
Solutions: Homework 4

1 Chapter 8.6

Problem 8.11

(a) Let g(x) = 1
1+x

. Then −g′(x) = f(x). The power series for g(x) is∑∞
n=0(−1)nxn with a radius of convergence equal to 1. Therefore, by

differentiating the power series of g(x) term-by-term and multiplying
by −1, we see that the power series for f(x) is

−
∞∑
n=0

(−1)nnxn−1 =
∞∑
n=0

(−1)n(n+ 1)xn.

The power series has radius of convergence equal to 1 since the radius
of convergence of a power series does not change when differentiating.

(b) Now notice that if g(x) = 1
(1+x)2

then f(x) = −1
2
g′(x). By differenti-

ating the power series obtained in part (a) of this problem and then
multiplying by −1

2
we see that the power series for f(x) is

−1

2

∑
n=0

(−1)n(n+ 1)nxn−1 =
1

2

∞∑
n=0

(−1)n(n+ 2)(n+ 1)xn.

(c) All we need to do is multiply the power series obtained in part (b) by
x2. Therefore, the power series is

x2

(1 + x)3
=

1

2

∞∑
n=0

(−1)n(n+ 2)(n+ 1)xn+2 =
1

2

∞∑
n=2

(−1)n(n)(n− 1)xn.
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Problem 8.13
The function f(x) = ln(5−x) is an integral of g(x) = −1

5−x . Our strategy is
to find the power series representation of g(x) and its radius of convergence.
Then, we will integrate the power series, compute its constant term for ln(5−
x), and note that the radius of convergence does not change under integration.

Note that g(x) = −1
5

1
1−x

5
. This small algebraic manipulation allows us to

substitute x
5

into the standard geometric series and see that

g(x) =
−1

5

∞∑
n=0

xn

5n

with radius of convergence 5. Integrating this power series term by term we
see that

ln(5− x) = C +
−1

5

∞∑
n=0

xn+1

(n+ 1)5n
.

By substituting x = 0, we see that C = ln(5). The radius of convergence is
still 5.
Problem 8.38

(a) Note that the power series
∑∞

n=1 nx
n−1 is the derivative of the power

series for 1
1−x and is therefore a power series convergent to 1

(1−x)2 for

|x| < 1.

(b) (i) The relation between this power series and the one for 1
(1−x)2 is

that we need to multiply by one factor of x. Therefore, this power
series represents the function x

(1−x)2 .

(ii) Since this series is just the specialization of the power series in
part (i) by subsituting x = 1/2 and because is in the interval of
convergence of the power series in part (i), we conclude that it is

converges to 1/2
(1−1/2)2 = 2.

(c) (i) From part (a), we know that
∑∞

n=0 nx
n−1 = 1

(1−x)2 for |x| < 1. By
differentiating we see that

2

(1− x)3
=
∞∑
n=0

n(n− 1)xn−2 =
∞∑
n=2

n(n− 1)xn−2
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for |x| < 1. After multiplying by |x|2 we see that

2x2

(1− x)3
=
∞∑
n=2

n(n− 1)xn

for |x| < 1.

(ii) Note that the series
∑∞

n=2
n2−n
2n

is the same as the power series
of part (i) evaluated at x = 1

2
. Since 1/2 is in the interval of

convergence of that power series, we conclude that it converges to
2(1/2)2

(1−1/2)3 = 4.

(iii) The key idea is to split the given series into a sum of two series as
follows (why is this a good idea?):

∞∑
n=1

n2

2n
=
∞∑
n=1

n

2n
+
∞∑
n=2

n2 − n
2n

.

The first series on the right hand side is equal to 2 by the cal-
culation from part (b)[ii] of this problem. The second series on
the right hand side is equal to 4 by part (c)[ii] of this problem.
Therefore the given series converges to 2 + 4 = 6.

2 Chapter 8.7

Problem 9
We compute the derivatives of f(x) = e5x using the chain rule and see

that f (n)(x) = 5ne5x. Therefore the taylor coefficients expanded around 0
are

cn =
f (n)(0)

n!
=

5n

n!
.

The radius of convergence can be computed by the taking the ratio test:

lim
n→∞

∣∣∣∣cn+1x
n+1

cnxn

∣∣∣∣ = lim
n→∞

|x|

∣∣∣∣∣
5n+1

(n+1)!

5n

n!

∣∣∣∣∣ = lim
n→∞

|x|
∣∣∣∣ 5

n+ 1

∣∣∣∣ = 0 < 1.

Therefore, the radius of convergence of the taylor series is ∞.
Problem 21
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We have to apply the binomial series theorem for k = 1/2. In other
words: √

(1 + x) = (1 + x)1/2 = 1 +
x

2
+
∞∑
n=2

(
1/2

n

)
xn

for |x| < 1. The coefficients
(
1/2
n

)
can, for n ≥ 2, be written as

(1/2)(−1/2)(−3/2) · · · (−2n− 3/2)

n!
= (−1)n−1

(1)(3)(5) · · · (2n− 3)

2nn!
.

Problem 27
The Maclaurin series for ex is

∑∞
n=0

xn

n!
. The Maclaurin series for e2x,

computed by substituting 2x in for x, is
∑∞

n=0
2nxn

n!
. Both power series are

convergent everywhere. Therefore,

ex + e2x =
∞∑
n=0

xn

n!
+
∞∑
n=0

2nxn

n!
=
∞∑
n=0

(1 + 2n)xn

n!
.

Problem 64
We recognize that 1−ln 2+ (ln 2)2

2!
− (ln 2)3

3!
+· · · is the power series represen-

tation of ex evaluated at x = − ln(2). The power series for ex is convergent
everywhere to ex so the series converges to e− ln(2) = 1/2.

3 Chapter 8.8

Problem 14ab

(a) To compute the taylor series centered at x = π/6 up to 4th order we
find the derivatives of f(x) = sin(x):

f ′(x) = cos(x), f (2)(x) = − sin(x), f (3)(x) = − cos(x), f (4)(x) = sin(x).

We can evalute these derivates at x = π/6 to obtain:

f ′(π/6) =

√
3

2
, f (2)(x) = −1

2
, f (3)(x) = −

√
3

2
, f (4)(x) =

1

2
.

The taylor series for sin(x) centered at π/6 is therefore:

T4(x) =
1

2
+

√
3

2
(x− π/6) +

−1/2

2
(x− π/6)2 +

−
√
3
2

6
(x− π/6)3 +

1/2

24
(x− π/6)4

=
1

2
+

√
3

2
(x− π/6)− 1

4
(x− π/6)2 −

√
3

12
(x− π/6)3 +

1

48
(x− π/6)4.
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(b) By applying Taylor’s theorem with n = 4, a = π/6 and d = π/6, we
know that |R4(x)| ≤ M

5!
|x− π/6|5 for 0 ≤ x ≤ π/3 and an appropriate

choice of M . The choice of M must satisfy M ≥ |f (5)(x)| = | cos(x)|
on the interval 0 ≤ x ≤ π/6. By choosing M = 1, we see that for
0 ≤ x ≤ π/3,

|R4(x)| ≤ M

5!
|x− π/6|5 ≤ 1

5!
(π/6)5 ≈ 0.000328.

Problem 23
The series expansion for sin(x) starts with x− x3

3!
+ x5

5!
− x7

7!
+. . . . This series

is a convergent alternating series when x > 0 with decreasing coefficients so
we know, by the Alternating Series Estimation Theorem, that the remainder
term | sin(x) − (x − x3

3!
)| ≤ x5

5!
. We use the following string of equivalent

inequalities to find the range x for which the error term is less than .01:∣∣∣∣x55!

∣∣∣∣ ≤ .01 ⇐⇒ |x|5 ≤ 1.2 ⇐⇒ |x| ≤ 1.043 . . .

Therefore, we can say that the error is less than .01 for |x| ≤ 1.043. This can
be confirmed graphically through any graphing utility.
Problem 26

The taylor series centered at 4 for f is
∑∞

n=0 cn(x− 4)n for cn = f (n)(4)
n!

=
(−1)n

3n(n+1)
. Since we are asked to estimate the remainder term R5(5) we can ei-

ther use Taylor’s inequality or the Alternating Series Remainder term. Since
we don’t know the derivative of f on the entire interval of convergence we
have to use the Alternating Series Estimation Theorem and luckily it is clear
that the cn are alternating. First however, we must compute the radius of
convergence for the series:

lim
n→∞

∣∣∣∣cn+1(x− 4)n+1

cn(x− 4)n

∣∣∣∣ = |x− 4| lim
n→∞

∣∣∣∣∣∣
(−1)n+1

3n+1(n+2)

(−1)n
3n(n+1)

∣∣∣∣∣∣ = |x− 4|1
3
.

Therefore the radius of convergence is 3 centered at 4 so x = 5 is within the
radius of convergence. At x = 5, the power series is alternating and the coffi-
cients are decreasing in absolute value. Therefore, by the Alternating Series
Estimation Theorem, the error |R5(5)| ≤ |5 − 4|6 1

36×7 = 1
5103
≈ .000196 <

.0002.
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