
Solutions:Homework 2

1 Chapter 4.5

Problem 25
First note that limx→0 cos(x)− 1 + 1

2
x2 = 0 and limx→0 x

4 = 0. Therefore
we can apply l’hopital’s rule and find that

lim
x→0

cos(x)− 1 + 1
2
x2

x4
= lim

x→0

− sin(x) + x

4x3
.

Now we observe that once again the limit of the numerator and denominator
is zero as x→ 0 so we can apply l’hopital’s rule again to find that

lim
x→0

− sin(x) + x

4x3
= lim

x→0

− cos(x) + 1

12x2
.

Once again we find ourselves in a position to apply l’hopital’s rule to find
that

lim
x→0

− cos(x) + 1

12x2
= lim

x→0

sin(x)

24x
.

The final l’hopital’s rule yields the result of limx→0
cos(x)
24

= 1
24

which is the
final answer.

2 Chapter 5.10

Problem 31
Since ex

ex−1 has a discontinuity at x = 0 and is continuous everywhere else
we classify our integral as an improper integral of type 2. Therefore, by the
definition of an improper integral∫ 1

−1

ex

ex − 1
dx = lim

t→0+

∫ t

−1

ex

ex − 1
dx+ lim

t→0−

∫ 1

t

ex

ex − 1
dx.
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In both integrals, we make the u-substitution u = ex − 1 and du = exdx. So
that ∫ 1

−1

ex

ex − 1
dx = lim

t→0+

∫ et−1

e−1−1

1

u
du+ lim

t→0−

∫ e−1

et−1

1

u
du.

The antiderivative of 1/u is ln |u| so evaluating the first limit and integral in
the above equation we have

lim
t→0+

∫ et−1

e−1−1

1

u
du = lim

t→0+
ln |u||et−1e−1−1 = lim

t→0+
ln |et − 1| − ln |1/e− 1|

. Since et → 0 as t → 0+, ln |et − 1| → −∞ as t → 0+ so we conclude that
the imroper integral diverges.

Problem 39
By the area interpretation of the integral, we are asked to compute the

definite integral: ∫ π/2

0

sec2(x)dx.

An antiderivative of sec2(x) is tan(x) and sec2(x) has a discontinuity at π/2
so we can evaluate this type 2 improper integral by∫ π/2

0

sec2(x)dx = lim
t→π/2−

∫ t

0

sec2(x)dx = lim
t→π/2−

tan(x)|t0 = lim
t→π/2−

tan(t) =∞.

We conclude that this integral does not exist and the area is infinite.
A good sketch would look roughly like the one below with the area below

the curve between 0 ≤ x ≤ π/2.
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Problem 44
We might guess that this integral is divergent. Therefore we pick the

function 0 ≤ 1/x ≤ 2+e−x

x
on the domain x ≥ 1 to compare to. Since

∫∞
1

1
x
dx

is divergent by the calculation done in section 5.10 of the book, we conclude
by the comparison test that the integral in the problem also diverges.

Problem 46
Notice that 0 ≤ arctan(x) ≤ π/2 on the domain x ≥ 0. The ex in the

denominator with a bounded numerator suggests that the improper integral
is convergent. We therefore compare to the function pi/2

ex
≥ arctan(x)

2+ex
on x ≥ 0.

Now by the definition of a type 1 improper integral we have:∫
0∞

pi/2

ex
dx = lim

t→∞

∫ t

0

pi/2

ex
dx = π/2 lim

t→∞
−e−x|t0 = π/2 lim

t→∞
1− e−t = π/2.

We conclude by the comparison test that the integral in our problem is also
convergent.

Problem 55

1. For part (a) the problem asks us to make a rough sketch of F (t). Any
increasing function starting F (0) = 0, with a horizontal asymptote at
y = 1, and centered roughly around x = 700 would be acceptable.

2. For part (b), the derivative r(t) of the fraction F (t) is the probability
density of the chance that a lightbulb would burn out at time t.

3. For part (c), the integral of r(t) from time 0 to ∞ must be exactly 1
since ∫ ∞

0

r(t)dt = lim
T→∞

∫ T

0

r(t)dt = lim
T→∞

F (T )− F (0).

We know that F (0) = 0 since at time 0 no light bulbs have burned out.
However as T →∞, F (T ) = 1 since eventually all lightbulbs burn out.

3 Chapter 8.1

Problem 16
We should be able to recognize that this sequence an = 9 ×

(
3
5

)n
is a

geometric sequence. Notice that the function f(x) = 9 ×
(
3
5

)x
approaches

zero as x → ∞. Since an = f(n), Theorem 2 of section 8.1 of our textbook
implies that limn→∞ an = limx→∞ f(x) = 0.
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Problem 18
By the last limit law for sequences on page 557 of our textbook applied

with p = .5 we know that

lim
n→∞

√
n+ 1

9n+ 1
=

√
lim
n→∞

n+ 1

9n+ 1
.

By a bit of algebra, we see that n+1
9n+1

= 1
9
9n+9
9n+1

= 1
9
(1+ 8

9n+1
). Therefore by the

limit laws of sequences on page 557 of our textbook the sequence converges
to √

lim
n→∞

n+ 1

9n+ 1
=

√
lim
n→∞

1

9
(1 +

8

9n+ 1
)) =

√
1/9 = 1/3.

Problem 29
Note that (2n−1)!

(2n+1)!
= (2n−1)(2n−2)···1

(2n+1)(2n)(2n−1)(2n−1)···1 = 1
(2n+1)(2n)

. Clearly, limn→∞
1

(2n)(2n+1)
=

0 so the sequence converges to zero.
Problem 34
It suffices to show

∣∣∣ (−3)nn!

∣∣∣→ 0 by the squeeze theorem. Notice that

3n

n!
=

3

n

3

n− 1

3

n− 2
· · · 3

3

3

2

3

1
≤ 3

n
∗ 9

2
.

Clearly, 3
n
∗ 9

2
→ 0 so the sequence converges to zero by the squeeze theorem.

Problem 49
The sequence an = 1

2n+3
is decreasing. To show this we have to check

that an+1 < an or equivalently 1
2n+5

< 1
2n+3

. This follows because by cross
multiplying we can verify that 2n+ 5 > 2n+ 3.

In addition, we know that the sequence an > 0 is positive and it is
bounded above by the first term in the sequence since it is decreasing. There-
fore we conldue that an is decreasing and bounded.

4 Chapter 8.2

Problem 9

1. Part a: We compute limn→∞
2n

3n+1
= limn→∞

2
3+1/n

= 2/3 so the se-
quence an converges.

2. Part b: By the divergence test we see that the series
∑
an must diverge.
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Problem 12
Notice that this series is just a geometric series a + ar + ar2 + . . . for

a = 4 and r = 3/4. Since |r| < 1, the series converges to a
1−r = 16.

Problem 20
We apply the divergence test and note that limk→∞

k2+2k
k2+6k+9

= 1 so the
series diverges.

Problem 23 Notice that
∑∞

n=1
1
3n

= 1/2 because it is a geometric series
with a = 1/3 and r = 1/3. Also,

∑∞
n=1

2n

3n
= 2 because it is a geometric series

with a = 2/3 and r = 2/3. The series in the problem is the sum of these two
convergent series so it is also convergent to 2 + 1/2 = 5/2.

Problem 41
The series

∑∞
n=1

xn

3n
is a geometric series with starting value a = x/3 and

common ratio r = x/3. Therefore, it converges if and only if |x| < 3. In that
case, it converges, by the formula for the sum of convergent geometric series,
to x/3

1−x/3 = x
3−x .
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