Solutions:Homework 3

1 Chapter 8.3

Problem 8 Consider the function $f(x)=\frac{1}{\sqrt{x+4}}$. It is a positive, decreasing function, so we may apply the integral test to it. The integral $\int_{1}^{\infty} \frac{d x}{\sqrt{x+4}}$ equals $\lim _{b \rightarrow \infty} \frac{1}{2}(\sqrt{b+4}-\sqrt{1+4})$, which diverges. Therefore the series $\sum_{n=1} \frac{1}{\sqrt{n+4}}$ diverges.

Problem 19

To see that $\sum_{n=1}^{\infty} \frac{\cos ^{2}(n)}{n^{2}+1}$ converges, we will use the comparison test for convergence. Since $0 \leq \cos ^{2}(n) \leq 1$ and $n^{2}+1 \geq n^{2}$, it follws that $0 \leq$ $\frac{\cos ^{2}(n)}{n^{2}+1} \leq 1 / n^{2}$. Now, since $\sum_{n=1}^{\infty} 1 / n^{2}$ converges by the p-series test for $p=2$, the original series converges by the comparison test.

Problem 26
Again, we will use the comparison test. We have the inequality $0 \leq$ $1 / \sqrt{n^{3}+1} \leq n^{-3 / 2}$, for $n \geq 1$. Since $n=1^{\infty} 1 / n^{3 / 2}$ converges by the p-series test for $p=3 / 2$, the original series converges by the comparison test.

Problem 39 We want to bound the n-th partial sum s_{n} of $\sum_{n=1}^{\infty} \frac{1}{n}$ from above. We place a rectangle of height $1 / n$ between the points $x=n-1$ and $x=n$. This is the "n-th rectangle". This rectangle lies below the graph of the function $f(x)=\frac{1}{x}$. The area of the 1st through n-th rectangles equals s_{n}, so the area of the 2 nd through n-th rectangles equals $s_{n}-1$, and is less than the area under the graph of $f(x)$ between $x=1$ and $x=n$. Therefore, $s_{n}-1 \leq \int_{1}^{n} \frac{1}{x} d x=\ln (n)-\ln (1)=\ln (n)$.

For part b), we compute $\ln (10)$ to be approximately 2.30 , so $1+\ln \left(10^{6}\right) \approx$ $1+6 \times 2.30=14.8$, and $1+\ln \left(10^{9}\right) \approx 1+9 \times 2.30=21.7$.

2 Chapter 8.4

Problem 9

We check that $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n}{n^{2}+9}$ satisfies the conditions of the alternating series test for convergence, with $b_{n}=\frac{n}{n^{2}+9}$. The sequence b_{n} is positive, since its numerator and denominator are. The limit $\lim _{n \rightarrow \infty} \frac{n}{n^{2}+9}=0$, by looking at leading terms. It is decreasing for $n \geq 3$, since the inequality $b_{n} \geq b_{n+1}$ is equivalent to $n^{3}+2 n^{2}+10 n \geq n^{3}+n^{2}+9 n+9$ (cross-multiply and expand), which reduces to the inequality $n^{2}+n \geq 9$, which is true for $n \geq 3$. Since we may rewrite our series as $-1 / 10+2 / 13+\sum_{n=3}(-1)^{n+1} \frac{n}{n^{2}+9}$, the series in this expression converges by the alternating series test, hence our original series converges.

Problem 13

If $p \leq 0$, the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{p}}$ diverges by the limit test for divergence. Otherwise, if $p>0$, we may apply the alternating series test with $b_{n}=1 / n^{p}$, which is positive, decreasing, and satisfying $\lim _{n \rightarrow \infty} 1 / n^{p}=0$, to see that the series converges.

Problem 27
As in problem 13 , with $p=1 / 2$, the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$ converges. However, the sequence $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ diverges, by the p-series test for $p=1 / 2 \leq 1$. Therefore the original series converges, but not absolutely.

Problem 32
Using the ratio test, $\lim _{n \rightarrow \infty}\left|a_{n+1} / a_{n}\right|=\lim \frac{2^{n+1}(n+1)!}{(2(n+1))!} \cdot \frac{(2 n)!}{2^{n} n!}=\lim \frac{2(n+1)}{(2 n+2)(2 n+1)}=$ $\lim _{n \rightarrow \infty} \frac{1}{2 n+1}=0$ is less than 1 , so the series is absolutely convergent.

3 Chapter 8.5

Problem 6

$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim \frac{\sqrt{n+1}|x|^{n+1}}{\sqrt{n}|x|^{n}}=|x| \cdot \lim (1+1 / n)^{1 / 2}=|x|$, so by the ratio test, the series converges for $|x|<1$, diverges for $|x|>1$, and could either converge or diverge for $|x|=1$.

However, by the limit test for divergence, the series diverges at $x=1$ and $x=-1$, since the limits $\lim _{n \rightarrow \infty} \sqrt{n}(1)^{n}$ and $\lim _{n \rightarrow \infty} \sqrt{n}(-1)^{n}$ are both divergent.

Problem 7
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim \frac{n!\mid x x^{n+1}}{(n+1)!|x|^{n}}=|x| \cdot \lim \frac{1}{n+1}=0$. By the ratio test, the series converges for all values of x.

Problem 11

$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim \frac{2^{n+1}|x|^{n+1}}{(n+1)^{1 / 4}} \cdot \frac{n^{1 / 4}}{2^{n}|x|^{n}}=2|x| \lim \left(\frac{n}{n+1}\right)^{1 / 4}=2|x|$. The ratio
test says that the series diverges if $2|x|>1$, converges if $2|x|<1$, and is inconclusive for $2|x|=1$.

When $x=1 / 2$, the series becomes $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{1 / 4}}$, which converges by the alternating series test, as in problem 13 of section 8.5.

When $x=-1 / 2$, the series becomes $\sum_{n=1}^{\infty} \frac{1}{n^{1 / 4}}$, which diverges by the p-series test with $p=1 / 4$.

Therefore the interval of convergence is the half-open interval ($-1 / 2,1 / 2]$.
Problem 23
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim \frac{1 \cdot 3 \ldots(2 n-1)|x| n+1}{1 \cdot 3 \ldots(2 n-1)(2(n+1)-1)|x|^{n}}=|x| \lim \frac{1}{2 n+1}=0$, so by the ratio test, the series converges for every value of x.

