
Solutions:Homework 3

1 Chapter 8.3

Problem 8 Consider the function f(x) = 1√
x+4

. It is a positive, decreasing

function, so we may apply the integral test to it. The integral
∫∞
1

dx√
x+4

equals

limb→∞
1
2
(
√
b + 4−

√
1 + 4), which diverges. Therefore the series

∑
n=1

1√
n+4

diverges.
Problem 19
To see that

∑∞
n=1

cos2(n)
n2+1

converges, we will use the comparison test for
convergence. Since 0 ≤ cos2(n) ≤ 1 and n2 + 1 ≥ n2, it follws that 0 ≤
cos2(n)
n2+1

≤ 1/n2. Now, since
∑∞

n=1 1/n2 converges by the p-series test for
p = 2, the original series converges by the comparison test.

Problem 26
Again, we will use the comparison test. We have the inequality 0 ≤

1/
√
n3 + 1 ≤ n−3/2, for n ≥ 1. Since n = 1∞1/n3/2 converges by the p-series

test for p = 3/2, the original series converges by the comparison test.
Problem 39 We want to bound the n-th partial sum sn of

∑∞
n=1

1
n

from
above. We place a rectangle of height 1/n between the points x = n− 1 and
x = n. This is the ”n-th rectangle”. This rectangle lies below the graph of
the function f(x) = 1

x
. The area of the 1st through n-th rectangles equals

sn, so the area of the 2nd through n-th rectangles equals sn − 1, and is less
than the area under the graph of f(x) between x = 1 and x = n. Therefore,
sn − 1 ≤

∫ n

1
1
x
dx = ln(n)− ln(1) = ln(n).

For part b), we compute ln(10) to be approximately 2.30, so 1+ln(106) ≈
1 + 6× 2.30 = 14.8, and 1 + ln(109) ≈ 1 + 9× 2.30 = 21.7.
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Problem 9
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We check that
∑∞

n=1(−1)n+1 n
n2+9

satisfies the conditions of the alternating
series test for convergence, with bn = n

n2+9
. The sequence bn is positive, since

its numerator and denominator are. The limit limn→∞
n

n2+9
= 0, by looking

at leading terms. It is decreasing for n ≥ 3, since the inequality bn ≥ bn+1 is
equivalent to n3 + 2n2 + 10n ≥ n3 +n2 + 9n+ 9 (cross-multiply and expand),
which reduces to the inequality n2 + n ≥ 9, which is true for n ≥ 3. Since
we may rewrite our series as −1/10 + 2/13 +

∑
n=3(−1)n+1 n

n2+9
, the series

in this expression converges by the alternating series test, hence our original
series converges.

Problem 13
If p ≤ 0, the series

∑∞
n=1

(−1)n−1

np diverges by the limit test for divergence.
Otherwise, if p > 0, we may apply the alternating series test with bn = 1/np,
which is positive, decreasing, and satisfying limn→∞ 1/np = 0, to see that the
series converges.

Problem 27
As in problem 13, with p = 1/2, the series

∑∞
n=1

(−1)n−1
√
n

converges. How-

ever, the sequence
∑∞

n=1
1√
n

diverges, by the p-series test for p = 1/2 ≤ 1.
Therefore the original series converges, but not absolutely.

Problem 32
Using the ratio test, limn→∞ |an+1/an| = lim 2n+1(n+1)!

(2(n+1))!
· (2n)!
2nn!

= lim 2(n+1)
(2n+2)(2n+1)

=

limn→∞
1

2n+1
= 0 is less than 1, so the series is absolutely convergent.

3 Chapter 8.5

Problem 6
limn→∞

∣∣∣an+1

an

∣∣∣ = lim
√
n+1|x|n+1
√
n|x|n = |x| · lim(1+1/n)1/2 = |x|, so by the ratio

test, the series converges for |x| < 1, diverges for |x| > 1, and could either
converge or diverge for |x| = 1.

However, by the limit test for divergence, the series diverges at x = 1
and x = −1, since the limits limn→∞

√
n(1)n and limn→∞

√
n(−1)n are both

divergent.
Problem 7
limn→∞

∣∣∣an+1

an

∣∣∣ = lim n!|x|n+1

(n+1)!|x|n = |x| · lim 1
n+1

= 0. By the ratio test, the

series converges for all values of x.
Problem 11
limn→∞

∣∣∣an+1

an

∣∣∣ = lim 2n+1|x|n+1

(n+1)1/4
· n1/4

2n|x|n = 2|x| lim( n
n+1

)1/4 = 2|x|. The ratio
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test says that the series diverges if 2|x| > 1, converges if 2|x| < 1, and is
inconclusive for 2|x| = 1.

When x = 1/2, the series becomes
∑∞

n=1
(−1)n
n1/4 , which converges by the

alternating series test, as in problem 13 of section 8.5.
When x = −1/2, the series becomes

∑∞
n=1

1
n1/4 , which diverges by the

p-series test with p = 1/4.
Therefore the interval of convergence is the half-open interval (−1/2, 1/2].
Problem 23
limn→∞

∣∣∣an+1

an

∣∣∣ = lim 1·3...(2n−1)|x|n+1

1·3...(2n−1)(2(n+1)−1)|x|n = |x| lim 1
2n+1

= 0, so by the

ratio test, the series converges for every value of x.
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