Solutions:Homework 3

1 Chapter 8.3

Problem 8 Consider the function $f(x) = \frac{1}{\sqrt{x+4}}$. It is a positive, decreasing function, so we may apply the integral test to it. The integral $\int_1^\infty \frac{dx}{\sqrt{x+4}}$ equals $\lim_{b\to\infty} \frac{1}{2}(\sqrt{b+4}-\sqrt{1+4})$, which diverges. Therefore the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+4}}$ diverges.

Problem 19

To see that $\sum_{n=1}^{\infty} \frac{\cos^2(n)}{n^2+1}$ converges, we will use the comparison test for convergence. Since $0 \leq \cos^2(n) \leq 1$ and $n^2 + 1 \geq n^2$, it follows that $0 \leq \frac{\cos^2(n)}{n^2+1} \leq 1/n^2$. Now, since $\sum_{n=1}^{\infty} 1/n^2$ converges by the p-series test for $n^2 + 1 \geq n^2$. p = 2, the original series converges by the comparison test.

Problem 26

Again, we will use the comparison test. We have the inequality $0 \leq$ $1/\sqrt{n^3+1} \le n^{-3/2}$, for $n \ge 1$. Since $n = 1^{\infty} 1/n^{3/2}$ converges by the p-series test for p = 3/2, the original series converges by the comparison test.

Problem 39 We want to bound the n-th partial sum s_n of $\sum_{n=1}^{\infty} \frac{1}{n}$ from above. We place a rectangle of height 1/n between the points x = n - 1 and x = n. This is the "n-th rectangle". This rectangle lies below the graph of the function $f(x) = \frac{1}{x}$. The area of the 1st through n-th rectangles equals s_n , so the area of the 2nd through n-th rectangles equals $s_n - 1$, and is less than the area under the graph of f(x) between x = 1 and x = n. Therefore, $s_n - 1 \le \int_1^n \frac{1}{x} dx = \ln(n) - \ln(1) = \ln(n).$

For part b), we compute $\ln(10)$ to be approximately 2.30, so $1 + \ln(10^6) \approx$ $1 + 6 \times 2.30 = 14.8$, and $1 + \ln(10^9) \approx 1 + 9 \times 2.30 = 21.7$.

$\mathbf{2}$ Chapter 8.4

Problem 9

We check that $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{n^2+9}$ satisfies the conditions of the alternating series test for convergence, with $b_n = \frac{n}{n^2+9}$. The sequence b_n is positive, since its numerator and denominator are. The limit $\lim_{n\to\infty} \frac{n}{n^2+9} = 0$, by looking at leading terms. It is decreasing for $n \ge 3$, since the inequality $b_n \ge b_{n+1}$ is equivalent to $n^3 + 2n^2 + 10n \ge n^3 + n^2 + 9n + 9$ (cross-multiply and expand), which reduces to the inequality $n^2 + n \ge 9$, which is true for $n \ge 3$. Since we may rewrite our series as $-1/10 + 2/13 + \sum_{n=3}(-1)^{n+1}\frac{n}{n^2+9}$, the series in this expression converges by the alternating series test, hence our original series converges.

Problem 13

If $p \leq 0$, the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^p}$ diverges by the limit test for divergence. Otherwise, if p > 0, we may apply the alternating series test with $b_n = 1/n^p$, which is positive, decreasing, and satisfying $\lim_{n\to\infty} 1/n^p = 0$, to see that the series converges.

Problem 27

As in problem 13, with p = 1/2, the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$ converges. How-ever, the sequence $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ diverges, by the p-series test for $p = 1/2 \le 1$. Therefore the original series converges, but not absolutely.

Problem 32

Using the ratio test, $\lim_{n\to\infty} |a_{n+1}/a_n| = \lim_{n\to\infty} \frac{2^{n+1}(n+1)!}{(2(n+1))!} \cdot \frac{(2n)!}{2^n n!} = \lim_{n\to\infty} \frac{2(n+1)}{(2n+2)(2n+1)} = \lim_{n\to\infty} \frac{1}{2n+1} = 0$ is less than 1, so the series is absolutely convergent.

3 Chapter 8.5

Problem 6 $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{\sqrt{n+1}|x|^{n+1}}{\sqrt{n}|x|^n} = |x| \cdot \lim_{n \to \infty} (1+1/n)^{1/2} = |x|, \text{ so by the ratio}$ test, the series converges for |x| < 1, diverges for |x| > 1, and could either converge or diverge for |x| = 1.

However, by the limit test for divergence, the series diverges at x = 1and x = -1, since the limits $\lim_{n\to\infty} \sqrt{n}(1)^n$ and $\lim_{n\to\infty} \sqrt{n}(-1)^n$ are both divergent.

Problem 7

 $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \frac{n! |x|^{n+1}}{(n+1)! |x|^n} = |x| \cdot \lim_{n\to\infty} \frac{1}{n+1} = 0.$ By the ratio test, the series converges for all values of x.

Problem 11 $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim \frac{2^{n+1} |x|^{n+1}}{(n+1)^{1/4}} \cdot \frac{n^{1/4}}{2^n |x|^n} = 2|x| \lim(\frac{n}{n+1})^{1/4} = 2|x|.$ The ratio

test says that the series diverges if 2|x| > 1, converges if 2|x| < 1, and is inconclusive for 2|x| = 1.

When x = 1/2, the series becomes $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{1/4}}$, which converges by the alternating series test, as in problem 13 of section 8.5.

When x = -1/2, the series becomes $\sum_{n=1}^{\infty} \frac{1}{n^{1/4}}$, which diverges by the p-series test with p = 1/4.

Therefore the interval of convergence is the half-open interval (-1/2, 1/2]. **Problem 23**

 $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{1 \cdot 3 \dots (2n-1)|x|^{n+1}}{1 \cdot 3 \dots (2n-1)(2(n+1)-1)|x|^n} = |x| \lim_{n \to \infty} \frac{1}{2n+1} = 0, \text{ so by the ratio test, the series converges for every value of } x.$