
Math 108 Homework 3 Solutions

Problem 3A
Fix an integer d ≥ 3. Let H be a simple graph with all degrees ≤ d which cannot be
d-colored and which is minimal (with the fewest vertices) subject to these properties.
(We claim H is complete on d + 1 vertices, but we dont know that yet.) (i) Show that
H is nonseparable (this means that every graph obtained from H by deleting a vertex is
connected). (ii) Then show that if the vertex set V (H) is partitioned into sets X and Y
with |Y | ≥ 3, then there are at least three vertices a, b, c ∈ Y each of which is adjacent
to at least one vertex in X.

Proof.
(i) Suppose that H satisfies the stated properties, but is separable. Let v be a vertex such
that removing H \ {v} is not connected. Let H1 be one of the connected components of
H \{v}, and let H2 = H \ (H1∪{v}). Since H \{v} is not connected, both H1 and H2 are
nonempty, and so the induced subgraphs on H1∪{v} and H2∪{v} are proper subgraphs of
H. Therefore, since H is minimal subject to the given properties, the induced subgraphs
on both H1 ∪ {v} and H2 ∪ {v} can be d-colored. Note that permuting the colors in any
valid coloring results in another valid coloring. Thus, if we take the coloring on H2 ∪ {v}
and permute the colors so that v has the same color in the H2 coloring as the H1 coloring,
we may then combine these two colorings to give a d-coloring of all of H. This coloring on
H is then a valid coloring because if v1, v2 are any two arbitrary vertices in H which are
adjacent, then since there are no adjacencies between H1 and H2, it is either the case that
both v1 and v2 are contained in H1 ∪ {v}, or they are both contained in H2 ∪ {v}. Since
the coloring we have obtained on H was a valid coloring on each of these subsets individ-
ually, it is the case that the color of v1 and v2 is different in the combined coloring (on all
of H), and since the combined coloring uses only d colors we have shown that H can be
d-colored. This is a contradiction, and so we may conclude that H must be nonseparable.

(ii) Suppose for the sake of contradiction that there is some partition of V (H) into two
nonempty sets X and Y with |Y | ≥ 3 such that at most two vertices in Y are adjacent
to at least one vertex in X. Note that if there were no vertices in Y adjacent to any
vertex in X, then H would be disconnected, and so a d-coloring on each of its connected
components (which are d-colorable since H is minimally non-d-colorable) could be com-
bined to create a d-coloring of H, a contradiction. Also, if there was only one vertex in Y
adjacent to a vertex in X, then H would be separable, since removing that vertex would
leave no paths between X and the remaining vertices in Y . By the previous part, this
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would be a contradiction. Thus, there must be exactly two vertices v1, v2 ∈ Y which are
adjacent to a vertex in X. Note also that v1 and v2 must both be adjacent to some vertex
in Y \ {v1, v2}, or the graph would be separable. To see this, suppose, for example, that
v1 was adjacent to no other vertex in Y – in that case, removing v2 would leave the graph
disconnected.

Now, consider the induced subgraph of H on Y . Since v1 and v2 are both adjacent to
a vertex in X, they both have degree at most d − 1 in this induced subgraph. Thus, if
we let GY be the graph on Y which contains an edge between v1 and v2 along with all of
the edges in the induced subgraph of H on Y , then GY has fewer vertices than H and all
nodes still have degree less than or equal to d. Thus GY is d-colorable. Moreover, since v1
and v2 are adjacent, they take different colors under this coloring, and since GY contains
all the edges that the induced subgraph of H on Y does, this is a d-coloring of Y . The
same argument as above applied to X ∪ {v1, v2} instead of Y also gives a d-coloring of
X ∪ {v1, v2} for which the colors of v1 and v2 are different. After this, the same color-
permuting argument as was used in part (i) then allows us to combine these two colorings
into a d-coloring of X ∪Y = H; we just permute the colors in one of the colorings so that
v1 has the same color in both colorings, and so does v2 (this is possible since the color of
v1 is different than that of v2 in both colorings). Thus, we have constructed a d-coloring
of H, a contradiction. This concludes the proof.

Handout 1
Compute the chromatic polynomial of the following graphs:
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Computation for Graph A.
Recall the formula χ(G, k) = χ(G−e, k)−χ(G◦e, k). For the graph A, we use this formula
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with the edge e = (1, 4). Using this formula, we obtain that χ(A, k) = χ(A− (1, 4), k)−
χ(A◦(1, 4), k). Note that A−(1, 4) is a tree on 6 vertices and so has chromatic polynomial
k(k−1)5. Next, we can compute the chromatic polynomial of A◦ (1, 4) directly: A◦ (1, 4)
is isomorphic to a copy of K3 with two additional vertices attached with one edge to one
of the nodes in K3. There are k(k − 1)(k − 2) ways of coloring the copy of K3, and then
each of the remaining two nodes can be colored using any of the colors not already used
by the node to which they are attached. This gives a total of k(k − 1)3(k − 2) colorings
of A ◦ (1, 4). Thus, we have that

χ(G, k) = k(k − 1)5 − k(k − 1)3(k − 2)

= k(k − 1)3((k − 1)2 − (k − 2))

= k(k − 1)3(k2 − 3k + 3)

Computation for Graph B.
We compute the chromatic polynomial χ(B, k) of this graph directly. We can choose
the central vertex (vertex 4 in the picture above) arbitrarily, so that there are k possible
choices of color for this vertex. Given a choice of color for this vertex, the color of each
vertex in {3, 5, 8} can be chosen arbitrarily among the remaining k − 1 colors. Once
vertex 3 has been colored, vertices 1 and 2 can be colored using any two of the colors
besides that of vertex 3, so that there are (k − 1)(k − 2) possibilities for coloring vertices
1 and 2 given the color of 3. The analysis of the two remaining triangles is similar, and
combining this all we see that the total number of k-colorings of the graph is χ(B, k) =
k(k − 1)3((k − 1)(k − 2))3 = k(k − 1)6(k − 2)3. Just to clarify where the formula comes
from, in χ(B, k) = k(k− 1)3((k− 1)(k− 2))3, the factor of k corresponds to the arbitrary
choice of color for node 4, the (k−1)3 term corresponds to the choices of color for vertices
3, 5, and 8, and the ((k− 1)(k− 2))3 term corresponds to the choices of coloring for each
of the three triangles.


