# Math 108 Homework 2 Solutions 

## Problem 2B

How many trees $T$ are there on the set of vertices $\{1,2,3,4,5,6,7\}$ in which the vertices 2 and 3 have degree 3, vertex 5 has degree 2, and hence all others have degree 1? Do not just draw pictures but consider the possible Prüfer codes of these trees.

Proof. As noted in Proof 1 of Theorem 2.1 in the text, the number of times a vertex $v$ occurs among $y_{1}, y_{2}, \ldots, y_{n-2}$ in the Prüfer code of a given tree $T$ is equal to $\operatorname{deg}_{T}(v)-1$, where $\operatorname{deg}_{T}(v)$ is the degree of $v$ in $T$. Thus, a tree $T$ on the vertices $\{1,2,3,4,5,6,7\}$ satisfies these degree requirements if and only if its Prüfer code has two 2 s , two 3 s , and one 5. The number of distinct Prüfer codes with these entries is given by $\frac{5!}{2!2!1!}=30$. Because of the bijective correspondence between spanning trees and Prüfer codes, we conclude that there are precisely 30 trees on the vertices $\{1,2,3,4,5,6,7\}$ in which vertices 2 and 3 have degree 3 , vertex 5 has degree 2 , and all others have degree 1 .

## Problem 2D

Here is a variation on the above greedy algorithm. Let $x_{1}$ be any vertex of a weighted connected graph $G$ with $n$ vertices and let $T_{1}$ be the subgraph with the one vertex $x_{1}$ and no edges. After a tree (subgraph) $T_{k}, k<n$, has been defined, let $e_{k}$ be a cheapest edge among all edges with one end in $V\left(T_{k}\right)$ and the other end not in $V\left(T_{k}\right)$, and let $T_{k+1}$ be the tree obtained by adding that edge and its other end to $T_{k}$. Prove that $T_{n}$ is a cheapest spanning tree in $G$.

Proof. This algorithm is known as Prim's algorithm, and proofs of its validity are widespread online.

Suppose that Prim's algorithm does not generate a cheapest spanning tree. Let $T_{0}=\emptyset$, and let $k$ be chosen minimally to satisfy the property that there is no cheapest spanning tree containing all of the edges in $T_{k}$ (since $T_{0}=\emptyset$, we know $k \geq 1$.) Let $M$ be a cheapest spanning tree containing $T_{k-1}$. Note that $e_{k} \notin M$ since then $T_{k} \subseteq M$, but by hypothesis no cheapest spanning tree contains $T_{k}$.

Let $M^{\prime}$ be the graph obtained by adding the edge $e_{k}$ to $M$. Then $M^{\prime}$ is a connected graph with $n$ edges on $n$ vertices, and $M^{\prime}$ contains a cycle. Note that removing any edge from that cycle results in a connected graph with $n-1$ edges on $n$ vertices, and so results in a spanning tree by homework 1 .

Since $e_{k}$ is an edge which leaves $T_{k-1}$ and is a member of a cycle in $M^{\prime}$, there must be another edge $e^{*}$ in that cycle which also leaves $T_{k-1}$. By Prim's algorithm, the cost of
$e^{*}$ is at least that of $e_{k}$. Thus, if we obtain the graph $M^{\prime \prime}$ by removing the edge $e^{*}$ from $M^{\prime}$, we obtain a spanning tree which is of cost no higher than that of $M$. But this $M^{\prime \prime}$ is then a cheapest spanning tree which contains $T_{k}$, contradicting the definition of $k$.

Thus, we may conclude that for all $k \leq n$, there is a cheapest spanning tree containing $T_{k}$. In particular, there is a cheapest spanning tree containing $T_{n}$, but since $T_{n}$ is already a spanning tree, $T_{n}$ must be a cheapest spanning tree.

## Problem 2F

Suppose a tree $G$ has exactly one vertex of degree $i$ for $2 \leq i \leq m$ and all other vertices have degree 1 . How many vertices does $G$ have?

Proof. Recall that the number of edges in $G$ is given by $\frac{1}{2} \sum_{v \in V} \operatorname{deg}_{G}(v)$. By hypothesis, $G$ has $m-1$ vertices with degree greater than one, and so if $G$ has $n$ vertices, then $G$ has $n-m+1$ vertices with degree 1. Thus, we have that the number of edges in $G$ is equal to $\frac{1}{2}\left(n-m+1+\sum_{i=2}^{m} i\right)=\frac{1}{2}\left(n-m+\frac{m(m+1)}{2}\right)=\frac{2 n+m(m-1)}{4}$.

Recall also from Homework 1 that if $G$ is a tree with $n$ vertices, then $G$ has $n-1$ edges. Multiplying these two formulas for the number of edges by four and comparing them, we see that $4 n-4=2 n+m(m-1)$, so that $n=\frac{m(m-1)}{2}+2$. Thus, the tree $\mathbf{G}$ has $\frac{m(m-1)}{2}+2$ vertices.

## Problem 3B

Let the edges of $K_{7}$ be colored with the colors red and blue. Show that there are at least four subgraphs $K_{3}$ with all three edges the same color (monochromatic triangles). Also show that equality can occur.

Proof. Define a biangle to be a subgraph of $K_{7}$ consisting of three nodes and two edges, and call the node adjacent to both edges the base of the biangle. Call the biangle non-monochromatic if the edges are different colors, otherwise call it monochromatic. Note that the edges in any biangle are a part of a unique triangle, and that any nonmonochromatic triangle contains precisely two non-monochromatic biangles.

In $K_{7}$, every vertex has six edges to which it is adjacent. If the vertex $v$ is adjacent to $r$ red edges, then $v$ is the base of $r(6-r) \leq 9$ non-monochromatic biangles. Thus, any coloring of the edges of $K_{7}$ contains at most $63=9 \cdot 7$ non-monochromatic biangles, since every non-monochromatic biangle has some vertex as its base, there are seven vertices in $K_{7}$, and each vertex in $K_{7}$ is the base of at most 9 non-monochromatic biangles.

Since every non-monochromatic triangle contains precisely two non-monochromatic biangles, the number of non-monochromatic triangles is equal to one half the number of non-monochromatic biangles. Therefore, in $K_{7}$, the number of non-monochromatic triangles is bounded above by $63 / 2=31.5$, and since it must be an integer, it is bounded


Figure 1: An edge-coloring of $K_{7}$ with precisely four monochromatic triangles.
above by 31 . Since $K_{7}$ contains $\binom{7}{3}=35$ triangles, we may conclude that at least $35-31=$ 4 of these must be monochromatic.

Also, because every non-monochromatic triangle contains precisely two non-monochromatic biangles, to show that there is an edge-coloring of $K_{7}$ with precisely four monochromatic triangles, it is equivalent to construct an edge-coloring of $K_{7}$ with precisely $(35-4) * 2=62$ non-monochromatic biangles.

This is achieved in Figure 1, since 6 of the vertices (all except vertex 2) have three adjacent red edges and three adjacent blue edges (and so are the bases of a total of $6 * 9=54$ non-monochromatic biangles), and vertex 2 is adjacent to four red edges and two blue, for a total of $54+8=62$ non-monochromatic biangles. Thus, this edge-coloring must give rise to precisely four monochromatic triangles.

