Solutions:Homework 2

1 Chapter 4.5

Problem 25

First note that $\lim _{x \rightarrow 0} \cos (x)-1+\frac{1}{2} x^{2}=0$ and $\lim _{x \rightarrow 0} x^{4}=0$. Therefore we can apply l'hopital's rule and find that

$$
\lim _{x \rightarrow 0} \frac{\cos (x)-1+\frac{1}{2} x^{2}}{x^{4}}=\lim _{x \rightarrow 0} \frac{-\sin (x)+x}{4 x^{3}} .
$$

Now we observe that once again the limit of the numerator and denominator is zero as $x \rightarrow 0$ so we can apply l'hopital's rule again to find that

$$
\lim _{x \rightarrow 0} \frac{-\sin (x)+x}{4 x^{3}}=\lim _{x \rightarrow 0} \frac{-\cos (x)+1}{12 x^{2}} .
$$

Once again we find ourselves in a position to apply l'hopital's rule to find that

$$
\lim _{x \rightarrow 0} \frac{-\cos (x)+1}{12 x^{2}}=\lim _{x \rightarrow 0} \frac{\sin (x)}{24 x} .
$$

The final l'hopital's rule yields the result of $\lim _{x \rightarrow 0} \frac{\cos (x)}{24}=\frac{1}{24}$ which is the final answer.

2 Chapter 5.10

Problem 31

Since $\frac{e^{x}}{e^{x}-1}$ has a discontinuity at $x=0$ and is continuous everywhere else we classify our integral as an improper integral of type 2 . Therefore, by the definition of an improper integral

$$
\int_{-1}^{1} \frac{e^{x}}{e^{x}-1} d x=\lim _{t \rightarrow 0^{+}} \int_{-1}^{t} \frac{e^{x}}{e^{x}-1} d x+\lim _{t \rightarrow 0^{-}} \int_{t}^{1} \frac{e^{x}}{e^{x}-1} d x
$$

In both integrals, we make the u-substitution $u=e^{x}-1$ and $d u=e^{x} d x$. So that

$$
\int_{-1}^{1} \frac{e^{x}}{e^{x}-1} d x=\lim _{t \rightarrow 0^{+}} \int_{e^{-1}-1}^{e^{t}-1} \frac{1}{u} d u+\lim _{t \rightarrow 0^{-}} \int_{e^{t}-1}^{e-1} \frac{1}{u} d u .
$$

The antiderivative of $1 / u$ is $\ln |u|$ so evaluating the first limit and integral in the above equation we have

$$
\lim _{t \rightarrow 0^{+}} \int_{e^{-1}-1}^{e^{t}-1} \frac{1}{u} d u=\left.\lim _{t \rightarrow 0^{+}} \ln |u|\right|_{e^{-1}-1} ^{e^{t}-1}=\lim _{t \rightarrow 0^{+}} \ln \left|e^{t}-1\right|-\ln |1 / e-1|
$$

. Since $e^{t} \rightarrow 0$ as $t \rightarrow 0^{+}, \ln \left|e^{t}-1\right| \rightarrow-\infty$ as $t \rightarrow 0^{+}$so we conclude that the imroper integral diverges.

Problem 39

By the area interpretation of the integral, we are asked to compute the definite integral:

$$
\int_{0}^{\pi / 2} \sec ^{2}(x) d x
$$

An antiderivative of $\sec ^{2}(x)$ is $\tan (x)$ and $\sec ^{2}(x)$ has a discontinuity at $\pi / 2$ so we can evaluate this type 2 improper integral by

$$
\int_{0}^{\pi / 2} \sec ^{2}(x) d x=\lim _{t \rightarrow \pi / 2^{-}} \int_{0}^{t} \sec ^{2}(x) d x=\left.\lim _{t \rightarrow \pi / 2^{-}} \tan (x)\right|_{0} ^{t}=\lim _{t \rightarrow \pi / 2^{-}} \tan (t)=\infty
$$

We conclude that this integral does not exist and the area is infinite.
A good sketch would look roughly like the one below with the area below the curve between $0 \leq x \leq \pi / 2$.

Problem 44

We might guess that this integral is divergent. Therefore we pick the function $0 \leq 1 / x \leq \frac{2+e^{-x}}{x}$ on the domain $x \geq 1$ to compare to. Since $\int_{1}^{\infty} \frac{1}{x} d x$ is divergent by the calculation done in section 5.10 of the book, we conclude by the comparison test that the integral in the problem also diverges.

Problem 46

Notice that $0 \leq \arctan (x) \leq \pi / 2$ on the domain $x \geq 0$. The e^{x} in the denominator with a bounded numerator suggests that the improper integral is convergent. We therefore compare to the function $\frac{p i / 2}{e^{x}} \geq \frac{\arctan (x)}{2+e^{x}}$ on $x \geq 0$. Now by the definition of a type 1 improper integral we have:

$$
\int_{0^{\infty}} \frac{p i / 2}{e^{x}} d x=\lim _{t \rightarrow \infty} \int_{0}^{t} \frac{p i / 2}{e^{x}} d x=\pi / 2 \lim _{t \rightarrow \infty}-\left.e^{-x}\right|_{0} ^{t}=\pi / 2 \lim _{t \rightarrow \infty} 1-e^{-t}=\pi / 2 .
$$

We conclude by the comparison test that the integral in our problem is also convergent.

Problem 55

1. For part (a) the problem asks us to make a rough sketch of $F(t)$. Any increasing function starting $F(0)=0$, with a horizontal asymptote at $y=1$, and centered roughly around $x=700$ would be acceptable.
2. For part (b), the derivative $r(t)$ of the fraction $F(t)$ is the probability density of the chance that a lightbulb would burn out at time t.
3. For part (c), the integral of $r(t)$ from time 0 to ∞ must be exactly 1 since

$$
\int_{0}^{\infty} r(t) d t=\lim _{T \rightarrow \infty} \int_{0}^{T} r(t) d t=\lim _{T \rightarrow \infty} F(T)-F(0)
$$

We know that $F(0)=0$ since at time 0 no light bulbs have burned out. However as $T \rightarrow \infty, F(T)=1$ since eventually all lightbulbs burn out.

3 Chapter 8.1

Problem 16

We should be able to recognize that this sequence $a_{n}=9 \times\left(\frac{3}{5}\right)^{n}$ is a geometric sequence. Notice that the function $f(x)=9 \times\left(\frac{3}{5}\right)^{x}$ approaches zero as $x \rightarrow \infty$. Since $a_{n}=f(n)$, Theorem 2 of section 8.1 of our textbook implies that $\lim _{n \rightarrow \infty} a_{n}=\lim _{x \rightarrow \infty} f(x)=0$.

Problem 18

By the last limit law for sequences on page 557 of our textbook applied with $p=.5$ we know that

$$
\lim _{n \rightarrow \infty} \sqrt{\frac{n+1}{9 n+1}}=\sqrt{\lim _{n \rightarrow \infty} \frac{n+1}{9 n+1}}
$$

By a bit of algebra, we see that $\frac{n+1}{9 n+1}=\frac{1}{9} 9 n+9=\frac{1}{9 n+1}\left(1+\frac{8}{9 n+1}\right)$. Therefore by the limit laws of sequences on page 557 of our textbook the sequence converges to

$$
\left.\sqrt{\lim _{n \rightarrow \infty} \frac{n+1}{9 n+1}}=\sqrt{\lim _{n \rightarrow \infty} \frac{1}{9}\left(1+\frac{8}{9 n+1}\right)}\right)=\sqrt{1 / 9}=1 / 3 .
$$

Problem 29

Note that $\frac{(2 n-1)!}{(2 n+1)!}=\frac{(2 n-1)(2 n-2) \cdots 1}{(2 n+1)(2 n)(2 n-1)(2 n-1) \cdots 1}=\frac{1}{(2 n+1)(2 n)}$. Clearly, $\lim _{n \rightarrow \infty} \frac{1}{(2 n)(2 n+1)}=$ 0 so the sequence converges to zero.

Problem 34
It suffices to show $\left|\frac{(-3)^{n}}{n!}\right| \rightarrow 0$ by the squeeze theorem. Notice that

$$
\frac{3^{n}}{n!}=\frac{3}{n} \frac{3}{n-1} \frac{3}{n-2} \cdots \frac{3}{3} \frac{3}{2} \frac{3}{1} \leq \frac{3}{n} * \frac{9}{2} .
$$

Clearly, $\frac{3}{n} * \frac{9}{2} \rightarrow 0$ so the sequence converges to zero by the squeeze theorem.
Problem 49
The sequence $a_{n}=\frac{1}{2 n+3}$ is decreasing. To show this we have to check that $a_{n+1}<a_{n}$ or equivalently $\frac{1}{2 n+5}<\frac{1}{2 n+3}$. This follows because by cross multiplying we can verify that $2 n+5>2 n+3$.

In addition, we know that the sequence $a_{n}>0$ is positive and it is bounded above by the first term in the sequence since it is decreasing. Therefore we conldue that a_{n} is decreasing and bounded.

4 Chapter 8.2

Problem 9

1. Part a: We compute $\lim _{n \rightarrow \infty} \frac{2 n}{3 n+1}=\lim _{n \rightarrow \infty} \frac{2}{3+1 / n}=2 / 3$ so the sequence a_{n} converges.
2. Part b: By the divergence test we see that the series $\sum a_{n}$ must diverge.

Problem 12

Notice that this series is just a geometric series $a+a r+a r^{2}+\ldots$ for $a=4$ and $r=3 / 4$. Since $|r|<1$, the series converges to $\frac{a}{1-r}=16$.

Problem 20
We apply the divergence test and note that $\lim _{k \rightarrow \infty} \frac{k^{2}+2 k}{k^{2}+6 k+9}=1$ so the series diverges.

Problem 23 Notice that $\sum_{n=1}^{\infty} \frac{1}{3^{n}}=1 / 2$ because it is a geometric series with $a=1 / 3$ and $r=1 / 3$. Also, $\sum_{n=1}^{\infty} \frac{2^{n}}{3^{n}}=2$ because it is a geometric series with $a=2 / 3$ and $r=2 / 3$. The series in the problem is the sum of these two convergent series so it is also convergent to $2+1 / 2=5 / 2$.

Problem 41
The series $\sum_{n=1}^{\infty} \frac{x^{n}}{3^{n}}$ is a geometric series with starting value $a=x / 3$ and common ratio $r=x / 3$. Therefore, it converges if and only if $|x|<3$. In that case, it converges, by the formula for the sum of convergent geometric series, to $\frac{x / 3}{1-x / 3}=\frac{x}{3-x}$.

