
Math 108 Homework 6 Solutions

Problem 13G.
Show that (13.12) leads to B(n) = 1
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Answer: We actually just use (13.13) and (13.11). We get from (13.11) that B(n) =∑n
k=1 S(n, k), but note that for k = 0 and k > n ≥ 1 that S(n, k) = 0, so we also have
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concluding the proof.

Problem 14M.
Count pairs (f, g) of functions f, g, where f maps {1, 2, ..., r} to {1, 2, ..., n} and g is a
permutation of {1, 2, ..., n} that fixes the image of f pointwise. Doing this in two ways
prove that for n ≥ r
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where dm denotes the number of derangements of 1, 2, ...,m and B(r) is a Bell number.

Answer: First, consider the set of functions g with fixed point set {x ∈ {1, ..., n} | g(x) =
x} of size k. This collection of functions has size equal to

(
n
k

)
dn−k, since there are

(
n
k

)
ways to choose the fixed point set, and any permutation with precisely that fixed point
set is a derangement when restricted to the remaining n − k unfixed points. Next, the
set of functions f which can be paired with a given function g which has precisely k fixed
points is equal to the number of mappings of {1, ..., r} into that set of k elements, and
this is of size kr. Thus, the number of such pairs (f, g) where g has k fixed points is equal
to
(
n
k

)
krdn−k. Summing this over all possible values of k, we get that the total number of

pairs (f, g) of interest is equal to the left hand side of the desired identity,

n∑
k=1

(
n

k

)
krdk.

We now count this set in another way. Consider the set of functions f with image of size
i. For a given image set {x1, ..., xi}, there are S(r, i) possible ways to split {1, ..., r} into
i subsets which will be the preimages of each of the values x1, ..., xi. For each of these
S(r, i) ways, there are i! ways of assigning specific xi values to the preimage sets. Next,
there are

(
n
i

)
possible choices of image set. Finally, given a specific image set of size i, the

number of permutations g of {1, ..., n} which fix at least that image set is just (n − i)!,
since this is the number of permutations of the remaining elements of {1, ..., n}. Thus, the
set of pairs (f, g) for which f has image of size i is equal to S(r, i)i!

(
n
i

)
(n− i)! = S(r, i)n!.

Summing this over the possible values of i, we get that the set of pairs (f, g) has size

r∑
i=1

S(r, i)n! = B(r) · n!.

Thus, we have proved the desired identity.

Problem 15A.
Show that pk(n) = pk1(n1) + pk(nk) and use this to prove (15.2).

Answer: The identity pk(n) = pk1(n1) + pk(nk) is obtained by splitting the set of
partitions of n into k parts into two collections: those for which xk = 1, and those
for which xk > 1. The set of partitions of n into k parts with xk = 1 are in bijective
correspondence with the set of partitions of n−1 into k−1 parts, and this correspondence is
obtained simply by dropping the kth part (i.e. the xk = 1 part) from the original partition.
Note that this quantity is equal to pk−1(n − 1). Next, the set of partitions of n into k
parts with xk > 1 is in bijective correspondence with the set of partitions of n − k into
k parts by subtracting one from each of the parts (i.e., setting yk = xk − 1 gives the
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desired correspondence). This quantity is equal to pk(n − k). Thus we have shown that
pk(n) = pk−1(n− 1) + pk(n− k).

Next, we prove (15.2):

pk(n) =
k∑

s=1

ps(n− k).

We prove this by induction, starting with the base case, k = 1. Note that p1(n) = 1 for
any choice of n, so for any n, we have p1(n) = p1(n− 1) and the base case is verified.

Next, suppose the claim holds for k. Then we have from the identity proved above
that

pk+1(n) = pk(n− 1) + pk+1(n− (k + 1)),

and applying the induction hypothesis, we get

pk+1(n) = pk(n− 1) + pk+1(n− (k + 1))

=
k∑

s=1

ps(n− 1− k) + pk+1(n− (k + 1))

=
k+1∑
s=1

ps(n− (k + 1)).

Thus we have completed the induction step, and this induction argument verifies (15.2).

Problem 15B.
We choose three vertices of a regular n-gon and consider the triangle they form. Prove
directly that there are { 1

12
n2} mutually incongruent triangles that can be formed in this

way, thereby providing a second proof of (15.5).

Answer: For this question, we will use the notation

1a|n =

{
1, a divides n

0, else
.

Let v1, ..., vn represent the n vertices in the regular n-gon in consecutive (e.g., clock-
wise) order starting with some vertex v1. Note that two triangles obtained by taking
three vertices {vi1 , vi2 , vi3} and {vj1 , vj2 , vj3} are congruent if and only if the sets of side
lengths for each triangle is the same, and this is the case if and only if the sets of numbers
of vertices in the n-gon between consecutive vertices of the triangles (including precisely
one of the endpoints) are the same (we will not prove this). But the set of numbers of
vertices of the n-gon between consecutive vertices of a triangle is precisely a partition of
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n into 3 parts, and from what we have just said, different partitions precisely correspond
to mutually incongruent triangles. So counting these mutually incongruent triangles is
equivalent to counting the partitions of n into 3 parts.

We use the letters E, I, and S to denote the numbers of congruence classes of equi-
lateral, isosceles, and scalene triangles respectively. Since any triangle falls into precisely
one of these categories, we just need to show that E + I + S = { 1

12
n2}.

Let us first consider equilateral triangles. An equilateral triangle corresponds to choos-
ing 3 of the n vertices equally spaced on the n-gon, so that n must be a multiple of 3 in
order for an equilateral triangle to be obtainable from the regular n-gon. On the other
hand, if n is a multiple of 3, then we can obtain equilateral triangles from the vertices of
the n-gon, but note that there is only one possible congruence class corresponding to an
equilateral triangle, which corresponds to the partition n/3 + n/3 + n/3. Thus

E = 13|n.

Next, we count the total number of congruence classes of triangles with at least two
sides of equal length (so we are computing I +E). We can count this number by starting
from a fixed vertex v, and counting all of the triangles that can be obtained by choosing
the remaining two points to be equidistant from v. If n is odd, there are (n−1)/2 ways of
doing this; if n is even there are n/2− 1 ways of doing this. In both cases, these triangles
correspond to distinct congruence classes since the side lengths are different, and we can
combine the formulas for the two cases into the single expression

I + E =
n− 1

2
− 1

2
· 12|n.

Finally, we consider all of the possible triangles we can obtain from the regular n-gon
which contain a specific vertex v. The number of such triangles is precisely equal to(
n−1
2

)
since we need to choose two of the remaining vertices. Note that the collection of

these triangles covers all congruence classes (since all other triangles can be obtained by
rotation). However, it multiply counts triangles in the following way: if all edges have the
same length, it only counts the congruence class once. For congruence classes of triangles
with two edges the same length, the edge with different side length could occur in any of
the three positions, so this counts isosceles triangles three times. Finally, for congruence
classes of triangles with all three edges different lengths, this counts each of the possible
permutations of the three edges, for a total of 6-fold counting of the scalene triangles.
Thus, we have

E + 3I + 6S =

(
n− 1

2

)
=

n(n− 1)

2
.
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We can combine the three formulas above to get

E + I + S =
1

6
[(E + 3I + 6S) + 3(E + I) + 2E]

=
1

6

[
(n− 1)(n− 2)

2
+ 3
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2
· 12|n + 2 · 13|n
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Thus, we have ∣∣∣∣ 1

12
n2 − (E + I + S)
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and so E + I + S =
{

1
12
n2
}

, finishing the proof.


