits of data inform our graph.

0.2 0.4 0.6 0.8 1

1

2

3

R

r

y = ex y = ex
√
x

We want to do this problem dx, so we’re going to use the washer method. R and r are
marked in the graph. We thus find that

V =

∫ 1

0

[
πR2 − πr2

]
dx

= π

∫ 1

0

[
(ex)2 − (ex

√
x)2
]
dx

= π

∫ 1

0

[
e2x − xe2x

]
dx

= π

∫ 1

0

e2x dx− π
∫ 1

0

xe2x dx.

We do the first integral with a u-substitution, taking u = 2x and du = 2 dx, to find

π

∫ 1

0

e2x dx =
π

2

∫ 2

0

eu du =
π

2
[eu]

∣∣∣2
0

=
π

2
e2 − π

2
.

We use integration by parts in the second integral, and we find

π

∫ 1

0

xe2x dx =
π

2
xe2x

∣∣∣1
0
− π

2

∫ 1

0

e2x dx

=
π

2
e2 − π

4

[
e2x
] ∣∣∣1

0
=
π

4
e2 +

π

4
.

Putting this all together, we find that V =
π

4
e2 − 3π

4
.
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8. (9 pts.) Consider the region between the curves y = (x−1)2 and y = 5− (x−2)2. What
is the volume of the solid formed by rotating this region around the line x = −3?

One of these curves is an upward-facing parabola starting at (1, 0), the other is a downward-
facing parabola starting at (2, 5). Thus, we should already have a loose picture of what
this region will be (roughly speaking, it should be the region between the two “cups”). We
find the points of intersection:

(x− 1)2 = 5− (x− 2)2, so

x2 − 2x+ 1 = 5− (x2 − 4x+ 4), so

2x2 − 6x = 0, so

2x(x− 3) = 0.

Thus, x = 0 and x = 3 give the points of intersection. Our graph looks like the following.

−3 −2 −1 1 2 3

2

4

h
r

We want to do this problem dx, so we are forced to use the method of cylindrical shells; r
and h have been marked in the graph. Explicitly, we have

r = x+ 3 and h = [5− (x− 2)2]− [(x− 1)2] = −2x2 + 6x.

Thus, our formula for the volume gives

V =

∫ 3

0

2πrh dx

=

∫ 3

0

2π(x+ 3)(−2x2 + 6x) dx

= 2π

∫ 3

0

(−2x3 + 18x) dx

= 2π

[
−x

4

2
+ 9x2

] ∣∣∣3
0

= 2π

[
−81

2
+ 81

]
= 81π.
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9. (7 pts.) A solid is to be formed in the following manner. Its base is to be given by the
region bounded by the curves y = x and y = x2, and its cross section for each fixed x is to
be a rectangle whose height is equal to x. What is the volume of this solid?

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

(The blue figure is a rectangle com-
ing out of the page.)

The area of the blue rectangle formed by taking
the cross section at x is

A(x) = (Base)(Height)

= (x− x2)(x)

= x2 − x3.
The volume is given by integrating this expres-
sion, i.e.

V =

∫ 1

0

A(x) dx

=

∫ 1

0

x2 − x3 dx

=

[
x3

3
− x4

4

] ∣∣∣1
0

=
1

12
.

10. (7 pts.) Find the length of the curve governed by y = 1
2
ex + 1

2
e−x for 0 ≤ x ≤ 3.

The formula for arc length is

L =

∫ 3

0

√
1 +

(
dy

dx

)2

dx.

We gradually manipulate the derivative, finding

dy

dx
=

1

2
ex − 1

2
e−x(

dy

dx

)2

=

(
1

2
ex − 1

2
e−x
)2

=
1

4
e2x − 1

2
+

1

4
e−2x

1 +

(
dy

dx

)2

=
1

4
e2x +

1

2
+

1

4
e−2x

=

(
1

2
ex +

1

2
e−x
)2

.

Thus,

L =

∫ 3

0

(
1

2
ex +

1

2
e−x
)
dx =

[
1

2
ex − 1

2
e−x
] ∣∣∣3

0
=

1

2
e3 − 1

2
e−3.
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Formulas
The Binomial Theorem:

(1 + x)k =
∞∑
n=0

(
k

n

)
xn, where

(
k

n

)
=
k(k − 1)(k − 2) . . . (k − n+ 1)

n!
.

Radius of convergence = 1.

Alternating Series Estimation: |S − SN | ≤ bN+1.

Integral Test Estimation: |S − SN | ≤
∫ ∞
N

f(x) dx.

Taylor’s Inequality:

|f(x)− TN(x)| ≤ M

(N + 1)!
dN+1 for |x− a| ≤ d,

where M ≥ |f (N+1)(x)| on [a− d, a+ d].

Trapezoid and Midpoint Estimates: Suppose that |f ′′(x)| ≤ K for x in [a, b]. Then

|ErrTrap| ≤
K(b− a)3

12n2
and |ErrMidpt| ≤

K(b− a)3

24n2
.

Simpson’s Rule: Let n be even. Set ∆x = (b − a)/n and xi = a + i∆x for 0 ≤ i ≤ n.
Then∫ b

a

f(x) dx ≈ ∆x

3
[f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + · · ·+ 2f(xn−2) + 4f(xn−1) + f(xn)] .

If |f (4)(x)| ≤ K4 on [a, b], then the error in the above approximation is at most

K4(b− a)5

180n4
.

Arc Length: If a curve is given by y = f(x) for a ≤ x ≤ b, then its length is

L =

∫ b

a

√
1 +

(
dy

dx

)2

dx.

Similarly, if it is given by x = g(y) for a ≤ y ≤ b, then its length is

L =

∫ b

a

√
1 +

(
dx

dy

)2

dy.


