
Math 42: Fall 2015
Midterm 1

October 13, 2015

NAME: Solutions

Time: 180 minutes

For each problem, you should write down all of your work carefully and legibly to receive
full credit. When asked to justify your answer, you should use theorems and/or mathemat-
ical reasoning to support your answer, as appropriate.

Failure to follow these instructions will constitute a breach of the Stanford Honor Code:

• You may not use a calculator or any notes or book during the exam.
• You may not access your cell phone during the exam for any reason.
• You are bound by the Stanford Honor Code, which stipulates among other things

that you may not communicate with anyone other than the instructor during the
exam, or look at anyone else’s solutions.

I understand and accept these instructions.

Signature:

Discussion Section: (Please circle)

9:30-10:20 10:30-11:20 11:30-12:20 12:30-1:20 ACE 1:30-3:20

There are four pages of blank paper at the end of the exam. Please use them
for any scratch work and include them with your exam when you turn it in.

Problem Value Points
1 12
2 10
3 30
4 10
5 12
6 10
7 6
8 10
Total 100
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1. (Short answer) You do not have to justify your answer to the following questions.

a. (2 pts.) For what values of p does the sequence {1/np} converge? p ≥ 0
For p > 0, it converges to 0. For p = 0, it converges to 1.

b. (2 pts.) For what values of p does the series
∞∑
n=1

1/np converge? p > 1

This is the p-series test

c. (2 pts.) (True or false) If

∫ ∞
1

f(x) dx and

∫ ∞
1

g(x) dx both converge, then

∫ ∞
1

f(x) +

g(x) dx must also converge.

True.

d. (2 pts.) (True or false) If

∫ ∞
1

f(x) dx and

∫ ∞
1

g(x) dx both diverge, then

∫ ∞
1

f(x) +

g(x) dx must also diverge.
False. This is tricky. For example, we could take f(x) = 1 and g(x) = −1. Both of these
integrals diverge, but f(x) + g(x) = 0, whose integral definitely converges.

e. (4 pts.) Write out in terms of limits how to decompose the improper integral

∫ ∞
0

√
x

(x− 2)2
dx.

Do not evaluate the integral.

(To clarify: If I asked this question about

∫ ∞
1

1

x2
dx, I’d be looking for lim

t→∞

∫ t

1

1

x2
dx.

Your answer should be a sum of things like this.)

lim
t→2−

∫ t

0

√
x

(x− 2)2
dx+ lim

t→2+

∫ 3

t

√
x

(x− 2)2
dx+ lim

t→∞

∫ t

3

√
x

(x− 2)2
dx

(In place of 3, you could use any number bigger than 2.)
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2. Evaluate the following indefinite integrals.

a. (5 pts.)

∫
ln
√
x dx

First way: Use integration by parts with

u = ln
√
x du =

d

dx
(ln
√
x) dx =

1√
x

1

2
√
x
dx =

1

2x
dx

dv = dx v = x

This gives ∫
ln
√
x dx = x ln

√
x−

∫
x

2x
dx = x ln

√
x− 1

2
x+ C .

Second way: Observe that ln
√
x = 1

2
lnx. Then use integration by parts with

u =
1

2
lnx du =

1

2x
dx

dv = dx v = x,

to arrive at the same answer above. This just gives you a shortcut to the derivative.

b. (5 pts.)

∫
t3e−t

2

dt

We make a u-substitution with u = −t2, for which du = −2t dt. This yields∫
t3e−t

2

dt =
1

2

∫
ueu du

(Integration by parts) =
1

2

[
ueu −

∫
eu du

]
=

1

2
[ueu − eu + C]

= −1

2
t2e−t

2 − 1

2
e−t

2

+ C .
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3. Determine whether each of the following improper integrals is convergent or divergent.
If it’s convergent, to what does it converge?

a. (5 pts.)

∫ ∞
1

lnx

x
dx

We make a substitution with u = lnx, du = 1
x
dx, to find that∫ ∞

1

lnx

x
dx = lim

t→∞

∫ t

1

lnx

x
dx

= lim
t→∞

∫ ln t

0

u du

= lim
t→∞

u2

2

∣∣∣ln t
0

= lim
t→∞

(ln t)2

2
= +∞.

Thus, the integral diverges .

b. (5 pts.)

∫ 2

0

x√
4− x2

dx

We make a substitution with u = 4− x2, du = −2x dx, to find that∫ 2

0

x√
4− x2

dx = lim
t→2−

∫ t

0

x√
4− x2

dx

= lim
t→2−

−1

2

∫ 4−t2

4

1√
u
du

= lim
t→2−

−1

2

u1/2

1/2

∣∣∣4−t2
4

= lim
t→2−

−
√

4− t2 +
√

4

= 0.

Thus, the integral converges to 2 .
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c. (5 pts.)

∫ ∞
−∞

x

x2 + 1
dx

First way: We begin by splitting the integral up as∫ ∞
−∞

x

x2 + 1
dx =

∫ 0

−∞

x

x2 + 1
dx+

∫ ∞
0

x

x2 + 1
dx.

We consider these halves separately. Let’s work with the second one. Set u = x2 + 1, du =
2x dx, so that ∫ ∞

0

x

x2 + 1
dx = lim

t→∞

∫ t

0

x

x2 + 1
dx = lim

t→∞

1

2

∫ t2+1

1

1

u
du

= lim
t→∞

1

2
ln |u|

∣∣∣t2+1

1
= lim

t→∞

1

2
ln(t2 + 1) = +∞.

Thus, this half diverges, so the whole integral diverges .

Second way: As x → ∞,
x

x2 + 1
≈ 1

x
, so we might hope to do a comparison test. Notice

that 1/x has a vertical asymptote at x = 0, so if we want to do this, we must avoid x = 0.
Thus, we split our integral as∫ ∞

−∞

x

x2 + 1
dx =

∫ 1

−∞

x

x2 + 1
dx+

∫ ∞
1

x

x2 + 1
dx.

For x ≥ 1, we have that
x

x2 + 1
≥ x

x2 + x2
=

1

2x
.

Thus, we have that ∫ ∞
1

x

x2 + 1
dx ≥

∫ ∞
1

1

2x
dx,

which diverges (p = 1). Thus, this half diverges by the direct comparison test, so the

whole integral diverges .

d. (5 pts.)

∫ ∞
0

1 + e−x√
x

dx

Notice that this is improper for two reasons: we have an infinite limit of integration and
we have a vertical asymptote at x = 0. Thus, we have to split our integral to consider
these two features separately. Doing so, we find∫ ∞

0

1 + e−x√
x

dx =

∫ 1

0

1 + e−x√
x

dx+

∫ ∞
1

1 + e−x√
x

dx.

Working with the second integral, we find that∫ ∞
1

1 + e−x√
x

dx ≥
∫ ∞
1

1√
x
dx,

which diverges (p = 1/2). Thus, this part diverges by the direct comparison test, so the

whole integral diverges .
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e. (5 pts.)

∫ ∞
0

x2e−x dx

We’re going to do integration by parts twice, so let’s consider the indefinite integral first.
For our first run, we set u = x2 and dv = e−x dx, so that du = 2x dx and v = −e−x. This
gives ∫

x2e−x dx = −x2e−x +

∫
2xe−x dx.

We now do it again, this time choosing u = 2x and dv = e−x dx, so that du = 2 dx,
v = −e−x, and ∫

x2e−x dx = −x2e−x +

[
−2xe−x +

∫
2e−x dx

]
= −x2e−x − 2xe−x − 2e−x + C.

We now turn to the definite integral,∫ ∞
0

x2e−x dx = lim
t→∞

∫ t

0

x2e−x dx

= lim
t→∞

[
−x2e−x − 2xe−x − 2e−x

]t
0

= lim
t→∞

[(
−t2e−t − 2te−t − 2e−t

)
− (−2)

]
= lim

t→∞

[
−t

2

et
− 2t

et
− 2

et
+ 2

]
.

We now use L’Hôpital’s rule to see that

lim
t→∞

t2

et
= lim

t→∞

2t

et
= lim

t→∞

2

et
= 0.

Putting this all together, we find that the integral converges to 2 .

f. (5 pts.)

∫ 1

0

lnx dx

This is improper at x = 0, so we write∫ 1

0

lnx dx = lim
t→0+

∫ 1

t

lnx dx

(I.b.P.; u = lnx, dv = dx) = lim
t→0+

[
x lnx

∣∣∣1
t
−
∫ 1

t

1 dx

]
= lim

t→0+
[−t ln t− (1− t)]

= −1− lim
t→0+

t ln t.

We now use L’Hôpital’s rule (with a bit of finagling) to see that

lim
t→0+

t ln t = lim
t→0+

ln t

1/t
=L’Hôp lim

t→0+

1/t

−1/t2
= lim

t→0+
−t = 0.

Thus, the integral converges to −1 .
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4. Suppose that f(x) is a positive, continuous, and decreasing function on [1,∞) such that
lim
x→∞

f(x) = 3. Define

an = (−1)nf(n), bn =
f(n)

n
, and cn =

(−1)nf(n)

n
.

a. (5 pts.) Which of the sequences {an}, {bn}, and {cn} converge?

{an}: Since lim
x→∞

f(x) = 3, an oscillates between something close to 3 and something close

to −3. This must diverge .

{bn}: We find that lim
n→∞

bn = lim
n→∞

f(n)

n
= lim

x→∞

f(x)

x
“ = ”

3

∞
= 0. This converges to 0.

{cn}: We have cn = (−1)nbn. Since bn converges to 0, the squeeze theorem implies that
lim
n→∞

cn = 0. Thus, {cn} converges to 0.

b. (5 pts.) Which of the series
∞∑
n=1

an,
∞∑
n=1

bn, and
∞∑
n=1

cn converge?

∞∑
n=1

an diverges by the nth term test (i.e. the test for divergence) and part a.

∞∑
n=1

bn =
∞∑
n=1

f(n)

n
≥

∞∑
n=1

3

n
because f(x) is decreasing and lim

x→∞
f(x) = 3. This diverges

(p = 1), so
∞∑
n=1

bn diverges by the direct comparison test.

∞∑
n=1

cn =
∞∑
n=1

(−1)nf(n)

n
is an alternating series. We found in part a. that lim

n→∞

f(n)

n
= 0,

and, because f(x) is decreasing, so is f(x)/x. Thus,
∞∑
n=1

cn converges by the alternating

series test.
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5. For each of the following series, indicate whether it converges or diverges and what test
you used.

a. (3 pts.)
∞∑
n=1

πn+4

4π+n
=
∞∑
n=1

π4

4π

(π
4

)n
, which is geometric with r = π/4.

Convergent Divergent Test: Geometric series

b. (3 pts.)
∞∑
n=1

cos2 n

n3
≤

∞∑
n=1

1

n3
, which converges (p = 3).

Convergent Divergent Test: Comparison w/ p = 3

c. (3 pts.)
∞∑
n=1

(2 + sinn)1/n

1 ≤ (2 + sinn)1/n ≤ 31/n, and lim
n→∞

31/n = 1. The squeeze theorem thus says that lim
n→∞

(2 +

sinn)1/n = 1.

Convergent Divergent Test: Test for divergence

d. (3 pts.)
∞∑
n=1

(−1)n+1

n+
√
n+ 1

Alternating series, terms are visibly decreasing and converging to 0.

Convergent Divergent Test: Alternating series
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6. a. (5 pts.) For which values of p is the series
∞∑
n=1

4n

(np + 1)3

convergent? Justify your answer fully.

We think that
4n

(np + 1)3
≈ 4n

n3p
=

4

n3p−1 . We use the limit comparison test with an =

4n

(np + 1)3
and bn =

4

n3p−1 , finding

lim
n→∞

4n/(np + 1)3

4/n3p−1 = lim
n→∞

n3p

(np + 1)3
= lim

n→∞

n3p

n3p + smaller terms
= 1.

Thus, for any p, either
∞∑
n=1

4n

(np + 1)3
and

∞∑
n=1

4

n3p−1 both converge or both diverge. We

know that the latter converges exactly when 3p − 1 > 1, i.e. p > 2/3 , so this is the case

for the original series as well.

b. (5 pts.) For p = 2, how many terms are needed to compute the series in part a. to
within 1/100? That is, find N so that |S − SN | ≤ 1/100, where

S =
∞∑
n=1

4n

(n2 + 1)3
and SN =

N∑
n=1

4n

(n2 + 1)3
.

We use the remainder estimate for the integral test, which says that if RN = S − SN , then

RN ≤
∫ ∞
N

4x

(x2 + 1)3
dx

= lim
t→∞

∫ t

N

4x

(x2 + 1)3
dx

(u = x2 + 1) = lim
t→∞

∫ t2+1

N2+1

2

u3
du

= lim
t→∞
−u−2

∣∣∣t2+1

N2+1

= lim
t→∞

[
1

(N2 + 1)2
− 1

(t2 + 1)2

]
=

1

(N2 + 1)2
.

We thus set
1

(N2 + 1)2
≤ 1

100
and solve: (N2 + 1)2 ≥ 100, so N2 + 1 ≥ 10, or N ≥ 3 .
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7. (6 pts.) Determine whether the series
∞∑
n=1

2n
2

n!

converges or diverges, showing all necessary work.

We use the ratio test. We compute that

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣2(n+1)2/(n+ 1)!

2n2/n!

∣∣∣∣∣
= lim

n→∞

2(n+1)2

2n2

n!

(n+ 1)!

= lim
n→∞

2n
2+2n+1

2n2

1

n+ 1

= lim
n→∞

22n+1

n+ 1

= lim
n→∞

2 · 4n

n+ 1
.

We now use L’Hôpital’s rule to check that

lim
n→∞

4n

n+ 1
= lim

x→∞

4x

x+ 1
= lim

x→∞

4x ln 4

1
= +∞.

Thus, the ratio test implies that the series diverges .
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8. Consider the power series
∞∑
n=0

(−1)nxn

3n+2
√
n+ 1

.

a. (5 pts.) What is its radius of convergence?

We use the ratio test, finding

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(−1)n+1xn+1/3n+3
√
n+ 2

(−1)nxn/3n+2
√
n+ 1

∣∣∣∣
= lim

n→∞

|x|n+1

|x|n
3n+2

3n+3

√
n+ 1√
n+ 2

= lim
n→∞

|x|
3

√
n+ 1

n+ 2

=
|x|
3
.

Thus, the ratio test implies the power series converges if |x|/3 < 1, or |x| < 3. Thus, the

radius of convergence is R = 3 .

b. (5 pts.) What is its interval of convergence?

We have to check x = 3 and x = −3. For x = 3, we find
∞∑
n=1

(−1)n3n

3n+2
√
n+ 1

=
∞∑
n=1

(−1)n

9
√
n+ 1

,

which is an alternating series. Its terms are visibly decreasing to 0, so the series converges
at x = 3.

For x = −3, we find
∞∑
n=1

(−1)n(−3)n

3n+2
√
n+ 1

=
∞∑
n=1

1

9
√
n+ 1

,

which diverges (p = 1/2). Thus, the interval of convergence is (−3, 3] .


