
Math 108 Homework 4 Solutions

Problem 10A
How many positive integers less than 1000 have no factor between 1 and 10?

Proof. Let pi be the ith prime number, so that p1 = 2, p2 = 3, etc. Let Ei = {n ∈
Z | 1 ≤ n ≤ 1000 and pi divides n} for 1 ≤ i ≤ 4. Noting that the intersection ∩mk=1Eik =
{n ∈ Z | 1 ≤ n ≤ 1000 and

∏m
k=1 pik divides n}, and also noting that the size of the set

|{n ∈ Z | 1 ≤ n ≤ 1000 and m divides n}| is equal to
⌊
1000
m

⌋
, we may apply Theorem 10.1

to obtain that the number of such positive integers is equal to

1000 −
(⌊

1000

2

⌋
+

⌊
1000

3

⌋
+

⌊
1000

5

⌋
+

⌊
1000

7

⌋)
+

(⌊
1000

2 · 3

⌋
+

⌊
1000

2 · 5

⌋
+

⌊
1000

2 · 7

⌋
+

⌊
1000

3 · 5

⌋
+

⌊
1000

3 · 7

⌋
+

⌊
1000

5 · 7

⌋)
−

(⌊
1000

2 · 3 · 5

⌋
+

⌊
1000

2 · 3 · 7

⌋
+

⌊
1000

2 · 5 · 7

⌋
+

⌊
1000

3 · 5 · 7

⌋)
+

(⌊
1000

2 · 3 · 5 · 7

⌋)
= 228.

Problem 13A
On a circular array with n positions, we wish to place the integers 1, 2, ..., r in order,
clockwise, such that consecutive integers, including the pair (r, 1), are not in adjacent
positions on the array. Arrangements obtained by rotation are considered the same. In
how many ways can this be done?

Proof. For 1 ≤ i < r, let ai denote the number of empty spaces between the position of
i and the position of i + 1, and let ar denote the number of empty spaces between the
position of r and the position of 1. Since arrangements obtained by rotation are considered
the same, the sequence a1, ..., ar uniquely determines the arrangement. Note that there
are a total of n spaces, r of which are filled by integers, for a total of n− r empty spaces.
Thus it must be the case that

∑
i ai = n− r. The condition that the consecutive integers

(and 1 and r) are not adjacent is equivalent to the condition that ai ≥ 1 for all i. This
is the only constraint on the ai’s, and so the number of valid arrangements according to
the requirements of the problem is equal to the number of solutions to

∑r
i=1 ai = n − r

with ai ≥ 1. By the corollary to Theorem 13.1, this is equal to
(
n−r−1
r−1

)
.
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Problem 13B
Show that the following formula for binomial coefficients is a direct consequence of (10.6):(

n + 1

a + b + 1

)
=

n∑
k=0

(
k

a

)(
n− k

b

)
.

Give a combinatorial proof by considering (a+b+1)-subsets of the set {0, 1, ..., n}, ordering
them in increasing order, and then looking at the value of the integer in position a + 1.

Proof. First, by applying the identity
(
n
k

)
=
(

n
n−k

)
to each of the binomial coefficients

appearing in the identity we wish to show, it is equivalent to show that(
n + 1

n− a− b

)
=

n∑
k=0

(
k

k − a

)(
n− k

n− k − b

)
.

By (10.6), we have that
(

k
k−a

)
is the coefficient on xk−a in (1− x)−a−1, and

(
n−k

n−k−b

)
is the

coefficient on xn−k−b in (1− x)−b−1. If we consider the product of these two power series,
we see that the coefficient on xn−a−b in (1− x)−a−b−2 is given by the sum of all products
of coefficients of the power series (1 − x)−a−1 and (1 − x)−b−1 for which the sum of the
degrees of the corresponding terms is equal to n−a− b. That is, the coefficient on xn−a−b

in (1− x)−a−b−2 is equal to

n−a−b∑
k=0

(
k + a

k

)(
n− a− b− k + b

n− a− b− k

)

=
n−a−b∑
k=0

(
k + a

k

)(
n− a− k

n− k − a− b

)

=
n−b∑
k=a

(
k

k − a

)(
n− k

n− k − b

)
=

n∑
k=0

(
k

k − a

)(
n− k

n− k − b

)
where we obtained the final line by noting that all of the terms coming from values of k
not included in the previous line are equal to zero. But we may also use (10.6) to obtain
the formula for the coefficient on xn−a−b in (1− x)−a−b−2 directly, and get that it is equal
to
(

n+1
n−a−b

)
. This finishes the proof of the desired identity using (10.6).

For the combinatorial proof, note that we may divide the set of all (a+ b+ 1)-subsets
of {1, ..., n + 1} in the following manner: let Ek be the set of all those subsets such that
the (a+1)th largest element of the subset is equal to k. Then since every (a+b+1)-subset
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of {1, ..., n + 1} has an (a + 1)th largest element, we have that(
n + 1

a + b + 1

)
=

n+1∑
k=1

|Ek| =
n∑

k=0

|Ek+1|.

But note that |Ek+1| is the number of subsets of {1, ..., n+ 1} of size a+ b+ 1 containing
k + 1, and containing a elements smaller than k + 1, and b elements larger than k + 1.
Thus, we have |Ek+1| =

(
k
a

)(
n−k
b

)
, since this is the number of ways of choosing such

subsets. Thus, we have that(
n + 1

a + b + 1

)
=

n∑
k=0

(
k

a

)(
n− k

b

)
,

finishing the combinatorial proof.

Problem 13E
The familiar relation ∑̀

m=k

(
m

k

)
=

(
` + 1

k + 1

)
is easily proved by induction. The reader who wishes to, can find a more complicated proof
by using (10.6). Find a combinatorial proof by counting paths from (0, 0) to (`+ 1, k+ 1)
in the X-Y plane where each step is of type (x, y)→ (x + 1, y) or (x, y)→ (x + 1, y + 1).
Then use the formula to show that the number of solutions of

x1 + x2 + ... + xk ≤ n

in nonnegative integers is
(
n+k
k

)
. Can you prove this result combinatorially?

Proof. First, note that the number of paths from (0, 0) to (a, b) using only steps of the
prescribed form is equal to

(
a
b

)
, since every step increases the x coordinate by 1, so that

a steps must be taken, and during precisely b of these steps we must also increase the y
coordinate by 1 (i.e., move diagonally), but beyond this there is no restriction on which
steps are diagonal and which are horizontal. Thus, the number of paths from (0, 0) to
(` + 1, k + 1) of the prescribed form is equal to

(
`+1
k+1

)
as desired.

To see that this is also given by the sum on the left side of the desired identity, we
divide the space of paths from (0, 0) to (`+ 1, k+ 1) into subsets in the following manner.
Let Ej be the set of paths from (0, 0) to (` + 1, k + 1) of the prescribed form such that
the first point on the path with y coordinate k + 1 has x coordinate equal to j + 1. Then
the Ei form a partition of the set of paths from (0, 0) to (`+ 1, k + 1) of the desired form.
Note that all paths in Ej must reach (j + 1, k + 1) by a diagonal move, so that they also
pass through (j, k), and moreover that the set of paths in Ej is in bijective correspondence



4

with the set of paths of the prescribed form that reach the point (j, k). As argued above,
the number of such paths is equal to

(
j
k

)
, so that we have shown that(

` + 1

k + 1

)
=
∑̀
m=0

|Em| =
∑̀
m=0

(
m

k

)
=
∑̀
m=k

(
m

k

)
noting that we obtained the final equality only by deleting terms which are equal to zero.
Thus we have proved the desired identity.

Now, the number of solutions to x1 +x2 + ...+xk ≤ n in nonnegative integers is equal
to the sum of the number of solutions to x1 + x2 + ... + xk = m in nonnegative integers
over all m ≤ n. By Theorem 13.1, the number of such solutions is

(
m+k−1
k−1

)
. Thus we have

that the number of solutions to x1 + x2 + ... + xk ≤ n is equal to

n∑
m=0

(
m + k − 1

k − 1

)
=

n+k−1∑
m=k−1

(
m

k − 1

)
=

(
n + k

k

)
,

where we obtained the final equality using the identity from the first part of the problem.
The last part of the problem is to find a combinatorial proof of this fact. Well, the

number of solutions to x1 + ...+ xk ≤ n in nonnegative integers is equal to the number of
solutions to x1 + ... + xk ≤ n + k with xi ≥ 1. We can see this as the number of ways of
creating k + 1 subsets of n + k + 1 balls (each of size at least one), where xi corresponds
to the size of the ith subset (and so we ignore the size of the (k + 1)th subset, which is
how we get an inequality). Since there are n + k places to place the “sticks” between the
n + k + 1 “balls” and obtain a division of the desired form, the number of ways of doing
this is equal to

(
n+k
k

)
. Thus, the number of solutions to x1 + ...+xk ≤ n is equal to

(
n+k
k

)
.


