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Diophantine stability

Let C/Q be a curve,

and let

FC := {K : K = Q(P) for some P ∈ C (Q̄)}

be the set of fields over which C gains a point.

Question (Mazur–Rubin)
What does FC look like? To what extent does it determine C?

Today: How does

FC
n (X ;G ) := {K ∈ FC : [K : Q] = n,Gal(K̃/Q) ' G , |Disc(K )| ≤ X}

behave?

Notation: When C = P1
Q, we simply write Fn(X ;G ) instead.
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Elliptic curves

Suppose E/Q is an elliptic curve.

For a number field K/Q, let

w(EK ) := (−1)rkan(EK ),

and set w(E , ρK ) = w(EK )/w(EQ).

Philosophy (“Minimalist philosophy”)
Suppose G is primitive, i.e. K ∈ Fn(X ;G ) has no subfields. Then
• K ∈ FE

n (X ;G ) for all K ∈ Fn(X ;G ) with w(E , ρK ) = −1,
• K ∈ FE

n (X ;G ) for 0% of K ∈ Fn(X ;G ) with w(E , ρK ) = 1.

V. Dokchitser: Computes w(E , ρ) for any Artin representation ρ.
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Goldfeld’s conjecture

Conjecture (Goldfeld; proved up to ε+
√
ε by A. Smith, 2019)

If E/Q is an elliptic curve,

then:
• rk(E ) doesn’t grow in 50% of Q(

√
d),

• rk(E ) grows by 1 for 50% of Q(
√
d), and

• rk(E ) grows by ≥ 2 for 0% of Q(
√
d).

Theorem (Gouvêa–Mazur)

#{K ∈ FE
2 (X ) : w(E , ρK ) = +1} � X 1/2−ε.

In particular, rkan(E ) grows by (at least) 2 in X 1/2−ε fields.
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Nonabelian twists

Conjecture
Let E/Q be an elliptic curve. For any n ≥ 2, as X →∞,
• rk(E ) doesn’t grow in 50% of K ∈ Fn(X ;Sn),
• rk(E ) grows by 1 in 50% of K ∈ Fn(X ;Sn), and
• rk(E ) grows by ≥ 2 in 0% of K ∈ Fn(X ; Sn).

“Theorem” (LO–Thorne)
There’s an analogue of Gouvêa–Mazur for twists by K ∈ Fn(X ;Sn).
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Rank growth of nonabelian twists

Theorem (LO–Thorne)
Let E/Q be an elliptic curve. For any n ≥ 2,

#FE
n (X ; Sn)

= #{K ∈ Fn(X ;Sn) : rk(E (K )) > rk(E (Q))}
� X cn−ε,

where

cn =


1/n n ≤ 5
1/5 n = 6
1/6 n = 7, 8
1
4 −

n2+4n−2
2n2(n−1) n ≥ 9.

Same bound when w(E , ρK ) = 1 and when w(E , ρK ) = −1.

Corollary
rkan(E ) grows by ≥ 2 in at least X 1/3−ε fields K ∈ F3(X ;S3).
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Rank two quadratic twists

Theorem (Gouvêa–Mazur)
rkan(E ) grows by ≥ 2 in � X 1/2−ε fields Q(

√
d) with |d | ≤ X .

Idea: If E : y2 = x3 + Ax + B , choose any x ∈ Q.

If x = u/v for coprime u, v , then

v4y2 = v(u3 + Auv2 + Bv3).

Choosing |u|, |v | ≤ X 1/4 =⇒ |RHS| ≤ X .

Problem
How do we distinguish the fields Q(

√
v(u3 + Auv2 + Bv3))?
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First parametrization in higher degree fields

If E : y2 = f (x) and n is even, then (x , txn/2) is a point on E (Kt),
where

Kt := Q(t)[x ]/Pf (x , t), Pf (x , t) := t2xn − f (x).

Proposition
There is a model E : y2 = f (x) s.t. Gal(K̃t/Q(t)) ' Sn.

Get many K ∈ Fn(X ;Sn) in which rk(E ) grows by specializing t,
provided we can control multiplicities!
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First parametrization: Controlling multiplicities

(Recall: Pf (x , t) = xnt2 − f (x) and Kt = Q(t)[x ]/Pf (x , t).)

Lemma
If t = u/v , then Discx(Pf (x , u/v)) = u2n−4v4−2nH(u, v) for a
not-squarefull sextic form H(u, v).

Theorem (Greaves)
Any “not obstructed” form H(u, v) of degree ≤ 6 assumes � T 2

squarefree values with |u|, |v | ≤ T .

Each value occurs � X ε times =⇒ there are � X 2/(n+4)−ε fields
Kt with |Disc(Kt)| ≤ X .
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How do we control root numbers?

(Recall: Pf (x , t) = xnt2 − f (x) and Kt = Q(t)[x ]/Pf (x , t).)

Lemma (V. Dokchitser)
If K and K ′ ∈ Fn(X ;Sn) are such that
• K ⊗Qp ' K ′ ⊗Qp for each p | NE , and
• sgn(Disc(K )) = −sgn(Disc(K ′)),

then w(E , ρK ) = −w(E , ρK ′).

Theorem
The number of K ∈ Fn(X ; Sn) s.t. rk(E (K )) > rk(E (Q)) and
w(E , ρK ) = +1 is � X 1/(d n2 e+2)−ε.
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Second Parametrization

If n is even,

let F ,G ∈ Z[x ] have degree n/2 and n/2− 2, resp.
Then (x , F (x)G(x)) is on E (KF ,G ), where

KF ,G = Q[x ]/(F 2 − fG 2).

Lemma
Gal(K̃F ,G/Q) ' Sn for almost all F ,G .

Proof.
If F (x) = txn/2 and G (x) = 1, then KF ,G = Kt . Now use Hilbert
Irreducibility.
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Second Parametrization: Controlling Multiplicities

Question
How do we control the multiplicity of KF ,G = Q[x ]/(F 2 − fG 2)?

Lemma
Given f ,H ∈ Z[x ], there are On(1) solutions F ,G to H = F 2− fG 2.

Question
How do we make sure the same field isn’t cut out by lots of
polynomials?
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Multiplicities of fields

Let

Sn(Y ) := {g(x) = xn + a1x
n−1 + · · ·+ an ∈ Z[x ] : |ai | ≤ Y i}.

(Note: If g ∈ Sn(Y ), then |Disc(g)| � Y n(n−1).)

Lemma (Ellenberg–Venkatesh + ε·(LO–Thorne))
If K ∈ Fn(X ), then
#{g ∈ Sn(Y ) : Q[x ]/g ' K} � max

{
Y nDisc(K )−1/2,Y n/2

}
.

=⇒ #{|Disc(KF ,G )| ≤ X}/iso.� X
1
4−

n2+4n−2
2n2(n−1) .
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The limit of the method

Theorem
Let E/Q be an elliptic curve.

If for each K ∈ Fn(X ;Sn),
• L(s,EK ) is automorphic,
• L(s,EK ) satisfies GRH, and
• L(s,EK ) satisfies BSD,

then

#{K ∈ Fn(X ; Sn) : rk(E (K )) ≥ 2 + rk(E (Q))} � X
1
4+

1
2(n2−n) .
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But what’s the truth?

Conjecture (Birch–Swinnerton-Dyer)
If r = rk(E ), then r = ords=1L(s,E ) and

L(r)(1,E )

r !
=
|X(E )|Reg(E )Tam(E )ΩR(E )

|E (Q)tors|2
.

Conjecture (Tate’s Séminaire Bourbaki)
If K/Q has sig. (r1, r2) and r = rk(EK ), then r = ords=1L(s,EK )
and

L(r)(1,EK )

r !
=
|X(EK )|Reg(EK )Tam(EK )ΩR(E )r1ΩC(E )r2

|Disc(K )|1/2|E (K )tors|2
.

Idea: Pay attention to the case when rk(EQ) = rk(EK ).
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Relative rank zero BSD

Conjecture
Let L(s,E , ρK ) = L(s,EK )/L(s,E ).

If E (K ) = E (Q), then

L(1,E , ρK ) =
|X(EK )|
|X(E )|

Tam(EK )

Tam(E )

ΩR(E )r1−1ΩC(E )r2

|Disc(K )|1/2
.

Expect: L(1,E , ρK ),Tam(EK )� (ht(E )|Disc(K )|)ε =: Qε, so

|X(EK )|
|X(E )|

� |Disc(K )|1/2

ΩR(E )r1−1ΩC(E )r2
Qε.

Crude model: |X(EK )/X(E )| = m2 uniformly with

m� |Disc(K )|1/4Qε

ΩR(E )
r1−1

2 ΩC(E )
r2
2
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An embarrassingly crude model

We thus expect

L(1,E , ρK ) = m2 · (Invariants of E )

with

m� |Disc(K )|1/4Qε

ΩR(E )
r1−1

2 ΩC(E )
r2
2

.

Very crude model: L(1,E , ρK ) = 0 if m “accidentally” equals 0,
which happens with probability about

ΩR(E )
r1−1

2 ΩC(E )
r2
2

|Disc(K )|1/4
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A prediction for rank 2 twists

For fixed E , if K ∈ Fn(X ;Sn) with w(E , ρK ) = +1, we thus expect

Prob.(L(1,E , ρK ) = 0) ≈ 1
|Disc(K )|1/4

.

Conjecture
If E/Q is an elliptic curve, then for each n

X 3/4−ε � #{K ∈ FE
n (X ; Sn) : w(E , ρK ) = +1} � X 3/4+ε.

More generally, if G ⊆ Sn is primitive, then

X
1

a(G)
− 1

4−ε �

#{K ∈ FE
n (X ;G ) : w(E , ρK ) = +1}

� X
1

a(G)
− 1

4+ε.

Take note: What if 1/a(G ) < 1/4? Predicts finiteness/emptiness.
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Example: Prime degree cyclic fields

Let K ∈ Fp(X ;Cp).

Then

L(s,E , ρK ) =
∏
χ 6=χ0

L(s,E , χ),

and since each χ is complex, no L(s,E , χ) is self-dual and
w(E , ρK ) = +1 always.

Moreover, #Fp(X ;Cp)� X 1/(p−1)+ε, so we obtain:

Conjecture (David–Fearnley–Kisilevsky)
limX→∞FE

p (X ;Cp) is finite if p ≥ 7.
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Example: Prime degree cyclic fields, cont.

Variant: Fix K ∈ Fp(X ;Cp) and vary E .

Model had

Prob.(L(1,E , ρK ) = 0) ≈ ΩR(E )
r1−1

2 ΩC(E )
r2
2

|Disc(K )|1/4
.

K has signature (p, 0) and ΩR(E ) ≈ ht(E )−1/12,
⇒ Prob.(L(1,E , ρK ) = 0) ≈ ht(E )−

p−1
24 .

Conjecture
If p ≤ 19, there exist infinitely many E for which K ∈ FE

p (X ;Cp).
If p ≥ 23, then there are only finitely many.

Hybrid: Is there no E/Q and no K ∈ Fp(X ;Cp) with p ≥ 23 for
which E (K ) 6= E (Q)?
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Higher genus curves

Theorem (Keyes)
Let C/Q be hyperelliptic of genus g .

If deg(C ) is odd, then

#FC
n (X ; Sn)� X

1
4−cg,n−ε

for each n ≥ g , where cg ,n is explicit and → 0 as n→∞.

Question
What’s the truth? How does #FC

n (X ;G ) behave for other G? For
other C? What does this reveal about the geometry of C?
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