Solutions: Homework 4

1 Chapter 8.6

Problem 8.11

(a) Let $g(x)=\frac{1}{1+x}$. Then $-g^{\prime}(x)=f(x)$. The power series for $g(x)$ is $\sum_{n=0}^{\infty}(-1)^{n} x^{n}$ with a radius of convergence equal to 1 . Therefore, by differentiating the power series of $g(x)$ term-by-term and multiplying by -1 , we see that the power series for $f(x)$ is

$$
-\sum_{n=0}^{\infty}(-1)^{n} n x^{n-1}=\sum_{n=0}^{\infty}(-1)^{n}(n+1) x^{n}
$$

The power series has radius of convergence equal to 1 since the radius of convergence of a power series does not change when differentiating.
(b) Now notice that if $g(x)=\frac{1}{(1+x)^{2}}$ then $f(x)=-\frac{1}{2} g^{\prime}(x)$. By differentiating the power series obtained in part (a) of this problem and then multiplying by $-\frac{1}{2}$ we see that the power series for $f(x)$ is

$$
-\frac{1}{2} \sum_{n=0}(-1)^{n}(n+1) n x^{n-1}=\frac{1}{2} \sum_{n=0}^{\infty}(-1)^{n}(n+2)(n+1) x^{n} .
$$

(c) All we need to do is multiply the power series obtained in part (b) by x^{2}. Therefore, the power series is

$$
\frac{x^{2}}{(1+x)^{3}}=\frac{1}{2} \sum_{n=0}^{\infty}(-1)^{n}(n+2)(n+1) x^{n+2}=\frac{1}{2} \sum_{n=2}^{\infty}(-1)^{n}(n)(n-1) x^{n}
$$

Problem 8.13

The function $f(x)=\ln (5-x)$ is an integral of $g(x)=\frac{-1}{5-x}$. Our strategy is to find the power series representation of $g(x)$ and its radius of convergence. Then, we will integrate the power series, compute its constant term for $\ln (5-$ x), and note that the radius of convergence does not change under integration.

Note that $g(x)=\frac{-1}{5} \frac{1}{1-\frac{x}{5}}$. This small algebraic manipulation allows us to substitute $\frac{x}{5}$ into the standard geometric series and see that

$$
g(x)=\frac{-1}{5} \sum_{n=0}^{\infty} \frac{x^{n}}{5^{n}}
$$

with radius of convergence 5 . Integrating this power series term by term we see that

$$
\ln (5-x)=C+\frac{-1}{5} \sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1) 5^{n}}
$$

By substituting $x=0$, we see that $C=\ln (5)$. The radius of convergence is still 5 .

Problem 8.38

(a) Note that the power series $\sum_{n=1}^{\infty} n x^{n-1}$ is the derivative of the power series for $\frac{1}{1-x}$ and is therefore a power series convergent to $\frac{1}{(1-x)^{2}}$ for $|x|<1$.
(b) (i) The relation between this power series and the one for $\frac{1}{(1-x)^{2}}$ is that we need to multiply by one factor of x. Therefore, this power series represents the function $\frac{x}{(1-x)^{2}}$.
(ii) Since this series is just the specialization of the power series in part (i) by subsituting $x=1 / 2$ and because is in the interval of convergence of the power series in part (i), we conclude that it is converges to $\frac{1 / 2}{(1-1 / 2)^{2}}=2$.
(c) (i) From part (a), we know that $\sum_{n=0}^{\infty} n x^{n-1}=\frac{1}{(1-x)^{2}}$ for $|x|<1$. By differentiating we see that

$$
\frac{2}{(1-x)^{3}}=\sum_{n=0}^{\infty} n(n-1) x^{n-2}=\sum_{n=2}^{\infty} n(n-1) x^{n-2}
$$

for $|x|<1$. After multiplying by $|x|^{2}$ we see that

$$
\frac{2 x^{2}}{(1-x)^{3}}=\sum_{n=2}^{\infty} n(n-1) x^{n}
$$

for $|x|<1$.
(ii) Note that the series $\sum_{n=2}^{\infty} \frac{n^{2}-n}{2^{n}}$ is the same as the power series of part (i) evaluated at $x=\frac{1}{2}$. Since $1 / 2$ is in the interval of convergence of that power series, we conclude that it converges to $\frac{2(1 / 2)^{2}}{(1-1 / 2)^{3}}=4$.
(iii) The key idea is to split the given series into a sum of two series as follows (why is this a good idea?):

$$
\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}=\sum_{n=1}^{\infty} \frac{n}{2^{n}}+\sum_{n=2}^{\infty} \frac{n^{2}-n}{2^{n}}
$$

The first series on the right hand side is equal to 2 by the calculation from part (b)[ii] of this problem. The second series on the right hand side is equal to 4 by part (c)[ii] of this problem. Therefore the given series converges to $2+4=6$.

2 Chapter 8.7

Problem 9

We compute the derivatives of $f(x)=e^{5 x}$ using the chain rule and see that $f^{(n)}(x)=5^{n} e^{5 x}$. Therefore the taylor coefficients expanded around 0 are

$$
c_{n}=\frac{f^{(n)}(0)}{n!}=\frac{5^{n}}{n!} .
$$

The radius of convergence can be computed by the taking the ratio test:

$$
\lim _{n \rightarrow \infty}\left|\frac{c_{n+1} x^{n+1}}{c_{n} x^{n}}\right|=\lim _{n \rightarrow \infty}|x|\left|\frac{\frac{5^{n+1}}{(n+1)!}}{\frac{5^{n}}{n!}}\right|=\lim _{n \rightarrow \infty}|x|\left|\frac{5}{n+1}\right|=0<1 .
$$

Therefore, the radius of convergence of the taylor series is ∞.
Problem 21

We have to apply the binomial series theorem for $k=1 / 2$. In other words:

$$
\sqrt{(} 1+x)=(1+x)^{1 / 2}=1+\frac{x}{2}+\sum_{n=2}^{\infty}\binom{1 / 2}{n} x^{n}
$$

for $|x|<1$. The coefficients $\binom{1 / 2}{n}$ can, for $n \geq 2$, be written as

$$
\frac{(1 / 2)(-1 / 2)(-3 / 2) \cdots(-2 n-3 / 2)}{n!}=(-1)^{n-1} \frac{(1)(3)(5) \cdots(2 n-3)}{2^{n} n!} .
$$

Problem 27

The Maclaurin series for e^{x} is $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$. The Maclaurin series for $e^{2 x}$, computed by substituting $2 x$ in for x, is $\sum_{n=0}^{\infty} \frac{2^{n} x^{n}}{n!}$. Both power series are convergent everywhere. Therefore,

$$
e^{x}+e^{2 x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}+\sum_{n=0}^{\infty} \frac{2^{n} x^{n}}{n!}=\sum_{n=0}^{\infty} \frac{\left(1+2^{n}\right) x^{n}}{n!}
$$

Problem 64

We recognize that $1-\ln 2+\frac{(\ln 2)^{2}}{2!}-\frac{(\ln 2)^{3}}{3!}+\cdots$ is the power series representation of e^{x} evaluated at $x=-\ln (2)$. The power series for e^{x} is convergent everywhere to e^{x} so the series converges to $e^{-\ln (2)}=1 / 2$.

3 Chapter 8.8

Problem 14ab

(a) To compute the taylor series centered at $x=\pi / 6$ up to 4 th order we find the derivatives of $f(x)=\sin (x)$:

$$
f^{\prime}(x)=\cos (x), f^{(2)}(x)=-\sin (x), f^{(3)}(x)=-\cos (x), f^{(4)}(x)=\sin (x)
$$

We can evalute these derivates at $x=\pi / 6$ to obtain:

$$
f^{\prime}(\pi / 6)=\frac{\sqrt{3}}{2}, f^{(2)}(x)=-\frac{1}{2}, f^{(3)}(x)=-\frac{\sqrt{3}}{2}, f^{(4)}(x)=\frac{1}{2} .
$$

The taylor series for $\sin (x)$ centered at $\pi / 6$ is therefore:

$$
\begin{aligned}
T_{4}(x) & =\frac{1}{2}+\frac{\sqrt{3}}{2}(x-\pi / 6)+\frac{-1 / 2}{2}(x-\pi / 6)^{2}+\frac{-\frac{\sqrt{3}}{2}}{6}(x-\pi / 6)^{3}+\frac{1 / 2}{24}(x-\pi / 6)^{4} \\
& =\frac{1}{2}+\frac{\sqrt{3}}{2}(x-\pi / 6)-\frac{1}{4}(x-\pi / 6)^{2}-\frac{\sqrt{3}}{12}(x-\pi / 6)^{3}+\frac{1}{48}(x-\pi / 6)^{4} .
\end{aligned}
$$

(b) By applying Taylor's theorem with $n=4, a=\pi / 6$ and $d=\pi / 6$, we know that $\left|R_{4}(x)\right| \leq \frac{M}{5!}|x-\pi / 6|^{5}$ for $0 \leq x \leq \pi / 3$ and an appropriate choice of M. The choice of M must satisfy $M \geq\left|f^{(5)}(x)\right|=|\cos (x)|$ on the interval $0 \leq x \leq \pi / 6$. By choosing $M=1$, we see that for $0 \leq x \leq \pi / 3$,

$$
\left|R_{4}(x)\right| \leq \frac{M}{5!}|x-\pi / 6|^{5} \leq \frac{1}{5!}(\pi / 6)^{5} \approx 0.000328
$$

Problem 23

The series expansion for $\sin (x)$ starts with $x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots$. This series is a convergent alternating series when $x>0$ with decreasing coefficients so we know, by the Alternating Series Estimation Theorem, that the remainder term $\left|\sin (x)-\left(x-\frac{x^{3}}{3!}\right)\right| \leq \frac{x^{5}}{5!}$. We use the following string of equivalent inequalities to find the range x for which the error term is less than .01 :

$$
\left|\frac{x^{5}}{5!}\right| \leq .01 \Longleftrightarrow|x|^{5} \leq 1.2 \Longleftrightarrow|x| \leq 1.043 \ldots
$$

Therefore, we can say that the error is less than . 01 for $|x| \leq 1.043$. This can be confirmed graphically through any graphing utility.
Problem 26
The taylor series centered at 4 for f is $\sum_{n=0}^{\infty} c_{n}(x-4)^{n}$ for $c_{n}=\frac{f^{(n)}(4)}{n!}=$ $\frac{(-1)^{n}}{3^{n}(n+1)}$. Since we are asked to estimate the remainder term $R_{5}(5)$ we can either use Taylor's inequality or the Alternating Series Remainder term. Since we don't know the derivative of f on the entire interval of convergence we have to use the Alternating Series Estimation Theorem and luckily it is clear that the c_{n} are alternating. First however, we must compute the radius of convergence for the series:

$$
\lim _{n \rightarrow \infty}\left|\frac{c_{n+1}(x-4)^{n+1}}{c_{n}(x-4)^{n}}\right|=|x-4| \lim _{n \rightarrow \infty}\left|\frac{\frac{(-1)^{n+1}}{3^{n+1}(n+2)}}{\frac{(-1)^{n}}{3^{n}(n+1)}}\right|=|x-4| \frac{1}{3} .
$$

Therefore the radius of convergence is 3 centered at 4 so $x=5$ is within the radius of convergence. At $x=5$, the power series is alternating and the cofficients are decreasing in absolute value. Therefore, by the Alternating Series Estimation Theorem, the error $\left|R_{5}(5)\right| \leq|5-4|^{6} \frac{1}{3^{6} \times 7}=\frac{1}{5103} \approx .000196<$. 0002 .

