Math 42: Midterm 2

Formula Sheet

The Binomial Theorem:

$$
(1+x)^{k}=\sum_{n=0}^{\infty}\binom{k}{n} x^{n}, \text { where }\binom{k}{n}=\frac{k(k-1)(k-2) \ldots(k-n+1)}{n!} .
$$

Radius of convergence $=1$.

Alternating Series Estimation: $\left|S-S_{N}\right| \leq b_{N+1}$.
Integral Test Estimation: $\left|S-S_{N}\right| \leq \int_{N}^{\infty} f(x) d x$.

Taylor's Inequality:

$$
\left|f(x)-T_{N}(x)\right| \leq \frac{M}{(N+1)!} d^{N+1} \text { for }|x-a| \leq d
$$

where $M \geq\left|f^{(N+1)}(x)\right|$ on $[a-d, a+d]$.

Trapezoid and Midpoint Estimates: Suppose that $\left|f^{\prime \prime}(x)\right| \leq K$ for x in $[a, b]$. Then

$$
\left|\operatorname{Err}_{\text {Trap }}\right| \leq \frac{K(b-a)^{3}}{12 n^{2}} \quad \text { and } \quad\left|\operatorname{Err}_{\text {Midpt }}\right| \leq \frac{K(b-a)^{3}}{24 n^{2}}
$$

Simpson's Rule: Let n be even. Set $\Delta x=(b-a) / n$ and $x_{i}=a+i \Delta x$ for $0 \leq i \leq n$. Then $\int_{a}^{b} f(x) d x \approx \frac{\Delta x}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\cdots+2 f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]$. If $\left|f^{(4)}(x)\right| \leq K_{4}$ on $[a, b]$, then the error in the above approximation is at most

$$
\frac{K_{4}(b-a)^{5}}{180 n^{4}}
$$

Arc Length: If a curve is given by $y=f(x)$ for $a \leq x \leq b$, then its length is

$$
L=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

Similarly, if it is given by $x=g(y)$ for $a \leq y \leq b$, then its length is

$$
L=\int_{a}^{b} \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y
$$

