# Math 108 Homework 4 Solutions 

## Problem 10A

How many positive integers less than 1000 have no factor between 1 and 10 ?
Proof. Let $p_{i}$ be the $i^{\text {th }}$ prime number, so that $p_{1}=2, p_{2}=3$, etc. Let $E_{i}=\{n \in$ $\mathbb{Z} \mid 1 \leq n \leq 1000$ and $p_{i}$ divides $\left.n\right\}$ for $1 \leq i \leq 4$. Noting that the intersection $\cap_{k=1}^{m} E_{i_{k}}=$ $\left\{n \in \mathbb{Z} \mid 1 \leq n \leq 1000\right.$ and $\prod_{k=1}^{m} p_{i_{k}}$ divides $\left.n\right\}$, and also noting that the size of the set $\mid\{n \in \mathbb{Z} \mid 1 \leq n \leq 1000$ and $m$ divides $n\} \mid$ is equal to $\left\lfloor\frac{1000}{m}\right\rfloor$, we may apply Theorem 10.1 to obtain that the number of such positive integers is equal to

$$
\begin{aligned}
1000 & -\left(\left\lfloor\frac{1000}{2}\right\rfloor+\left\lfloor\frac{1000}{3}\right\rfloor+\left\lfloor\frac{1000}{5}\right\rfloor+\left\lfloor\frac{1000}{7}\right\rfloor\right) \\
& +\left(\left\lfloor\frac{1000}{2 \cdot 3}\right\rfloor+\left\lfloor\frac{1000}{2 \cdot 5}\right\rfloor+\left\lfloor\frac{1000}{2 \cdot 7}\right\rfloor+\left\lfloor\frac{1000}{3 \cdot 5}\right\rfloor+\left\lfloor\frac{1000}{3 \cdot 7}\right\rfloor+\left\lfloor\frac{1000}{5 \cdot 7}\right\rfloor\right) \\
& -\left(\left\lfloor\frac{1000}{2 \cdot 3 \cdot 5}\right\rfloor+\left\lfloor\frac{1000}{2 \cdot 3 \cdot 7}\right\rfloor+\left\lfloor\frac{1000}{2 \cdot 5 \cdot 7}\right\rfloor+\left\lfloor\frac{1000}{3 \cdot 5 \cdot 7}\right\rfloor\right) \\
& +\left(\left\lfloor\frac{1000}{2 \cdot 3 \cdot 5 \cdot 7}\right\rfloor\right)=228 .
\end{aligned}
$$

## Problem 13A

On a circular array with $n$ positions, we wish to place the integers $1,2, \ldots, r$ in order, clockwise, such that consecutive integers, including the pair ( $r, 1$ ), are not in adjacent positions on the array. Arrangements obtained by rotation are considered the same. In how many ways can this be done?

Proof. For $1 \leq i<r$, let $a_{i}$ denote the number of empty spaces between the position of $i$ and the position of $i+1$, and let $a_{r}$ denote the number of empty spaces between the position of $r$ and the position of 1 . Since arrangements obtained by rotation are considered the same, the sequence $a_{1}, \ldots, a_{r}$ uniquely determines the arrangement. Note that there are a total of $n$ spaces, $r$ of which are filled by integers, for a total of $n-r$ empty spaces. Thus it must be the case that $\sum_{i} a_{i}=n-r$. The condition that the consecutive integers (and 1 and $r$ ) are not adjacent is equivalent to the condition that $a_{i} \geq 1$ for all $i$. This is the only constraint on the $a_{i}$ 's, and so the number of valid arrangements according to the requirements of the problem is equal to the number of solutions to $\sum_{i=1}^{r} a_{i}=n-r$ with $a_{i} \geq 1$. By the corollary to Theorem 13.1, this is equal to $\binom{n-r-1}{r-1}$.

## Problem 13B

Show that the following formula for binomial coefficients is a direct consequence of (10.6):

$$
\binom{n+1}{a+b+1}=\sum_{k=0}^{n}\binom{k}{a}\binom{n-k}{b}
$$

Give a combinatorial proof by considering $(a+b+1)$-subsets of the set $\{0,1, \ldots, n\}$, ordering them in increasing order, and then looking at the value of the integer in position $a+1$.

Proof. First, by applying the identity $\binom{n}{k}=\binom{n}{n-k}$ to each of the binomial coefficients appearing in the identity we wish to show, it is equivalent to show that

$$
\binom{n+1}{n-a-b}=\sum_{k=0}^{n}\binom{k}{k-a}\binom{n-k}{n-k-b} .
$$

By (10.6), we have that $\binom{k}{k-a}$ is the coefficient on $x^{k-a}$ in $(1-x)^{-a-1}$, and $\binom{n-k}{n-k-b}$ is the coefficient on $x^{n-k-b}$ in $(1-x)^{-b-1}$. If we consider the product of these two power series, we see that the coefficient on $x^{n-a-b}$ in $(1-x)^{-a-b-2}$ is given by the sum of all products of coefficients of the power series $(1-x)^{-a-1}$ and $(1-x)^{-b-1}$ for which the sum of the degrees of the corresponding terms is equal to $n-a-b$. That is, the coefficient on $x^{n-a-b}$ in $(1-x)^{-a-b-2}$ is equal to

$$
\begin{aligned}
& \sum_{k=0}^{n-a-b}\binom{k+a}{k}\binom{n-a-b-k+b}{n-a-b-k} \\
= & \sum_{k=0}^{n-a-b}\binom{k+a}{k}\binom{n-a-k}{n-k-a-b} \\
= & \sum_{k=a}^{n-b}\binom{k}{k-a}\binom{n-k}{n-k-b} \\
= & \sum_{k=0}^{n}\binom{k}{k-a}\binom{n-k}{n-k-b}
\end{aligned}
$$

where we obtained the final line by noting that all of the terms coming from values of $k$ not included in the previous line are equal to zero. But we may also use (10.6) to obtain the formula for the coefficient on $x^{n-a-b}$ in $(1-x)^{-a-b-2}$ directly, and get that it is equal to $\binom{n+1}{n-a-b}$. This finishes the proof of the desired identity using (10.6).

For the combinatorial proof, note that we may divide the set of all $(a+b+1)$-subsets of $\{1, \ldots, n+1\}$ in the following manner: let $E_{k}$ be the set of all those subsets such that the $(a+1)^{\text {th }}$ largest element of the subset is equal to $k$. Then since every $(a+b+1)$-subset
of $\{1, \ldots, n+1\}$ has an $(a+1)^{\text {th }}$ largest element, we have that

$$
\binom{n+1}{a+b+1}=\sum_{k=1}^{n+1}\left|E_{k}\right|=\sum_{k=0}^{n}\left|E_{k+1}\right| .
$$

But note that $\left|E_{k+1}\right|$ is the number of subsets of $\{1, \ldots, n+1\}$ of size $a+b+1$ containing $k+1$, and containing $a$ elements smaller than $k+1$, and $b$ elements larger than $k+1$. Thus, we have $\left|E_{k+1}\right|=\binom{k}{a}\binom{n-k}{b}$, since this is the number of ways of choosing such subsets. Thus, we have that

$$
\binom{n+1}{a+b+1}=\sum_{k=0}^{n}\binom{k}{a}\binom{n-k}{b}
$$

finishing the combinatorial proof.

## Problem 13E

The familiar relation

$$
\sum_{m=k}^{\ell}\binom{m}{k}=\binom{\ell+1}{k+1}
$$

is easily proved by induction. The reader who wishes to, can find a more complicated proof by using (10.6). Find a combinatorial proof by counting paths from $(0,0)$ to $(\ell+1, k+1)$ in the X-Y plane where each step is of type $(x, y) \rightarrow(x+1, y)$ or $(x, y) \rightarrow(x+1, y+1)$. Then use the formula to show that the number of solutions of

$$
x_{1}+x_{2}+\ldots+x_{k} \leq n
$$

in nonnegative integers is $\binom{n+k}{k}$. Can you prove this result combinatorially?
Proof. First, note that the number of paths from $(0,0)$ to $(a, b)$ using only steps of the prescribed form is equal to $\binom{a}{b}$, since every step increases the $x$ coordinate by 1 , so that $a$ steps must be taken, and during precisely $b$ of these steps we must also increase the $y$ coordinate by 1 (i.e., move diagonally), but beyond this there is no restriction on which steps are diagonal and which are horizontal. Thus, the number of paths from $(0,0)$ to $(\ell+1, k+1)$ of the prescribed form is equal to $\binom{\ell+1}{k+1}$ as desired.

To see that this is also given by the sum on the left side of the desired identity, we divide the space of paths from $(0,0)$ to $(\ell+1, k+1)$ into subsets in the following manner. Let $E_{j}$ be the set of paths from $(0,0)$ to $(\ell+1, k+1)$ of the prescribed form such that the first point on the path with $y$ coordinate $k+1$ has $x$ coordinate equal to $j+1$. Then the $E_{i}$ form a partition of the set of paths from $(0,0)$ to $(\ell+1, k+1)$ of the desired form. Note that all paths in $E_{j}$ must reach $(j+1, k+1)$ by a diagonal move, so that they also pass through $(j, k)$, and moreover that the set of paths in $E_{j}$ is in bijective correspondence
with the set of paths of the prescribed form that reach the point $(j, k)$. As argued above, the number of such paths is equal to $\binom{j}{k}$, so that we have shown that

$$
\binom{\ell+1}{k+1}=\sum_{m=0}^{\ell}\left|E_{m}\right|=\sum_{m=0}^{\ell}\binom{m}{k}=\sum_{m=k}^{\ell}\binom{m}{k}
$$

noting that we obtained the final equality only by deleting terms which are equal to zero. Thus we have proved the desired identity.

Now, the number of solutions to $x_{1}+x_{2}+\ldots+x_{k} \leq n$ in nonnegative integers is equal to the sum of the number of solutions to $x_{1}+x_{2}+\ldots+x_{k}=m$ in nonnegative integers over all $m \leq n$. By Theorem 13.1, the number of such solutions is $\binom{m+k-1}{k-1}$. Thus we have that the number of solutions to $x_{1}+x_{2}+\ldots+x_{k} \leq n$ is equal to

$$
\sum_{m=0}^{n}\binom{m+k-1}{k-1}=\sum_{m=k-1}^{n+k-1}\binom{m}{k-1}=\binom{n+k}{k}
$$

where we obtained the final equality using the identity from the first part of the problem.
The last part of the problem is to find a combinatorial proof of this fact. Well, the number of solutions to $x_{1}+\ldots+x_{k} \leq n$ in nonnegative integers is equal to the number of solutions to $x_{1}+\ldots+x_{k} \leq n+k$ with $x_{i} \geq 1$. We can see this as the number of ways of creating $k+1$ subsets of $n+k+1$ balls (each of size at least one), where $x_{i}$ corresponds to the size of the $i^{\text {th }}$ subset (and so we ignore the size of the $(k+1)^{\text {th }}$ subset, which is how we get an inequality). Since there are $n+k$ places to place the "sticks" between the $n+k+1$ "balls" and obtain a division of the desired form, the number of ways of doing this is equal to $\binom{n+k}{k}$. Thus, the number of solutions to $x_{1}+\ldots+x_{k} \leq n$ is equal to $\binom{n+k}{k}$.

