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Diophantine stability

Let C/Q be a curve, and let
FC = {K: K =Q(P) for some P € C(Q)}

be the set of fields over which C gains a point.

Question (Mazur—Rubin)
What does F€ look like? To what extent does it determine C?

Today: How does
FE(X;G):={K e F:[K:Q] = n,Gal(K/Q) ~ G, |Disc(K)| < X}
behave?

Notation: When C = P(l@, we simply write F,(X; G) instead.
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Elliptic curves

Suppose E/Q is an elliptic curve. For a number field K/Q, let
w(Ek) = (—1)kan(Ex),

and set w(E, px) = w(Ek)/w(Eg).

Philosophy (“Minimalist philosophy")

Suppose G is primitive, i.e. K € F,(X; G) has no subfields. Then

o K € FE(X;G) for all K € F,(X; G) with w(E, pk) = —1,
o K € FE(X; G) for 0% of K € Fu(X; G) with w(E, pk) = 1.

V. Dokchitser: Computes w(E, p) for any Artin representation p.
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Goldfeld's conjecture

Conjecture (Goldfeld; proved up to € + /€ by A. Smith, 2019)
If E/Q is an elliptic curve, then:

o tk(E) doesn't grow in 50% of Q(+/d),

o tk(E) grows by 1 for 50% of Q(\/d), and

o 1k(E) grows by > 2 for 0% of Q(\/d).

Theorem (Gouvéa—Mazur)
#{K € FE(X) : w(E, pk) = +1} > X2,
In particular, vka,(E) grows by (at least) 2 in X1/2=< fields.
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Conjecture

Let E/Q be an elliptic curve. For any n > 2, as X — oo,
o tk(E) doesn't grow in 50% of K € Fp(X; Sn),
e tk(E) grows by 1 in 50% of K € F,(X; Ss), and
o tk(E) grows by > 2 in 0% of K € F,(X; Sp).

“Theorem” (LO-Thorne)
There's an analogue of Gouvéa—Mazur for twists by K € F,(X; Sp).
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Rank growth of nonabelian twists

Theorem (LO-Thorne)
Let E/Q be an elliptic curve. For any n > 2,

#FE(X:S,)) = #{K e Fu(X;S,) : tk(E(K)) > rk(E(Q))}

> Xc"fe,
where
1/n n<5
1/5 n==6
Ch =
1/6 n=7,8

2 —
1 n“+4n—2 nzg

4 2n2(n-1)

Same bound when w(E, px) =1 and when w(E, px) = —1.

Corollary
rkan(E) grows by > 2 in at least X1/3=¢ fields K € F3(X; S3).
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Problem
How do we distinguish the fields Q(/v(u3 + Auv2 + Bv3))?

Gouvéa and Mazur show that:
® v(u® + Auv? + Bv3) assumes > X1/2 squarefree values < X,
@® any particular value arises < X¢ times.

— 1k(E) grows in at least X1/27¢ fields K € F»(X).

Get growth > 2 of rkan(E) by controlling the root number.
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If E: y? = f(x) and n is even, then (x, tx"/?) is a point on E(K}),
where

K: := Q(t)[x]/Pr(x, t), Ps(x,t) = t°x" — f(x).
Proposition
There is a model E: y? = f(x) s.t. Gal(kvt/(@(t)) ~ S,

Get many K € F,(X;S,) in which rk(E) grows by specializing t,
provided we can control multiplicities!
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First parametrization: Controlling multiplicities

(Recall: Pr(x,t) = x"t2 — f(x) and K: = Q(t)[x]/Pr(x, t).)

Lemma
Ift = u/v, then Discy(Ps(x,u/v)) = u*"~*v4=2"H(u, v) for a
not-squarefull sextic form H(u, v).

Theorem (Greaves)

Any “not obstructed” form H(u, v) of degree < 6 assumes > T?
squarefree values with |ul,|v| < T.

Each value occurs < X¢ times = there are > X2/(1+4)=¢ fie|ds
K: with |Disc(K:)| < X.
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How do we control root numbers?

(Recall: Pr(x,t) = x"t2 — f(x) and K: = Q(t)[x]/Pr(x, t).)

Lemma (V. Dokchitser)

If K and K' € Fn(X;S,) are such that
e K®Qp~K' ®Q, for each p | Ng, and
e sgn(Disc(K)) = —sgn(Disc(K")),

then w(E, px) = —w(E, pkr).

Theorem

The number of K € Fp(X; Sp) s.t. tk(E(K)) > rk(E(Q)) and
w(E, pi) = +1 is > x1/(121+2)—¢
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Second Parametrization

If nis even, let F, G € Z[x] have degree n/2 and n/2 — 2, resp.
Then (x, GE ;) is on E(KFr,g), where

Kr.c = Q[x]/(F? — fG?).

Lemma
Gal(Kr,c/Q) ~ S, for almost all F,G.

Proof.
If F(x) = tx™/2 and G(x) = 1, then K g = K;. Now use Hilbert
Irreducibility. O
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Second Parametrization: Controlling Multiplicities

Question
How do we control the multiplicity of Kr ¢ = Q[x]/(F? — fG?)?

Lemma
Given f, H € Z[x], there are On(1) solutions F, G to H = F? — fG?.

Question
How do we make sure the same field isn't cut out by lots of
polynomials?
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Let

Sn(Y) ={g(x)=x"+ax" T+ +a,€Zx]:|a] <Y}
(Note: If g € S,(Y), then |Disc(g)| < Y"("~1))
Lemma (Ellenberg—Venkatesh + ¢-(LO-Thorne))

If K € Fn(X), then
#ig e Sn(Y): Qx]/g ~ K} < max { Y "Disc(K)~1/2, vn/2}.

n2+4n 2

= #{|Disc(Kr ¢)| < X}/iso. > X4 T2m2(n-1)
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Theorem
Let E/Q be an elliptic curve. If for each K € Fn(X;Sp),

e L(s, Ex) is automorphic,

e L(s, Ex) satisfies GRH, and

e [(s, Ek) satisfies BSD,
then

1

BIK € Fo(X; Sp) : t(E(K)) = 2 + rk(E(Q))} > X4 "2,
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Conjecture (Birch—Swinnerton-Dyer)
If r = rk(E), then r = ords—1L(s, E) and

L)(1,E)  |II(E)|Reg(E)Tam(E)Qr(E)

I’! |E(Q)tors|2

Conjecture (Tate's Séminaire Bourbaki)

If K/Q has sig. (rn,r) and r = tk(Ek), then r = ords—1L(s, Ek)
and

L((1, Ek) _ |HI(Ek)[Reg(Ex) Tam(Ex )Qr(E)"™ Qc(E)"™
r! |Disc(K)|Y2|E(K)iors| '

Idea: Pay attention to the case when rk(Eqg) = rk(Ek).
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Relative rank zero BSD

Conjecture
Let L(s, E, pk) = L(s, Ex)/L(s,E). If E(K) = E(Q), then

_ |UI(Ex)| Tam(Ex) Qz(E)" ' Qc(E)"
L(1,E, pk) = ’m(EK)‘ Tam(EK) R]Disc(K)ﬁm )

Expect: L(1, E, pk), Tam(Ex) < (ht(E)|Disc(K)|) =: QF, so

| TTT(EK)| | Disc(K)[*/?
[HI(E)| — Qr(E)"~Qc(E)

r Q.
Crude model: |ITI(Ek)/II(E)| = m? uniformly with

|Disc(K)|Y* Q¢
Qr(E)*r Qc(E)F
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An embarrassingly crude model

We thus expect
L(1, E, pk) = m? - (Invariants of E)

with
|Disc(K)|Y* Q¢

n-1 '’
Qr(E) 2 Qc(E)2

Very crude model: L(1,E, px) = 0 if m “accidentally” equals 0,
which happens with probability about

Qn(E)*z Qc(E)?
Disc(K)|1/4
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A prediction for rank 2 twists

For fixed E, if K € F,(X;Sn) with w(E, px) = +1, we thus expect

1

Prob.(L(L B, pic) = 0) = 1 i

Conjecture
If E/Q is an elliptic curve, then for each n

X34 « #{K € FE(X;S,) : w(E, pi) = +1} < X3/4F¢,

More generally, if G C S, is primitive, then

1 1 1 1

XA <« #{K € FE(X; G) : w(E, px) = +1} < XA a7,

Take note: What if 1/a(G) < 1/4?7 Predicts finiteness/emptiness.
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Example: Prime degree cyclic fields, cont.

Variant: Fix K € F,(X; Cp) and vary E. Model had

Qn(E)"z Qc(E)%
|Disc(K)|1/4

Prob.(L(1, E, pk) =0) =

K has signature (p,0) and Qg(E) ~ ht(E)~1/12,
= Prob.(L(1, E, px) = 0) ~ ht(E)~ = .

Conjecture

If p < 19, there exist infinitely many E for which K € ]-f(X; Gp).
If p > 23, then there are only finitely many.

Hybrid: Is there no E/Q and no K € F,(X; Cp) with p > 23 for
which E(K) # E(Q)?
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Higher genus curves

Theorem (Keyes)
Let C/Q be hyperelliptic of genus g. If deg(C) is odd, then

HFE(X; S,) > X5 Can—
for each n > g, where cg , is explicit and — 0 as n — oc.
Question

What's the truth? How does #F¢(X; G) behave for other G? For
other C? What does this reveal about the geometry of C?



