
Math 108 Homework 2 Solutions

Problem 2B
How many trees T are there on the set of vertices {1, 2, 3, 4, 5, 6, 7} in which the vertices
2 and 3 have degree 3, vertex 5 has degree 2, and hence all others have degree 1? Do not
just draw pictures but consider the possible Prüfer codes of these trees.

Proof. As noted in Proof 1 of Theorem 2.1 in the text, the number of times a vertex v
occurs among y1, y2, ..., yn−2 in the Prüfer code of a given tree T is equal to degT (v)− 1,
where degT (v) is the degree of v in T . Thus, a tree T on the vertices {1, 2, 3, 4, 5, 6, 7}
satisfies these degree requirements if and only if its Prüfer code has two 2s, two 3s, and one
5. The number of distinct Prüfer codes with these entries is given by 5!

2!2!1!
= 30. Because

of the bijective correspondence between spanning trees and Prüfer codes, we conclude that
there are precisely 30 trees on the vertices {1,2,3,4,5,6,7} in which vertices
2 and 3 have degree 3, vertex 5 has degree 2, and all others have degree 1.

Problem 2D
Here is a variation on the above greedy algorithm. Let x1 be any vertex of a weighted
connected graph G with n vertices and let T1 be the subgraph with the one vertex x1 and
no edges. After a tree (subgraph) Tk, k < n, has been defined, let ek be a cheapest edge
among all edges with one end in V (Tk) and the other end not in V (Tk), and let Tk+1 be
the tree obtained by adding that edge and its other end to Tk. Prove that Tn is a cheapest
spanning tree in G.

Proof. This algorithm is known as Prim’s algorithm, and proofs of its validity are widespread
online.

Suppose that Prim’s algorithm does not generate a cheapest spanning tree. Let T0 = ∅,
and let k be chosen minimally to satisfy the property that there is no cheapest spanning
tree containing all of the edges in Tk (since T0 = ∅, we know k ≥ 1.) Let M be a cheapest
spanning tree containing Tk−1. Note that ek 6∈ M since then Tk ⊆ M , but by hypothesis
no cheapest spanning tree contains Tk.

Let M ′ be the graph obtained by adding the edge ek to M . Then M ′ is a connected
graph with n edges on n vertices, and M ′ contains a cycle. Note that removing any edge
from that cycle results in a connected graph with n−1 edges on n vertices, and so results
in a spanning tree by homework 1.

Since ek is an edge which leaves Tk−1 and is a member of a cycle in M ′, there must
be another edge e∗ in that cycle which also leaves Tk−1. By Prim’s algorithm, the cost of
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e∗ is at least that of ek. Thus, if we obtain the graph M ′′ by removing the edge e∗ from
M ′, we obtain a spanning tree which is of cost no higher than that of M . But this M ′′ is
then a cheapest spanning tree which contains Tk, contradicting the definition of k.

Thus, we may conclude that for all k ≤ n, there is a cheapest spanning tree containing
Tk. In particular, there is a cheapest spanning tree containing Tn, but since Tn is already
a spanning tree, Tn must be a cheapest spanning tree.

Problem 2F
Suppose a tree G has exactly one vertex of degree i for 2 ≤ i ≤ m and all other vertices
have degree 1. How many vertices does G have?

Proof. Recall that the number of edges in G is given by 1
2

∑
v∈V degG(v). By hypothesis,

G has m− 1 vertices with degree greater than one, and so if G has n vertices, then G has
n−m + 1 vertices with degree 1. Thus, we have that the number of edges in G is equal

to 1
2

(n−m + 1 +
∑m

i=2 i) = 1
2

(
n−m + m(m+1)

2

)
= 2n+m(m−1)

4
.

Recall also from Homework 1 that if G is a tree with n vertices, then G has n − 1
edges. Multiplying these two formulas for the number of edges by four and comparing
them, we see that 4n− 4 = 2n + m(m− 1), so that n = m(m−1)

2
+ 2. Thus, the tree G

has m(m−1)
2

+ 2 vertices.

Problem 3B
Let the edges of K7 be colored with the colors red and blue. Show that there are at least
four subgraphs K3 with all three edges the same color (monochromatic triangles). Also
show that equality can occur.

Proof. Define a biangle to be a subgraph of K7 consisting of three nodes and two edges,
and call the node adjacent to both edges the base of the biangle. Call the biangle
non-monochromatic if the edges are different colors, otherwise call it monochromatic.
Note that the edges in any biangle are a part of a unique triangle, and that any non-
monochromatic triangle contains precisely two non-monochromatic biangles.

In K7, every vertex has six edges to which it is adjacent. If the vertex v is adjacent
to r red edges, then v is the base of r(6− r) ≤ 9 non-monochromatic biangles. Thus, any
coloring of the edges of K7 contains at most 63 = 9 · 7 non-monochromatic biangles, since
every non-monochromatic biangle has some vertex as its base, there are seven vertices in
K7, and each vertex in K7 is the base of at most 9 non-monochromatic biangles.

Since every non-monochromatic triangle contains precisely two non-monochromatic
biangles, the number of non-monochromatic triangles is equal to one half the number
of non-monochromatic biangles. Therefore, in K7, the number of non-monochromatic
triangles is bounded above by 63/2 = 31.5, and since it must be an integer, it is bounded
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Figure 1: An edge-coloring of K7 with precisely four monochromatic triangles.

above by 31. Since K7 contains
(
7
3

)
= 35 triangles, we may conclude that at least 35−31 =

4 of these must be monochromatic.
Also, because every non-monochromatic triangle contains precisely two non-monochromatic

biangles, to show that there is an edge-coloring of K7 with precisely four monochromatic
triangles, it is equivalent to construct an edge-coloring of K7 with precisely (35−4)∗2 = 62
non-monochromatic biangles.

This is achieved in Figure 1, since 6 of the vertices (all except vertex 2) have three
adjacent red edges and three adjacent blue edges (and so are the bases of a total of
6 ∗ 9 = 54 non-monochromatic biangles), and vertex 2 is adjacent to four red edges and
two blue, for a total of 54 +8 = 62 non-monochromatic biangles. Thus, this edge-coloring
must give rise to precisely four monochromatic triangles.


