
Math 108 Homework 5 Solutions

Problem 10H
Prove that for 0 ≤ k ≤ n,

k∑
i=0

(
k

i

)
Dn−i =

n−k∑
j=0

(−1)j
(
n− k
j

)
(n− j)!.

Answer: Here we note that Dn−i represents the number of derangements of n − i
objects. I claim that both sides of this equation represent the number of permutations σ
of {1, ..., n} such that the fixed point set of σ (i.e., the set {x | σ(x) = x}) is a subset of
{1, ..., k}.

First, to see that this is the case on the left hand side, note that for A ⊆ {1, ..., n},
the number of permutations with fixed point set A is equal to Dn−|A|, and we have

k∑
i=0

(
k

i

)
Dn−i

=
k∑

i=0

∑
A⊆{1,...,k}:|A|=i

Dn−i

=
∑

A⊆{1,...,k}

Dn−|A|

is the total number of permutations for which the fixed point set is a subset of {1, ..., k}.
Next, we analyze the right hand side via inclusion-exclusion and Theorem 10.1. Let

Ei be the set of those permutations with π(i) = i. By Theorem 10.1, the number of
permutations which are not in Ei for any i with k + 1 ≤ i ≤ n is equal to

N −N1 +N2 −N3 + ...+ (−1)n−kNn−k,

where N = n! and Nj :=
∑
|M |=j |∩i∈MEi|, and the sum is over subsets M of {k+1, ..., n}.

Note that we can compute Nj =
∑
|M |=j(n−j)! =

(
n−k
j

)
(n−j)! since we are summing over

subsets of the (n− k)-set {k + 1, ..., n}. Thus, we have that the number of permutations
not in Ei for any i with k + 1 ≤ i ≤ n is equal to

n−k∑
j=0

(−1)j
(
n− k
j

)
(n− j)!,
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which is precisely the quantity on the right hand side. But note also that the statement
that σ is not in Ei for any i ∈ {k + 1, ..., n} is precisely equivalent to the statement that
the fixed point set of σ is a subset of {1, ..., k}. Thus, we have counted the same objects
in two different ways, and so we have obtained the desired equality.

Problem 14A
14A. (i). Let an denote the number of sequences of 0’s and 1’s that do not contain two
consecutive 0’s. Determine an.

Answer: Let s be an arbitrary sequence of length n which does not contain two
consecutive 0’s. Then s either ends with a 1, and the previous n − 1 elements of the
sequence can be any sequence length n − 1 without two consecutive 0’s (giving an−1
possibilities), or it ends with a 0, and so the second to last element must be a 1, and the
remaining n−2 elements can be any sequence of length n−2 without two consecutive 0’s
(giving an additional an−2 possibilities). Thus, we have that an = an−1 + an−2. Moreover,
note that a0 = 1 and a1 = 2, and so the an satisfy the Fibonacci recursion with Fibonacci
numbers for initial conditions.

We can solve this recursion using the power series approach from the book. If we set
f(x) =

∑∞
n=0 anx

n, we get

f(x) =
∞∑
n=0

anx
n

= 1 + 2x+
∞∑
n=2

anx
n

= 1 + 2x+
∞∑
n=2

(an−1 + an−2)x
n

= 1 + 2x+ x
∞∑
n=1

anx
n + x2

∞∑
n=0

anx
n

= 1 + 2x+ x(f(x)− 1) + x2f(x) = 1 + x+ (x+ x2)f(x),

and so we have that f(x) = 1+x
1−x−x2 .

Letting α = (1 +
√

5)/2 and β = (1 −
√

5)/2 be the reciprocals of the roots of the
denominator, we use the partial fraction decomposition to obtain

1 + x

1− x− x2
=

(1 + α)/(α− β)

1− αx
+

(1 + β)/(β − α)

1− βx
.

From this, we get that

f(x) =
∞∑
n=0

(
1 + α

α− β
αn +

1 + β

β − α
βn

)
xn,
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and so

an =
1 + α

α− β
αn +

1 + β

β − α
βn.

14A. (ii). Let bn denote the number of sequences of 0’s and 1’s with no two consecutive
1’s and for which a run of 0’s always has length 2 or 3, including possibly at the beginning
or end of the sequence. Show that b

1/n
n → c for some c and approximate c.

Answer: First, we obtain a recursive formula for bn. To do this, we introduce an
auxiliary sequence cn, where cn is the number of such sequences ending in a 1. Note that
any such sequence ending in a 1 has to have the final 1 preceded by either two zeros and
a one, or three zeros and a one. Thus, we have that cn = cn−3 + cn−4. Next, note that
bn = cn + cn−2 + cn−3, where this summation corresponds to splitting the sequences into
groups based on whether it ends with a 1, with two 0’s, or with three 0’s.

First, let’s solve the recursion for c. Let f(x) =
∑∞

n=0 cnx
n. Note that c0 = c1 = c3 = 1

and c2 = 0. Using this, we get that

f(x) = 1 + x+ x3 +
∞∑
n=4

cnx
n

= 1 + x+ x3 +
∞∑
n=4

(cn−3 + cn−4)x
n

= 1 + x+ x3 + x3
∞∑
n=1

cnx
n + x4

∞∑
n=0

cnx
n

= 1 + x+ x3 + x3(f(x)− 1) + x4f(x)

and so we have

f(x) =
1 + x

1− x3 − x4
.

By the partial fractions approach from examples in the book and the previous problem,
it is clear from the fact that f(x) = 1+x

1−x3−x4 that the power series expansion of f will have
coefficients taking the form

cn =
4∑

i=1

ai
1

zni
,

where the ai are some nonzero constants (nonzero since the expression for f does not
reduce) and the zi are the (complex) roots of the polynomial 1 − x3 − x4 arranged in
increasing order by magnitude. Since z1 then has the smallest magnitude of all of the

roots, we have that cn =
(

1
z1

)n∑4
i=1 ai

(
z1
zi

)n
, and so c

(
n1/n)→ 1/z1 as n→∞.
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We may compute the roots of 1 − x3 − x4 using the quartic formula, or by using a
computer algebra program, and obtain the approximations z1 ≈ 0.8192, z2 ≈ −0.219 −
0.914i, z3 ≈ −0.219 + 0.914i, and z4 = −1.380. As showed above, we have c

1/n
n → 1/z1 ≈

1.2207.
Finally, since bn = cn + cn−2 + cn−3, we have that

c1/nn ≤ b1/nn ≤ 3
max
i=0

(3cn−i)
1/(n−i),

but note that as n→∞ both the far left and far right sides of the above chain of inequal-
ities tend to 1/z1 ≈ 1.2207. Thus b

1/n
n → 1/z1 ≈ 1.2207 as well.

Problem 14I
Let the points 1, ..., 2n be on a circle (consecutively). We wish to join them in pairs by n
nonintersecting chords. In how many ways can this be done?

Answer: Let un be the Catalan numbers, so that u1 = 1 and the un satisfy the
recurrence

un =
n−1∑
m=1

umun−m.

Let cn be the number of of ways of joining the points into chords in a circle with 2n points.
We wil show that cn = un+1.

First, note that c0 = 1 = u1 and c1 = 1 = u2. Second, note that we can reformulate
the above recurrence for un+1 as saying

un+1 =
n∑

m=1

umun+1−m =
n∑

m=1

um−1+1un−m+1.

Thus, since we have agreement between the base cases c1 and u1+1 = u2, it is enough to
show that cn satisfies the recurrence

cn =
n∑

m=1

cm−1cn−m.

Note that if we have a chord from point 1 to point i, then there can be no chord from
any points in {2, ..., i − 1} to any point in {i + 1, ..., 2n} since that would intersect the
chord from 1 to i. Thus, the number of ways of joining the points by nonintersecting
chords such that point 1 is connected to point i is given by the product of the number of
ways of joining points {2, ..., i − 1} and points {i + 1, ..., 2n} by nonintersecting chords.
Note that in particular, if any such way of joining the points exists, then i must be even
or else we will have two odd-sized sets, in which case no way of pairing up the points will
exist.
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Although these two subsets are no longer circular, the number of ways of joining them
by nonintersecting chords is precisely the same as if they were circular. Thus, we can
compute cn by summing over the possible points that 1 can be adjacent to, and for each
such point, counting the number of chord pairings with 1 adjacent to that point.

As we already noted, 1 must be paired with an even point, so let us assume that 1 is
paired with 2j. Then there are 2(j − 1) points in {2, ..., 2j − 1}, and 2(n − j) points in
{2j + 1, ..., 2n}. Thus, the number of nonintersecting chord pairings with points 1 and j
paired is given by cj−1cn−j. Summing over the possible values of j, we obtain

cn =
n∑

j=1

cj−1cn−j.

But this was precisely the recurrence we needed to show to prove that cm = um+1 for all
m ≥ 0.

Problem 14N
Consider walks in the X−Y plane where each step is R : (x, y)→ (x+ 1, y), U : (x, y)→
(x, y + 1), or D : (x, y) → (x + 1, y + 1). We wish to count walks from (0, 0) to (n, n)
that are below or on the line x = y. Find a recurrence for the number of walks like (14.10).

Answer: Let bn be the number of such walks below or on x = y, and let bk,n be the
number of such walks from (0, 0) to (n, n) below or on x = y that meet the line x = y for
the second time in (k, k). Then we have that bn =

∑n
k=1 bk,n.

If we let ck be the number of walks from (0, 0) to (k, k) below the line x = y which do
not intersect the line x = y between (0, 0) and (k, k), and note that bn−k is also equal to
the number of walks on or below the line x = y from (k, k) to (n, n), then it is clear that
bk,n = ckbn−k. Next, note that for k > 1, in order for a walk to be counted in ck, it must
start with an R step, and end with a U step, and must be a walk from (1, 0) to (k, k− 1)
on or below the line x+1 = y in between. But the number of such walks is precisely equal
to the number of walks from (0, 0) to (k− 1, k− 1) which are on or below x = y, which is
precisely equal to bk−1. Thus, we have that ck = bk−1 for k > 1. For k = 1, the presence
of diagonal steps complicated things, and gives us c1 = 2 = b0 + 1. Thus, we have that

bn =
n∑

k=1

bk,n

=
n∑

k=1

ckbn−k

=

(
n∑

k=1

bk−1bn−k

)
+ bn−1
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where we obtained the bn−1 in the final line by using the fact that c1 is equal to b0 +1.


