Solutions:Homework 6

1 Chapter 6.2

Problem 12 We use the washer method. The region is between $y=\sqrt{x}$ to the left and $y=x$ to the right. These intersect at $y=0$ and $y=1$. Since the axis of rotation $x=2$ is to the right of the region, the inner radius is $2-y$, and the outer radius is $2-y^{2}$.

The volume is

$$
\begin{aligned}
V & =\int_{0}^{1} \pi\left[\left(2-y^{2}\right)^{2}-(2-y)^{2}\right] d y \\
& =\pi \int_{0}^{1}\left(y^{4}-5 y^{2}+4 y\right) d y \\
& =\pi\left[\frac{1}{5} y^{5}-\frac{5}{3} y^{3}+2 y^{2}\right]_{0}^{1} \\
& =\frac{8}{15} \pi
\end{aligned}
$$

Problem 15 We use the washer method. The curves $x-y=1$ and $y=x^{2}-4 x+3$ intersect when $x=1$ or $x=4$. As the axis of rotation $y=3$ lies above the region, the inner radius is $3-(x-1)$ and the outer radius is
$3-\left(x^{2}-4 x+3\right)$. The volume is

$$
\begin{aligned}
V & =\int_{1}^{4} \pi\left[\left(3-\left(x^{2}-4 x+3\right)\right)^{2}-(3-(x-1))^{2}\right] d x \\
& =\pi \int_{1}^{4}\left(x^{4}-8 x^{3}+15 x^{2}+8 x-16\right) d x \\
& =\pi\left[\frac{1}{5} x^{5}-2 x^{4}+5 x^{3}+4 x^{2}-16 x\right]_{1}^{4} \\
& =\frac{108}{5} \pi
\end{aligned}
$$

2 Chapter 6.3

Problem 5 We use cylindrical shells. The shell has height $h(x)=e^{-x^{2}}$, and the region lies between $x=0$ and $x=1$. Therefore

$$
V=\int_{0}^{1} 2 \pi x \cdot h(x) d x=\int_{0}^{1} 2 \pi x \cdot e^{-x^{2}} d x
$$

Doing a substitution $u=x^{2}, d u=2 x \cdot d x$, we have

$$
V=\int_{0}^{1} \pi e^{-u} d u=\pi\left[-e^{-u}\right]_{0}^{1}=\pi\left(-e^{-1}+1\right)
$$

Problem 33 We use cylindrical shells. The curves $y=5$ and $y=x+\frac{4}{x}$ intersect at $x=1$ and $x=4$. The height of a shell is $5-\left(x+\frac{4}{x}\right)$. Note that the axis of rotation is $x=-1$, so the circumference of a shell is $2 \pi(x+1)$. Therefore

$$
\begin{aligned}
V & =\int_{1}^{4} 2 \pi(x+1)\left(5-\left(x+\frac{4}{x}\right)\right) d x \\
& =2 \pi \int_{1}^{4}\left(-x^{2}+4 x+1-\frac{4}{x}\right) d x \\
& =2 \pi\left[-\frac{1}{3} x^{3}+2 x^{2}+x-4 \ln x\right]_{1}^{4} \\
& =2 \pi(12-4 \ln 4)=8 \pi(3-\ln 4)
\end{aligned}
$$

3 Chapter 6.4

Problem $9 x=y^{3 / 2}$, so $1+(d x / d y)^{2}=1+\left(\frac{3}{2} y^{1 / 2}\right)^{2}=1+\frac{9}{4} y$.

$$
L=\int_{0}^{1} \sqrt{1+\frac{9}{4} y} d y=\int_{1}^{13 / 4} \frac{4}{9} \sqrt{u} d u
$$

by substituting $u=1+\frac{9}{4} y, d u=\frac{9}{4} d y$. So

$$
L=\frac{4}{9} \cdot \frac{2}{3}\left[u^{3 / 2}\right]_{1}^{13 / 4}=\frac{13 \sqrt{13}-8}{27} .
$$

Problem $11 y=\frac{1}{4} x^{2}-\frac{1}{2} \ln x, y^{\prime}=\frac{1}{2} x-\frac{1}{2 x}, 1+\left(y^{\prime}\right)^{2}=1+\left(\frac{1}{4} x^{2}-\frac{1}{2}+\frac{1}{4 x^{2}}\right)=$ $\left(\frac{1}{2} x+\frac{1}{2 x}\right)^{2}$. So

$$
\begin{aligned}
L & =\int_{1}^{2} \frac{1}{2} x+\frac{1}{2 x} d x \\
& =\left[\frac{1}{4} x^{2}+\frac{1}{2} \ln x\right]_{1}^{2} \\
& =\left(1+\frac{1}{2} \ln 2\right)-\left(\frac{1}{4}+0\right) \\
& =\frac{3}{4}+\frac{1}{2} \ln 2 \\
& =2 \pi\left[-\frac{1}{3} x^{3}+2 x^{2}+x-4 \ln x\right]_{1}^{4} \\
& =2 \pi(12-4 \ln 4)=8 \pi(3-\ln 4)
\end{aligned}
$$

Problem $25 y=\ln \cos x, y^{\prime}=-\tan x, 1+\left(y^{\prime}\right)^{2}=1+\tan ^{2} x=\sec ^{2} x$. So

$$
\begin{aligned}
L & =\int_{0}^{\pi / 4} \sec x d x \\
& =[\ln |\sec x+\tan x|]_{0}^{\pi / 4} \\
& =\ln \sqrt{2}+1-\ln 1+0=\ln \sqrt{2}+1
\end{aligned}
$$

