Growth of rational points on curves

Robert J. Lemke Oliver Tufts University

(Actual theorems joint with Frank Thorne)

Let C/\mathbb{Q} be a curve,

Let C/\mathbb{Q} be a curve, and let

$$\mathcal{F}^{\mathsf{C}}:=\{K:K=\mathbb{Q}(P) ext{ for some }P\in \mathit{C}(ar{\mathbb{Q}})\}$$

be the set of fields over which C gains a point.

Let C/\mathbb{Q} be a curve, and let

$$\mathcal{F}^{\mathsf{C}}:=\{K:K=\mathbb{Q}(P) ext{ for some }P\in C(ar{\mathbb{Q}})\}$$

be the set of fields over which C gains a point.

Question (Mazur–Rubin) What does \mathcal{F}^{C} look like?

Let C/\mathbb{Q} be a curve, and let

$$\mathcal{F}^{\mathsf{C}}:=\{K:K=\mathbb{Q}(P) ext{ for some }P\in C(ar{\mathbb{Q}})\}$$

be the set of fields over which C gains a point.

Question (Mazur–Rubin)

What does \mathcal{F}^{C} look like? To what extent does it determine C?

Let C/\mathbb{Q} be a curve, and let

$$\mathcal{F}^{\mathsf{C}}:=\{K:K=\mathbb{Q}(P) ext{ for some }P\in C(ar{\mathbb{Q}})\}$$

be the set of fields over which C gains a point.

Question (Mazur–Rubin)

What does \mathcal{F}^{C} look like? To what extent does it determine C?

Today: How does

 $\mathcal{F}_n^{\mathsf{C}}(X;\mathsf{G}) := \{ \mathsf{K} \in \mathcal{F}^{\mathsf{C}} : [\mathsf{K} : \mathbb{Q}] = n, \operatorname{Gal}(\widetilde{\mathsf{K}}/\mathbb{Q}) \simeq \mathsf{G}, |\operatorname{Disc}(\mathsf{K})| \leq X \}$ behave?

Let C/\mathbb{Q} be a curve, and let

$$\mathcal{F}^{\mathsf{C}}:=\{K:K=\mathbb{Q}(P) ext{ for some }P\in C(ar{\mathbb{Q}})\}$$

be the set of fields over which C gains a point.

Question (Mazur–Rubin)

What does \mathcal{F}^{C} look like? To what extent does it determine C?

Today: How does

 $\mathcal{F}_n^{\mathsf{C}}(X;\mathsf{G}) := \{ \mathsf{K} \in \mathcal{F}^{\mathsf{C}} : [\mathsf{K} : \mathbb{Q}] = n, \operatorname{Gal}(\widetilde{\mathsf{K}}/\mathbb{Q}) \simeq \mathsf{G}, |\operatorname{Disc}(\mathsf{K})| \leq X \}$ behave?

Notation: When $C = \mathbb{P}^1_{\mathbb{Q}}$, we simply write $\mathcal{F}_n(X; G)$ instead.

Suppose E/\mathbb{Q} is an elliptic curve.

$$w(E_{\mathcal{K}}):=(-1)^{\mathrm{rk}_{\mathrm{an}}(E_{\mathcal{K}})},$$

Elliptic curves

Suppose E/\mathbb{Q} is an elliptic curve. For a number field K/\mathbb{Q} , let

$$w(E_{\mathcal{K}}):=(-1)^{\mathrm{rk}_{\mathrm{an}}(E_{\mathcal{K}})},$$

and set $w(E, \rho_K) = w(E_K)/w(E_Q)$.

$$w(E_{\mathcal{K}}):=(-1)^{\mathrm{rk}_{\mathrm{an}}(E_{\mathcal{K}})},$$

and set $w(E, \rho_K) = w(E_K)/w(E_Q)$.

Philosophy ("Minimalist philosophy") Suppose *G* is *primitive*,

$$w(E_{\mathcal{K}}):=(-1)^{\mathrm{rk}_{\mathrm{an}}(E_{\mathcal{K}})},$$

and set $w(E, \rho_K) = w(E_K)/w(E_Q)$.

Philosophy ("Minimalist philosophy") Suppose G is primitive, i.e. $K \in \mathcal{F}_n(X; G)$ has no subfields.

$$w(E_{\mathcal{K}}):=(-1)^{\mathrm{rk}_{\mathrm{an}}(E_{\mathcal{K}})},$$

and set $w(E, \rho_K) = w(E_K)/w(E_Q)$.

Philosophy ("Minimalist philosophy")

Suppose G is *primitive*, i.e. $K \in \mathcal{F}_n(X; G)$ has no subfields. Then

• $K \in \mathcal{F}_n^E(X; G)$ for all $K \in \mathcal{F}_n(X; G)$ with $w(E, \rho_K) = -1$,

$$w(E_{\mathcal{K}}):=(-1)^{\mathrm{rk}_{\mathrm{an}}(E_{\mathcal{K}})},$$

and set $w(E, \rho_K) = w(E_K)/w(E_Q)$.

Philosophy ("Minimalist philosophy")

Suppose G is *primitive*, i.e. $K \in \mathcal{F}_n(X; G)$ has no subfields. Then

- $K \in \mathcal{F}_n^E(X; G)$ for all $K \in \mathcal{F}_n(X; G)$ with $w(E, \rho_K) = -1$,
- $K \in \mathcal{F}_n^E(X; G)$ for 0% of $K \in \mathcal{F}_n(X; G)$ with $w(E, \rho_K) = 1$.

$$w(E_{\mathcal{K}}):=(-1)^{\mathrm{rk}_{\mathrm{an}}(E_{\mathcal{K}})},$$

and set $w(E, \rho_K) = w(E_K)/w(E_Q)$.

Philosophy ("Minimalist philosophy")

Suppose G is *primitive*, i.e. $K \in \mathcal{F}_n(X; G)$ has no subfields. Then

- $K \in \mathcal{F}_n^E(X; G)$ for all $K \in \mathcal{F}_n(X; G)$ with $w(E, \rho_K) = -1$,
- $K \in \mathcal{F}_n^E(X; G)$ for 0% of $K \in \mathcal{F}_n(X; G)$ with $w(E, \rho_K) = 1$.

V. Dokchitser: Computes $w(E, \rho)$ for any Artin representation ρ .

• $\operatorname{rk}(E)$ doesn't grow in 50% of $\mathbb{Q}(\sqrt{d})$,

- $\operatorname{rk}(E)$ doesn't grow in 50% of $\mathbb{Q}(\sqrt{d})$,
- $\operatorname{rk}(E)$ grows by 1 for 50% of $\mathbb{Q}(\sqrt{d})$,

- $\operatorname{rk}(E)$ doesn't grow in 50% of $\mathbb{Q}(\sqrt{d})$,
- $\operatorname{rk}(E)$ grows by 1 for 50% of $\mathbb{Q}(\sqrt{d})$, and
- $\operatorname{rk}(E)$ grows by ≥ 2 for 0% of $\mathbb{Q}(\sqrt{d})$.

- $\operatorname{rk}(E)$ doesn't grow in 50% of $\mathbb{Q}(\sqrt{d})$,
- $\operatorname{rk}(E)$ grows by 1 for 50% of $\mathbb{Q}(\sqrt{d})$, and
- $\operatorname{rk}(E)$ grows by ≥ 2 for 0% of $\mathbb{Q}(\sqrt{d})$.

Theorem (Gouvêa–Mazur)

$$\#\{K\in\mathcal{F}_2^{\mathcal{E}}(X):w(E,\rho_K)=+1\}\gg X^{1/2-\epsilon}$$

- $\operatorname{rk}(E)$ doesn't grow in 50% of $\mathbb{Q}(\sqrt{d})$,
- $\operatorname{rk}(E)$ grows by 1 for 50% of $\mathbb{Q}(\sqrt{d})$, and
- $\operatorname{rk}(E)$ grows by ≥ 2 for 0% of $\mathbb{Q}(\sqrt{d})$.

Theorem (Gouvêa-Mazur)

$$\#\{K \in \mathcal{F}_2^{\mathcal{E}}(X) : w(\mathcal{E}, \rho_K) = +1\} \gg X^{1/2-\epsilon}$$

In particular, $rk_{an}(E)$ grows by (at least) 2 in $X^{1/2-\epsilon}$ fields.

Nonabelian twists

Conjecture Let E/\mathbb{Q} be an elliptic curve.

Let E/\mathbb{Q} be an elliptic curve. For any $n \geq 2$, as $X \to \infty$,

• $\operatorname{rk}(E)$ doesn't grow in 50% of $K \in \mathcal{F}_n(X; S_n)$,

Let E/\mathbb{Q} be an elliptic curve. For any $n \geq 2$, as $X \to \infty$,

- $\operatorname{rk}(E)$ doesn't grow in 50% of $K \in \mathcal{F}_n(X; S_n)$,
- $\operatorname{rk}(E)$ grows by 1 in 50% of $K \in \mathcal{F}_n(X; S_n)$,

Let E/\mathbb{Q} be an elliptic curve. For any $n \geq 2$, as $X \to \infty$,

- $\operatorname{rk}(E)$ doesn't grow in 50% of $K \in \mathcal{F}_n(X; S_n)$,
- $\operatorname{rk}(E)$ grows by 1 in 50% of $K \in \mathcal{F}_n(X; S_n)$, and
- $\operatorname{rk}(E)$ grows by ≥ 2 in 0% of $K \in \mathcal{F}_n(X; S_n)$.

Let E/\mathbb{Q} be an elliptic curve. For any $n \geq 2$, as $X \to \infty$,

- $\operatorname{rk}(E)$ doesn't grow in 50% of $K \in \mathcal{F}_n(X; S_n)$,
- $\operatorname{rk}(E)$ grows by 1 in 50% of $K \in \mathcal{F}_n(X; S_n)$, and
- $\operatorname{rk}(E)$ grows by ≥ 2 in 0% of $K \in \mathcal{F}_n(X; S_n)$.

"Theorem" (LO-Thorne)

There's an analogue of Gouvêa–Mazur for twists by $K \in \mathcal{F}_n(X; S_n)$.

Theorem (LO-Thorne)

Let E/\mathbb{Q} be an elliptic curve. For any $n \geq 2$,

 $\#\mathcal{F}_n^E(X;S_n)$

Theorem (LO-Thorne)

Let E/\mathbb{Q} be an elliptic curve. For any $n \geq 2$,

 $\#\mathcal{F}_n^{\mathsf{E}}(X;S_n) = \#\{K \in \mathcal{F}_n(X;S_n) : \operatorname{rk}(\mathsf{E}(K)) > \operatorname{rk}(\mathsf{E}(\mathbb{Q}))\}$

Theorem (LO–Thorne)

Let E/\mathbb{Q} be an elliptic curve. For any $n \geq 2$,

$$\begin{aligned} \#\mathcal{F}_n^{\mathcal{E}}(X;S_n) &= & \#\{K \in \mathcal{F}_n(X;S_n) : \operatorname{rk}(\mathcal{E}(K)) > \operatorname{rk}(\mathcal{E}(\mathbb{Q}))\} \\ & \gg & X^{c_n - \epsilon}, \end{aligned}$$

Theorem (LO–Thorne) Let E/\mathbb{Q} be an elliptic curve. For any $n \ge 2$, $\#\mathcal{F}_n^E(X; S_n) = \#\{K \in \mathcal{F}_n(X; S_n) : \operatorname{rk}(E(K)) > \operatorname{rk}(E(\mathbb{Q}))\}$ $\gg X^{c_n - \epsilon}$,

$$c_n = \begin{cases} 1/n & n \leq 5 \end{cases}$$

Theorem (LO–Thorne) Let E/\mathbb{Q} be an elliptic curve. For any $n \ge 2$, $\#\mathcal{F}_n^E(X; S_n) = \#\{K \in \mathcal{F}_n(X; S_n) : \operatorname{rk}(E(K)) > \operatorname{rk}(E(\mathbb{Q}))\}$ $\gg X^{c_n - \epsilon}$,

$$c_n = \begin{cases} 1/n & n \le 5\\ 1/5 & n = 6 \end{cases}$$

Theorem (LO–Thorne) Let E/\mathbb{Q} be an elliptic curve. For any $n \ge 2$, $\#\mathcal{F}_n^E(X; S_n) = \#\{K \in \mathcal{F}_n(X; S_n) : \operatorname{rk}(E(K)) > \operatorname{rk}(E(\mathbb{Q}))\}$ $\gg X^{c_n - \epsilon}$,

$$c_n = \begin{cases} 1/n & n \le 5\\ 1/5 & n = 6\\ 1/6 & n = 7,8 \end{cases}$$

Theorem (LO–Thorne) Let E/\mathbb{Q} be an elliptic curve. For any $n \ge 2$, $\#\mathcal{F}_n^E(X; S_n) = \#\{K \in \mathcal{F}_n(X; S_n) : \operatorname{rk}(E(K)) > \operatorname{rk}(E(\mathbb{Q}))\}$ $\gg X^{c_n - \epsilon}$,

$$c_n = \begin{cases} 1/n & n \le 5\\ 1/5 & n = 6\\ 1/6 & n = 7, 8\\ \frac{1}{4} - \frac{n^2 + 4n - 2}{2n^2(n - 1)} & n \ge 9. \end{cases}$$

Theorem (LO–Thorne) Let E/\mathbb{Q} be an elliptic curve. For any $n \ge 2$, $\#\mathcal{F}_n^E(X; S_n) = \#\{K \in \mathcal{F}_n(X; S_n) : \operatorname{rk}(E(K)) > \operatorname{rk}(E(\mathbb{Q}))\}$ $\gg X^{c_n - \epsilon}$,

where

$$c_n = \begin{cases} 1/n & n \leq 5\\ 1/5 & n = 6\\ 1/6 & n = 7, 8\\ \frac{1}{4} - \frac{n^2 + 4n - 2}{2n^2(n - 1)} & n \geq 9. \end{cases}$$

Same bound when $w(E, \rho_K) = 1$ and when $w(E, \rho_K) = -1$.

Theorem (LO–Thorne) Let E/\mathbb{Q} be an elliptic curve. For any $n \ge 2$, $\#\mathcal{F}_n^E(X; S_n) = \#\{K \in \mathcal{F}_n(X; S_n) : \operatorname{rk}(E(K)) > \operatorname{rk}(E(\mathbb{Q}))\}$ $\gg X^{c_n - \epsilon}$,

where

$$c_n = egin{cases} 1/n & n \leq 5 \ 1/5 & n = 6 \ 1/6 & n = 7,8 \ rac{1}{4} - rac{n^2 + 4n - 2}{2n^2(n-1)} & n \geq 9. \end{cases}$$

Same bound when $w(E, \rho_K) = 1$ and when $w(E, \rho_K) = -1$.

Corollary

 $\operatorname{rk}_{\operatorname{an}}(E)$ grows by ≥ 2 in at least $X^{1/3-\epsilon}$ fields $K \in \mathcal{F}_3(X; S_3)$.

 $\operatorname{rk}_{\operatorname{an}}(E)$ grows by ≥ 2 in $\gg X^{1/2-\epsilon}$ fields $\mathbb{Q}(\sqrt{d})$ with $|d| \leq X$.

 $\operatorname{rk}_{\operatorname{an}}(E)$ grows by ≥ 2 in $\gg X^{1/2-\epsilon}$ fields $\mathbb{Q}(\sqrt{d})$ with $|d| \leq X$.

Idea: If $E: y^2 = x^3 + Ax + B$,

 $\operatorname{rk}_{\operatorname{an}}(E)$ grows by ≥ 2 in $\gg X^{1/2-\epsilon}$ fields $\mathbb{Q}(\sqrt{d})$ with $|d| \leq X$.

Idea: If $E: y^2 = x^3 + Ax + B$, choose any $x \in \mathbb{Q}$.

 $\operatorname{rk}_{\operatorname{an}}(E)$ grows by ≥ 2 in $\gg X^{1/2-\epsilon}$ fields $\mathbb{Q}(\sqrt{d})$ with $|d| \leq X$.

Idea: If $E: y^2 = x^3 + Ax + B$, choose any $x \in \mathbb{Q}$.

If x = u/v for coprime u, v,

 $\operatorname{rk}_{\operatorname{an}}(E)$ grows by ≥ 2 in $\gg X^{1/2-\epsilon}$ fields $\mathbb{Q}(\sqrt{d})$ with $|d| \leq X$.

Idea: If $E: y^2 = x^3 + Ax + B$, choose any $x \in \mathbb{Q}$.

If x = u/v for coprime u, v, then

$$v^4y^2 = v(u^3 + Auv^2 + Bv^3).$$

 $\operatorname{rk}_{\operatorname{an}}(E)$ grows by ≥ 2 in $\gg X^{1/2-\epsilon}$ fields $\mathbb{Q}(\sqrt{d})$ with $|d| \leq X$.

Idea: If $E: y^2 = x^3 + Ax + B$, choose any $x \in \mathbb{Q}$.

If x = u/v for coprime u, v, then

$$v^4 y^2 = v(u^3 + Auv^2 + Bv^3).$$

Choosing $|u|, |v| \leq X^{1/4}$

 $\operatorname{rk}_{\operatorname{an}}(E)$ grows by ≥ 2 in $\gg X^{1/2-\epsilon}$ fields $\mathbb{Q}(\sqrt{d})$ with $|d| \leq X$.

Idea: If $E: y^2 = x^3 + Ax + B$, choose any $x \in \mathbb{Q}$.

If x = u/v for coprime u, v, then

$$v^4 y^2 = v(u^3 + Auv^2 + Bv^3).$$

Choosing $|u|, |v| \leq X^{1/4} \Longrightarrow |\text{RHS}| \leq X$.

 $\operatorname{rk}_{\operatorname{an}}(E)$ grows by ≥ 2 in $\gg X^{1/2-\epsilon}$ fields $\mathbb{Q}(\sqrt{d})$ with $|d| \leq X$.

Idea: If $E: y^2 = x^3 + Ax + B$, choose any $x \in \mathbb{Q}$.

If x = u/v for coprime u, v, then

$$v^4 y^2 = v(u^3 + Auv^2 + Bv^3).$$

Choosing $|u|, |v| \leq X^{1/4} \Longrightarrow |\text{RHS}| \leq X$.

Problem

How do we distinguish the fields $\mathbb{Q}(\sqrt{v(u^3 + Auv^2 + Bv^3)})?$

How do we distinguish the fields $\mathbb{Q}(\sqrt{v(u^3 + Auv^2 + Bv^3)})$?

How do we distinguish the fields $\mathbb{Q}(\sqrt{v(u^3 + Auv^2 + Bv^3)})?$

Gouvêa and Mazur show that:

1 $v(u^3 + Auv^2 + Bv^3)$ assumes $\gg X^{1/2}$ squarefree values $\leq X$,

How do we distinguish the fields $\mathbb{Q}(\sqrt{v(u^3 + Auv^2 + Bv^3)})?$

Gouvêa and Mazur show that:

- 1 $v(u^3 + Auv^2 + Bv^3)$ assumes $\gg X^{1/2}$ squarefree values $\leq X$,
- 2 any particular value arises $\ll X^{\epsilon}$ times.

How do we distinguish the fields $\mathbb{Q}(\sqrt{v(u^3 + Auv^2 + Bv^3)})?$

Gouvêa and Mazur show that:

v(u³ + Auv² + Bv³) assumes ≫ X^{1/2} squarefree values ≤ X,
 any particular value arises ≪ X^ϵ times.
 ⇒ rk(E) grows in at least X^{1/2-ϵ} fields K ∈ F₂(X).

How do we distinguish the fields $\mathbb{Q}(\sqrt{v(u^3 + Auv^2 + Bv^3)})$?

Gouvêa and Mazur show that:

1 $v(u^3 + Auv^2 + Bv^3)$ assumes $\gg X^{1/2}$ squarefree values $\leq X$, 2 any particular value arises $\ll X^{\epsilon}$ times. $\implies \operatorname{rk}(E)$ grows in at least $X^{1/2-\epsilon}$ fields $K \in \mathcal{F}_2(X)$.

Get growth ≥ 2 of $rk_{an}(E)$ by controlling the root number.

If $E: y^2 = f(x)$ and *n* is even,

If $E: y^2 = f(x)$ and *n* is even, then $(x, tx^{n/2})$ is a point on $E(K_t)$,

If $E: y^2 = f(x)$ and *n* is even, then $(x, tx^{n/2})$ is a point on $E(K_t)$, where

$$K_t := \mathbb{Q}(t)[x]/P_f(x,t), \quad P_f(x,t) := t^2 x^n - f(x).$$

If $E: y^2 = f(x)$ and *n* is even, then $(x, tx^{n/2})$ is a point on $E(K_t)$, where

$$\mathcal{K}_t := \mathbb{Q}(t)[x]/P_f(x,t), \quad P_f(x,t) := t^2 x^n - f(x).$$

Proposition

There is a model $E: y^2 = f(x)$ s.t. $\operatorname{Gal}(\widetilde{K_t}/\mathbb{Q}(t)) \simeq S_n$.

If $E: y^2 = f(x)$ and *n* is even, then $(x, tx^{n/2})$ is a point on $E(K_t)$, where

$$\mathcal{K}_t := \mathbb{Q}(t)[x]/P_f(x,t), \quad P_f(x,t) := t^2 x^n - f(x).$$

Proposition

There is a model $E: y^2 = f(x)$ s.t. $\operatorname{Gal}(\widetilde{K_t}/\mathbb{Q}(t)) \simeq S_n$.

Get many $K \in \mathcal{F}_n(X; S_n)$ in which $\operatorname{rk}(E)$ grows by specializing t

If $E: y^2 = f(x)$ and *n* is even, then $(x, tx^{n/2})$ is a point on $E(K_t)$, where

$$\mathcal{K}_t := \mathbb{Q}(t)[x]/P_f(x,t), \quad P_f(x,t) := t^2 x^n - f(x).$$

Proposition

There is a model $E: y^2 = f(x)$ s.t. $\operatorname{Gal}(\widetilde{K_t}/\mathbb{Q}(t)) \simeq S_n$.

Get many $K \in \mathcal{F}_n(X; S_n)$ in which rk(E) grows by specializing t, provided we can control multiplicities!

(**Recall:**
$$P_f(x,t) = x^n t^2 - f(x)$$
 and $K_t = \mathbb{Q}(t)[x]/P_f(x,t)$.)

(**Recall:**
$$P_f(x,t) = x^n t^2 - f(x)$$
 and $K_t = \mathbb{Q}(t)[x]/P_f(x,t)$.)

Lemma

If t = u/v, then $\text{Disc}_x(P_f(x, u/v)) = u^{2n-4}v^{4-2n}H(u, v)$ for a not-squarefull sextic form H(u, v).

(**Recall:**
$$P_f(x,t) = x^n t^2 - f(x)$$
 and $K_t = \mathbb{Q}(t)[x]/P_f(x,t)$.)

Lemma

If t = u/v, then $\text{Disc}_x(P_f(x, u/v)) = u^{2n-4}v^{4-2n}H(u, v)$ for a not-squarefull sextic form H(u, v).

Theorem (Greaves)

Any "not obstructed" form H(u, v) of degree ≤ 6 assumes $\gg T^2$ squarefree values with $|u|, |v| \leq T$.

(**Recall:**
$$P_f(x, t) = x^n t^2 - f(x)$$
 and $K_t = \mathbb{Q}(t)[x]/P_f(x, t)$.)

Lemma

If t = u/v, then $\text{Disc}_x(P_f(x, u/v)) = u^{2n-4}v^{4-2n}H(u, v)$ for a not-squarefull sextic form H(u, v).

Theorem (Greaves)

Any "not obstructed" form H(u, v) of degree ≤ 6 assumes $\gg T^2$ squarefree values with $|u|, |v| \leq T$.

Each value occurs $\ll X^{\epsilon}$ times

(**Recall:**
$$P_f(x,t) = x^n t^2 - f(x)$$
 and $K_t = \mathbb{Q}(t)[x]/P_f(x,t)$.)

Lemma

If t = u/v, then $\text{Disc}_x(P_f(x, u/v)) = u^{2n-4}v^{4-2n}H(u, v)$ for a not-squarefull sextic form H(u, v).

Theorem (Greaves)

Any "not obstructed" form H(u, v) of degree ≤ 6 assumes $\gg T^2$ squarefree values with $|u|, |v| \leq T$.

Each value occurs $\ll X^{\epsilon}$ times \implies there are $\gg X^{2/(n+4)-\epsilon}$ fields K_t with $|\text{Disc}(K_t)| \leq X$.

How do we control root numbers?

(**Recall:**
$$P_f(x,t) = x^n t^2 - f(x)$$
 and $K_t = \mathbb{Q}(t)[x]/P_f(x,t)$.)

(**Recall:**
$$P_f(x, t) = x^n t^2 - f(x)$$
 and $K_t = \mathbb{Q}(t)[x]/P_f(x, t)$.)

Lemma (V. Dokchitser) If K and $K' \in \mathcal{F}_n(X; S_n)$ are such that

(**Recall:**
$$P_f(x,t) = x^n t^2 - f(x)$$
 and $K_t = \mathbb{Q}(t)[x]/P_f(x,t)$.)

Lemma (V. Dokchitser) If K and $K' \in \mathcal{F}_n(X; S_n)$ are such that

• $K \otimes \mathbb{Q}_p \simeq K' \otimes \mathbb{Q}_p$ for each $p \mid N_E$,

(**Recall:** $P_f(x, t) = x^n t^2 - f(x)$ and $K_t = \mathbb{Q}(t)[x]/P_f(x, t)$.)

Lemma (V. Dokchitser) If K and $K' \in \mathcal{F}_n(X; S_n)$ are such that

- $K \otimes \mathbb{Q}_p \simeq K' \otimes \mathbb{Q}_p$ for each $p \mid N_E$, and
- $\operatorname{sgn}(\operatorname{Disc}(K)) = -\operatorname{sgn}(\operatorname{Disc}(K')),$

(**Recall:**
$$P_f(x, t) = x^n t^2 - f(x)$$
 and $K_t = \mathbb{Q}(t)[x]/P_f(x, t)$.)

Lemma (V. Dokchitser) If K and $K' \in \mathcal{F}_n(X; S_n)$ are such that

- $K \otimes \mathbb{Q}_p \simeq K' \otimes \mathbb{Q}_p$ for each $p \mid N_E$, and
- $\operatorname{sgn}(\operatorname{Disc}(K)) = -\operatorname{sgn}(\operatorname{Disc}(K')),$

then $w(E, \rho_K) = -w(E, \rho_{K'}).$

(**Recall:**
$$P_f(x,t) = x^n t^2 - f(x)$$
 and $K_t = \mathbb{Q}(t)[x]/P_f(x,t)$.)

Lemma (V. Dokchitser) If K and $K' \in \mathcal{F}_n(X; S_n)$ are such that

- $K \otimes \mathbb{Q}_p \simeq K' \otimes \mathbb{Q}_p$ for each $p \mid N_E$, and
- $\operatorname{sgn}(\operatorname{Disc}(K)) = -\operatorname{sgn}(\operatorname{Disc}(K')),$

then $w(E, \rho_K) = -w(E, \rho_{K'}).$

Theorem

The number of $K \in \mathcal{F}_n(X; S_n)$ s.t. $\operatorname{rk}(E(K)) > \operatorname{rk}(E(\mathbb{Q}))$ and $w(E, \rho_K) = +1$ is $\gg X^{1/(\lceil \frac{n}{2} \rceil + 2) - \epsilon}$.

If *n* is even,

If *n* is even, let $F, G \in \mathbb{Z}[x]$ have degree n/2 and n/2 - 2, resp.

If *n* is even, let $F, G \in \mathbb{Z}[x]$ have degree n/2 and n/2 - 2, resp. Then $(x, \frac{F(x)}{G(x)})$ is on $E(K_{F,G})$,

If *n* is even, let $F, G \in \mathbb{Z}[x]$ have degree n/2 and n/2 - 2, resp. Then $(x, \frac{F(x)}{G(x)})$ is on $E(K_{F,G})$, where

$$K_{F,G} = \mathbb{Q}[x]/(F^2 - fG^2).$$

If *n* is even, let $F, G \in \mathbb{Z}[x]$ have degree n/2 and n/2 - 2, resp. Then $(x, \frac{F(x)}{G(x)})$ is on $E(K_{F,G})$, where

$$K_{F,G} = \mathbb{Q}[x]/(F^2 - fG^2).$$

Lemma
$$\operatorname{Gal}(\widetilde{K_{F,G}}/\mathbb{Q}) \simeq S_n$$
 for almost all F,G .

Second Parametrization

If *n* is even, let $F, G \in \mathbb{Z}[x]$ have degree n/2 and n/2 - 2, resp. Then $(x, \frac{F(x)}{G(x)})$ is on $E(K_{F,G})$, where

$$K_{F,G} = \mathbb{Q}[x]/(F^2 - fG^2).$$

Lemma
$$\operatorname{Gal}(\widetilde{K_{F,G}}/\mathbb{Q}) \simeq S_n$$
 for almost all F,G .

Proof. If $F(x) = tx^{n/2}$ and G(x) = 1,

Second Parametrization

If *n* is even, let $F, G \in \mathbb{Z}[x]$ have degree n/2 and n/2 - 2, resp. Then $(x, \frac{F(x)}{G(x)})$ is on $E(K_{F,G})$, where

$$K_{F,G} = \mathbb{Q}[x]/(F^2 - fG^2).$$

Lemma
$$\operatorname{Gal}(\widetilde{K_{F,G}}/\mathbb{Q}) \simeq S_n$$
 for almost all F, G .

Proof. If $F(x) = tx^{n/2}$ and G(x) = 1, then $K_{F,G} = K_t$.

Second Parametrization

If *n* is even, let $F, G \in \mathbb{Z}[x]$ have degree n/2 and n/2 - 2, resp. Then $(x, \frac{F(x)}{G(x)})$ is on $E(K_{F,G})$, where

$$K_{F,G} = \mathbb{Q}[x]/(F^2 - fG^2).$$

Lemma
$$\operatorname{Gal}(\widetilde{K_{F,G}}/\mathbb{Q}) \simeq S_n$$
 for almost all F,G .

Proof.

If $F(x) = tx^{n/2}$ and G(x) = 1, then $K_{F,G} = K_t$. Now use Hilbert Irreducibility.

Question

How do we control the multiplicity of $K_{F,G} = \mathbb{Q}[x]/(F^2 - fG^2)$?

Question

How do we control the multiplicity of $K_{F,G} = \mathbb{Q}[x]/(F^2 - fG^2)$?

Lemma Given $f, H \in \mathbb{Z}[x]$, there are $O_n(1)$ solutions F, G to $H = F^2 - fG^2$.

Question

How do we control the multiplicity of $K_{F,G} = \mathbb{Q}[x]/(F^2 - fG^2)$?

Lemma Given $f, H \in \mathbb{Z}[x]$, there are $O_n(1)$ solutions F, G to $H = F^2 - fG^2$.

Question

How do we make sure the same field isn't cut out by lots of polynomials?

Let

$$\mathcal{S}_n(Y) := \{g(x) = x^n + a_1 x^{n-1} + \cdots + a_n \in \mathbb{Z}[x] : |a_i| \leq Y^i\}.$$

Let

$$\mathcal{S}_n(Y) := \{g(x) = x^n + a_1 x^{n-1} + \dots + a_n \in \mathbb{Z}[x] : |a_i| \le Y^i\}.$$
(Note: If $g \in \mathcal{S}_n(Y)$, then $|\operatorname{Disc}(g)| \ll Y^{n(n-1)}$.)

Let

$$\mathcal{S}_n(Y) := \{g(x) = x^n + a_1 x^{n-1} + \dots + a_n \in \mathbb{Z}[x] : |a_i| \le Y^i\}.$$
(Note: If $g \in \mathcal{S}_n(Y)$, then $|\operatorname{Disc}(g)| \ll Y^{n(n-1)}$.)

Lemma (Ellenberg–Venkatesh + ϵ ·(LO–Thorne)) If $K \in \mathcal{F}_n(X)$, then $\#\{g \in \mathcal{S}_n(Y) : \mathbb{Q}[x]/g \simeq K\}$

Let

$$\mathcal{S}_n(Y) := \{g(x) = x^n + a_1 x^{n-1} + \dots + a_n \in \mathbb{Z}[x] : |a_i| \le Y^i\}.$$

(Note: If $g \in \mathcal{S}_n(Y)$, then $|\operatorname{Disc}(g)| \ll Y^{n(n-1)}$.)

Lemma (Ellenberg–Venkatesh + $\epsilon \cdot$ (LO–Thorne)) If $K \in \mathcal{F}_n(X)$, then $\#\{g \in \mathcal{S}_n(Y) : \mathbb{Q}[x]/g \simeq K\} \ll \max\left\{Y^n \mathrm{Disc}(K)^{-1/2}, Y^{n/2}\right\}.$

Let

$$\mathcal{S}_n(Y) := \{g(x) = x^n + a_1 x^{n-1} + \dots + a_n \in \mathbb{Z}[x] : |a_i| \le Y^i\}.$$

(Note: If $g \in \mathcal{S}_n(Y)$, then $|\operatorname{Disc}(g)| \ll Y^{n(n-1)}$.)

Lemma (Ellenberg–Venkatesh + $\epsilon \cdot$ (LO–Thorne)) If $K \in \mathcal{F}_n(X)$, then $\#\{g \in \mathcal{S}_n(Y) : \mathbb{Q}[x]/g \simeq K\} \ll \max\{Y^n \operatorname{Disc}(K)^{-1/2}, Y^{n/2}\}.$

 $\implies \#\{|\operatorname{Disc}(K_{F,G})| \leq X\}/\mathrm{iso.}$

Let

$$\mathcal{S}_n(Y) := \{g(x) = x^n + a_1 x^{n-1} + \dots + a_n \in \mathbb{Z}[x] : |a_i| \le Y^i\}.$$
(Note: If $g \in \mathcal{S}_n(Y)$, then $|\operatorname{Disc}(g)| \ll Y^{n(n-1)}$.)

Lemma (Ellenberg–Venkatesh + $\epsilon \cdot (\text{LO-Thorne})$) If $K \in \mathcal{F}_n(X)$, then $\#\{g \in \mathcal{S}_n(Y) : \mathbb{Q}[x]/g \simeq K\} \ll \max\left\{Y^n \text{Disc}(K)^{-1/2}, Y^{n/2}\right\}.$

$$\implies \#\{|\operatorname{Disc}(K_{F,G})| \le X\}/\mathrm{iso.} \gg X^{\frac{1}{4} - \frac{n^2 + 4n - 2}{2n^2(n-1)}}$$

Theorem Let E/\mathbb{Q} be an elliptic curve.

Let E/\mathbb{Q} be an elliptic curve. If for each $K \in \mathcal{F}_n(X; S_n)$,

• $L(s, E_K)$ is automorphic,

Let E/\mathbb{Q} be an elliptic curve. If for each $K \in \mathcal{F}_n(X; S_n)$,

- $L(s, E_K)$ is automorphic,
- L(s, E_K) satisfies GRH,

Let E/\mathbb{Q} be an elliptic curve. If for each $K \in \mathcal{F}_n(X; S_n)$,

- $L(s, E_K)$ is automorphic,
- L(s, E_K) satisfies GRH, and
- $L(s, E_K)$ satisfies BSD,

Let E/\mathbb{Q} be an elliptic curve. If for each $K \in \mathcal{F}_n(X; S_n)$,

- $L(s, E_K)$ is automorphic,
- L(s, E_K) satisfies GRH, and
- $L(s, E_K)$ satisfies BSD,

then

 $\#\{K \in \mathcal{F}_n(X; S_n) : \operatorname{rk}(E(K)) \ge 2 + \operatorname{rk}(E(\mathbb{Q}))\}$

Let E/\mathbb{Q} be an elliptic curve. If for each $K \in \mathcal{F}_n(X; S_n)$,

- $L(s, E_K)$ is automorphic,
- L(s, E_K) satisfies GRH, and
- L(s, E_K) satisfies BSD,

then

 $\#\{K \in \mathcal{F}_n(X; S_n) : \operatorname{rk}(E(K)) \geq 2 + \operatorname{rk}(E(\mathbb{Q}))\} \gg X^{\frac{1}{4} + \frac{1}{2(n^2 - n)}}.$

Conjecture (Birch–Swinnerton-Dyer)
If
$$r = \operatorname{rk}(E)$$
, then $r = \operatorname{ord}_{s=1}L(s, E)$ and

$$\frac{L^{(r)}(1, E)}{r!} = \frac{|\operatorname{III}(E)|\operatorname{Reg}(E)\operatorname{Tam}(E)\Omega_{\mathbb{R}}(E)}{|E(\mathbb{Q})_{\operatorname{tors}}|^2}.$$

Conjecture (Birch–Swinnerton-Dyer)
If
$$r = \operatorname{rk}(E)$$
, then $r = \operatorname{ord}_{s=1}L(s, E)$ and

$$\frac{L^{(r)}(1, E)}{r!} = \frac{|\operatorname{III}(E)|\operatorname{Reg}(E)\operatorname{Tam}(E)\Omega_{\mathbb{R}}(E)}{|E(\mathbb{Q})_{\operatorname{tors}}|^2}.$$

Conjecture (Tate's Séminaire Bourbaki) If K/\mathbb{Q} has sig. (r_1, r_2) and $r = \operatorname{rk}(E_K)$,

Conjecture (Birch–Swinnerton-Dyer)
If
$$r = \operatorname{rk}(E)$$
, then $r = \operatorname{ord}_{s=1}L(s, E)$ and

$$\frac{L^{(r)}(1, E)}{r!} = \frac{|\operatorname{III}(E)|\operatorname{Reg}(E)\operatorname{Tam}(E)\Omega_{\mathbb{R}}(E)}{|E(\mathbb{Q})_{\operatorname{tors}}|^2}.$$

Conjecture (Tate's Séminaire Bourbaki) If K/\mathbb{Q} has sig. (r_1, r_2) and $r = \operatorname{rk}(E_K)$, then $r = \operatorname{ord}_{s=1}L(s, E_K)$ and

$$\frac{L^{(r)}(1,E_{\mathcal{K}})}{r!} = \frac{|\mathrm{III}(E_{\mathcal{K}})|\mathrm{Reg}(E_{\mathcal{K}})\mathrm{Tam}(E_{\mathcal{K}})\Omega_{\mathbb{R}}(E)^{r_1}\Omega_{\mathbb{C}}(E)^{r_2}}{|\mathrm{Disc}(\mathcal{K})|^{1/2}|E(\mathcal{K})_{\mathrm{tors}}|^2}.$$

Conjecture (Birch–Swinnerton-Dyer)
If
$$r = \operatorname{rk}(E)$$
, then $r = \operatorname{ord}_{s=1}L(s, E)$ and

$$\frac{L^{(r)}(1, E)}{r!} = \frac{|\operatorname{III}(E)|\operatorname{Reg}(E)\operatorname{Tam}(E)\Omega_{\mathbb{R}}(E)}{|E(\mathbb{Q})_{\operatorname{tors}}|^2}.$$

Conjecture (Tate's Séminaire Bourbaki) If K/\mathbb{Q} has sig. (r_1, r_2) and $r = \operatorname{rk}(E_K)$, then $r = \operatorname{ord}_{s=1}L(s, E_K)$ and

$$\frac{L^{(r)}(1,E_{\mathcal{K}})}{r!} = \frac{|\mathrm{III}(E_{\mathcal{K}})|\mathrm{Reg}(E_{\mathcal{K}})\mathrm{Tam}(E_{\mathcal{K}})\Omega_{\mathbb{R}}(E)^{r_1}\Omega_{\mathbb{C}}(E)^{r_2}}{|\mathrm{Disc}(\mathcal{K})|^{1/2}|E(\mathcal{K})_{\mathrm{tors}}|^2}.$$

Idea: Pay attention to the case when $rk(E_Q) = rk(E_K)$.

Conjecture Let $L(s, E, \rho_K) = L(s, E_K)/L(s, E)$.

Conjecture Let $L(s, E, \rho_{K}) = L(s, E_{K})/L(s, E)$. If $E(K) = E(\mathbb{Q})$, then $L(1, E, \rho_{K}) = \frac{|\mathrm{III}(E_{K})|}{|\mathrm{III}(E)|} \frac{\mathrm{Tam}(E_{K})}{\mathrm{Tam}(E)} \frac{\Omega_{\mathbb{R}}(E)^{r_{1}-1}\Omega_{\mathbb{C}}(E)^{r_{2}}}{|\mathrm{Disc}(K)|^{1/2}}.$

Conjecture Let $L(s, E, \rho_{K}) = L(s, E_{K})/L(s, E)$. If $E(K) = E(\mathbb{Q})$, then $L(1, E, \rho_{K}) = \frac{|\mathrm{III}(E_{K})|}{|\mathrm{III}(E)|} \frac{\mathrm{Tam}(E_{K})}{\mathrm{Tam}(E)} \frac{\Omega_{\mathbb{R}}(E)^{r_{1}-1}\Omega_{\mathbb{C}}(E)^{r_{2}}}{|\mathrm{Disc}(K)|^{1/2}}.$

Expect: $L(1, E, \rho_{\mathcal{K}}), \operatorname{Tam}(E_{\mathcal{K}}) \ll (\operatorname{ht}(E)|\operatorname{Disc}(\mathcal{K})|)^{\epsilon} =: Q^{\epsilon},$

Conjecture Let $L(s, E, \rho_{K}) = L(s, E_{K})/L(s, E)$. If $E(K) = E(\mathbb{Q})$, then $L(1, E, \rho_{K}) = \frac{|\mathrm{III}(E_{K})|}{|\mathrm{III}(E)|} \frac{\mathrm{Tam}(E_{K})}{\mathrm{Tam}(E)} \frac{\Omega_{\mathbb{R}}(E)^{r_{1}-1}\Omega_{\mathbb{C}}(E)^{r_{2}}}{|\mathrm{Disc}(K)|^{1/2}}.$

Expect: $L(1, E, \rho_K)$, $Tam(E_K) \ll (ht(E)|Disc(K)|)^{\epsilon} =: Q^{\epsilon}$, so

$$\frac{|\mathrm{III}(E_{\mathcal{K}})|}{|\mathrm{III}(E)|} \ll \frac{|\mathrm{Disc}(\mathcal{K})|^{1/2}}{\Omega_{\mathbb{R}}(E)^{r_1-1}\Omega_{\mathbb{C}}(E)^{r_2}}Q^{\epsilon}.$$

Conjecture Let $L(s, E, \rho_{K}) = L(s, E_{K})/L(s, E)$. If $E(K) = E(\mathbb{Q})$, then $L(1, E, \rho_{K}) = \frac{|\mathrm{III}(E_{K})|}{|\mathrm{III}(E)|} \frac{\mathrm{Tam}(E_{K})}{\mathrm{Tam}(E)} \frac{\Omega_{\mathbb{R}}(E)^{r_{1}-1}\Omega_{\mathbb{C}}(E)^{r_{2}}}{|\mathrm{Disc}(K)|^{1/2}}.$

Expect: $L(1, E, \rho_K), \operatorname{Tam}(E_K) \ll (\operatorname{ht}(E)|\operatorname{Disc}(K)|)^{\epsilon} =: Q^{\epsilon}$, so

$$\frac{|\mathrm{III}(E_{\mathcal{K}})|}{|\mathrm{III}(E)|} \ll \frac{|\mathrm{Disc}(\mathcal{K})|^{1/2}}{\Omega_{\mathbb{R}}(E)^{r_1-1}\Omega_{\mathbb{C}}(E)^{r_2}}Q^{\epsilon}$$

Crude model: $|III(E_K)/III(E)| = m^2$ uniformly with

$$m \ll \frac{|\operatorname{Disc}(K)|^{1/4} Q^{\epsilon}}{\Omega_{\mathbb{R}}(E)^{\frac{r_1-1}{2}} \Omega_{\mathbb{C}}(E)^{\frac{r_2}{2}}}$$

An embarrassingly crude model

We thus expect

$$L(1, E, \rho_K) = m^2 \cdot (\text{Invariants of } E)$$

with

$$m \ll \frac{|\operatorname{Disc}(K)|^{1/4} Q^{\epsilon}}{\Omega_{\mathbb{R}}(E)^{\frac{r_1-1}{2}} \Omega_{\mathbb{C}}(E)^{\frac{r_2}{2}}}.$$

An embarrassingly crude model

We thus expect

$$L(1, E, \rho_K) = m^2 \cdot (\text{Invariants of } E)$$

with

$$m \ll \frac{|\operatorname{Disc}(K)|^{1/4}Q^{\epsilon}}{\Omega_{\mathbb{R}}(E)^{\frac{r_1-1}{2}}\Omega_{\mathbb{C}}(E)^{\frac{r_2}{2}}}.$$

Very crude model: $L(1, E, \rho_K) = 0$ if *m* "accidentally" equals 0,

We thus expect

$$L(1, E, \rho_K) = m^2 \cdot (\text{Invariants of } E)$$

with

$$m \ll \frac{|\operatorname{Disc}(K)|^{1/4} Q^{\epsilon}}{\Omega_{\mathbb{R}}(E)^{\frac{r_1-1}{2}} \Omega_{\mathbb{C}}(E)^{\frac{r_2}{2}}}.$$

Very crude model: $L(1, E, \rho_K) = 0$ if *m* "accidentally" equals 0, which happens with probability about

$$\frac{\Omega_{\mathbb{R}}(E)^{\frac{r_1-1}{2}}\Omega_{\mathbb{C}}(E)^{\frac{r_2}{2}}}{|\mathrm{Disc}(K)|^{1/4}}.$$

For fixed *E*, if $K \in \mathcal{F}_n(X; S_n)$ with $w(E, \rho_K) = +1$, we thus expect

Prob.
$$(L(1, E, \rho_{\mathcal{K}}) = 0) \approx \frac{1}{|\operatorname{Disc}(\mathcal{K})|^{1/4}}.$$

For fixed *E*, if $K \in \mathcal{F}_n(X; S_n)$ with $w(E, \rho_K) = +1$, we thus expect

Prob.
$$(L(1, E, \rho_K) = 0) \approx \frac{1}{|\operatorname{Disc}(K)|^{1/4}}.$$

Conjecture If E/\mathbb{Q} is an elliptic curve, then for each n

 $X^{3/4-\epsilon} \ll \#\{K \in \mathcal{F}_n^{\mathsf{E}}(X; S_n) : w(E, \rho_K) = +1\} \ll X^{3/4+\epsilon}.$

For fixed E, if $K \in \mathcal{F}_n(X; S_n)$ with $w(E, \rho_K) = +1$, we thus expect

Prob.
$$(L(1, E, \rho_K) = 0) \approx \frac{1}{|\operatorname{Disc}(K)|^{1/4}}.$$

Conjecture If E/\mathbb{Q} is an elliptic curve, then for each n

$$X^{3/4-\epsilon} \ll \#\{K \in \mathcal{F}_n^{\mathcal{E}}(X; S_n) : w(E, \rho_K) = +1\} \ll X^{3/4+\epsilon}.$$

More generally, if $G \subseteq S_n$ is primitive, then

$$\#\{K \in \mathcal{F}_n^{\mathcal{E}}(X;G) : w(E,\rho_K) = +1\}$$

For fixed E, if $K \in \mathcal{F}_n(X; S_n)$ with $w(E, \rho_K) = +1$, we thus expect

$$\operatorname{Prob.}(L(1, E, \rho_K) = 0) \approx \frac{1}{|\operatorname{Disc}(K)|^{1/4}}.$$

Conjecture If E/\mathbb{Q} is an elliptic curve, then for each n

$$X^{3/4-\epsilon} \ll \#\{K \in \mathcal{F}_n^{\mathcal{E}}(X; S_n) : w(E, \rho_K) = +1\} \ll X^{3/4+\epsilon}.$$

More generally, if $G \subseteq S_n$ is primitive, then

$$X^{\frac{1}{a(G)}-\frac{1}{4}-\epsilon} \ll \#\{K \in \mathcal{F}_{n}^{E}(X;G) : w(E,\rho_{K}) = +1\} \ll X^{\frac{1}{a(G)}-\frac{1}{4}+\epsilon}.$$

For fixed E, if $K \in \mathcal{F}_n(X; S_n)$ with $w(E, \rho_K) = +1$, we thus expect

$$\operatorname{Prob.}(L(1, E, \rho_K) = 0) \approx \frac{1}{|\operatorname{Disc}(K)|^{1/4}}.$$

Conjecture If E/\mathbb{Q} is an elliptic curve, then for each n

$$X^{3/4-\epsilon} \ll \#\{K \in \mathcal{F}_n^{\mathsf{E}}(X; S_n) : w(E, \rho_K) = +1\} \ll X^{3/4+\epsilon}.$$

More generally, if $G \subseteq S_n$ is primitive, then

$$X^{\frac{1}{a(G)}-\frac{1}{4}-\epsilon} \ll \#\{K \in \mathcal{F}_{n}^{E}(X;G) : w(E,\rho_{K}) = +1\} \ll X^{\frac{1}{a(G)}-\frac{1}{4}+\epsilon}.$$

Take note: What if 1/a(G) < 1/4?

A prediction for rank 2 twists

For fixed *E*, if $K \in \mathcal{F}_n(X; S_n)$ with $w(E, \rho_K) = +1$, we thus expect

$$\operatorname{Prob.}(L(1, E, \rho_K) = 0) \approx \frac{1}{|\operatorname{Disc}(K)|^{1/4}}.$$

Conjecture If E/\mathbb{Q} is an elliptic curve, then for each n

$$X^{3/4-\epsilon} \ll \#\{K \in \mathcal{F}_n^{\mathcal{E}}(X; S_n) : w(E, \rho_K) = +1\} \ll X^{3/4+\epsilon}.$$

More generally, if $G \subseteq S_n$ is primitive, then

$$X^{\frac{1}{a(G)} - \frac{1}{4} - \epsilon} \ll \#\{K \in \mathcal{F}_{n}^{E}(X; G) : w(E, \rho_{K}) = +1\} \ll X^{\frac{1}{a(G)} - \frac{1}{4} + \epsilon}$$

Take note: What if 1/a(G) < 1/4? Predicts finiteness/emptiness.

Let
$$K \in \mathcal{F}_p(X; C_p)$$
.

Let $K \in \mathcal{F}_p(X; C_p)$. Then $L(s, E, \rho_K) = \prod_{\chi \neq \chi_0} L(s, E, \chi),$

Let $K \in \mathcal{F}_p(X; C_p)$. Then

$$L(s, E, \rho_{K}) = \prod_{\chi \neq \chi_{0}} L(s, E, \chi),$$

and since each χ is complex, no $L(s, E, \chi)$ is self-dual

$$L(s, E, \rho_{\mathcal{K}}) = \prod_{\chi \neq \chi_0} L(s, E, \chi),$$

and since each χ is complex, no $L(s, E, \chi)$ is self-dual and $w(E, \rho_K) = +1$ always.

$$L(s, E, \rho_{\mathcal{K}}) = \prod_{\chi \neq \chi_0} L(s, E, \chi),$$

and since each χ is complex, no $L(s, E, \chi)$ is self-dual and $w(E, \rho_K) = +1$ always.

Moreover, $\#\mathcal{F}_p(X; C_p) \ll X^{1/(p-1)+\epsilon}$,

$$L(s, E, \rho_{\mathcal{K}}) = \prod_{\chi \neq \chi_{0}} L(s, E, \chi),$$

and since each χ is complex, no $L(s, E, \chi)$ is self-dual and $w(E, \rho_K) = +1$ always.

Moreover, $\#\mathcal{F}_p(X; C_p) \ll X^{1/(p-1)+\epsilon}$, so we obtain:

Conjecture (David–Fearnley–Kisilevsky) $\lim_{X\to\infty} \mathcal{F}_p^E(X; C_p)$ is finite if $p \ge 7$.

$$L(s, E, \rho_{\mathcal{K}}) = \prod_{\chi \neq \chi_{0}} L(s, E, \chi),$$

and since each χ is complex, no $L(s, E, \chi)$ is self-dual and $w(E, \rho_K) = +1$ always.

Moreover, $\#\mathcal{F}_p(X; C_p) \ll X^{1/(p-1)+\epsilon}$, so we obtain:

Conjecture (David–Fearnley–Kisilevsky) $\lim_{X\to\infty} \mathcal{F}_p^E(X; C_p)$ is finite if $p \ge 7$.

Variant: Fix $K \in \mathcal{F}_p(X; C_p)$ and vary E.

Variant: Fix $K \in \mathcal{F}_p(X; C_p)$ and vary E. Model had

$$\operatorname{Prob.}(L(1, E, \rho_{\mathcal{K}}) = 0) \approx \frac{\Omega_{\mathbb{R}}(E)^{\frac{r_1-1}{2}}\Omega_{\mathbb{C}}(E)^{\frac{r_2}{2}}}{|\operatorname{Disc}(\mathcal{K})|^{1/4}}.$$

Variant: Fix $K \in \mathcal{F}_p(X; C_p)$ and vary *E*. Model had

Prob.
$$(L(1, E, \rho_{\mathcal{K}}) = 0) \approx \frac{\Omega_{\mathbb{R}}(E)^{\frac{r_1-1}{2}}\Omega_{\mathbb{C}}(E)^{\frac{r_2}{2}}}{|\mathrm{Disc}(\mathcal{K})|^{1/4}}.$$

K has signature (p,0) and $\Omega_{\mathbb{R}}(E) \approx \operatorname{ht}(E)^{-1/12}$,

Variant: Fix $K \in \mathcal{F}_p(X; C_p)$ and vary E. Model had

Prob.(
$$L(1, E, \rho_{\mathcal{K}}) = 0$$
) $\approx \frac{\Omega_{\mathbb{R}}(E)^{\frac{r_1-1}{2}}\Omega_{\mathbb{C}}(E)^{\frac{r_2}{2}}}{|\operatorname{Disc}(\mathcal{K})|^{1/4}}.$

K has signature (p, 0) and $\Omega_{\mathbb{R}}(E) \approx \operatorname{ht}(E)^{-1/12}$, $\Rightarrow \operatorname{Prob.}(L(1, E, \rho_K) = 0) \approx \operatorname{ht}(E)^{-\frac{\rho-1}{24}}.$

Conjecture

If $p \leq 19$, there exist infinitely many E for which $K \in \mathcal{F}_p^E(X; C_p)$.

Variant: Fix $K \in \mathcal{F}_p(X; C_p)$ and vary E. Model had

$$\operatorname{Prob.}(L(1, E, \rho_{\mathcal{K}}) = 0) \approx \frac{\Omega_{\mathbb{R}}(E)^{\frac{r_1-1}{2}}\Omega_{\mathbb{C}}(E)^{\frac{r_2}{2}}}{|\operatorname{Disc}(\mathcal{K})|^{1/4}}.$$

K has signature (p, 0) and $\Omega_{\mathbb{R}}(E) \approx \operatorname{ht}(E)^{-1/12}$, $\Rightarrow \operatorname{Prob.}(L(1, E, \rho_K) = 0) \approx \operatorname{ht}(E)^{-\frac{\rho-1}{24}}.$

Conjecture

If $p \leq 19$, there exist infinitely many E for which $K \in \mathcal{F}_p^E(X; C_p)$. If $p \geq 23$, then there are only finitely many.

Variant: Fix $K \in \mathcal{F}_p(X; C_p)$ and vary E. Model had

$$\operatorname{Prob.}(L(1, E, \rho_{\mathcal{K}}) = 0) \approx \frac{\Omega_{\mathbb{R}}(E)^{\frac{r_1-1}{2}}\Omega_{\mathbb{C}}(E)^{\frac{r_2}{2}}}{|\operatorname{Disc}(\mathcal{K})|^{1/4}}.$$

K has signature (p, 0) and $\Omega_{\mathbb{R}}(E) \approx \operatorname{ht}(E)^{-1/12}$, $\Rightarrow \operatorname{Prob.}(L(1, E, \rho_K) = 0) \approx \operatorname{ht}(E)^{-\frac{p-1}{24}}.$

Conjecture

If $p \leq 19$, there exist infinitely many E for which $K \in \mathcal{F}_p^E(X; C_p)$. If $p \geq 23$, then there are only finitely many.

Hybrid: Is there no E/\mathbb{Q} and no $K \in \mathcal{F}_p(X; C_p)$ with $p \ge 23$ for which $E(K) \neq E(\mathbb{Q})$?

Theorem (Keyes) Let C/\mathbb{Q} be hyperelliptic of genus g.

Let C/\mathbb{Q} be hyperelliptic of genus g. If $\deg(C)$ is odd, then

$$\#\mathcal{F}_n^C(X;S_n)\gg X^{\frac{1}{4}-c_{g,n}-\epsilon}$$

for each $n \ge g$, where $c_{g,n}$ is explicit and $\rightarrow 0$ as $n \rightarrow \infty$.

Let C/\mathbb{Q} be hyperelliptic of genus g. If $\deg(C)$ is odd, then

$$\#\mathcal{F}_n^C(X;S_n)\gg X^{\frac{1}{4}-c_{g,n}-\epsilon}$$

for each $n \ge g$, where $c_{g,n}$ is explicit and $\rightarrow 0$ as $n \rightarrow \infty$.

Question What's the truth?

Let C/\mathbb{Q} be hyperelliptic of genus g. If $\deg(C)$ is odd, then

 $\#\mathcal{F}_n^C(X;S_n)\gg X^{\frac{1}{4}-c_{g,n}-\epsilon}$

for each $n \ge g$, where $c_{g,n}$ is explicit and $\rightarrow 0$ as $n \rightarrow \infty$.

Question

What's the truth? How does $\#\mathcal{F}_n^C(X; G)$ behave for other G?

Let C/\mathbb{Q} be hyperelliptic of genus g. If $\deg(C)$ is odd, then

 $\#\mathcal{F}_n^C(X;S_n)\gg X^{\frac{1}{4}-c_{g,n}-\epsilon}$

for each $n \ge g$, where $c_{g,n}$ is explicit and $\rightarrow 0$ as $n \rightarrow \infty$.

Question

What's the truth? How does $\#\mathcal{F}_n^C(X; G)$ behave for other G? For other C?

Let C/\mathbb{Q} be hyperelliptic of genus g. If $\deg(C)$ is odd, then

 $\#\mathcal{F}_n^C(X;S_n)\gg X^{\frac{1}{4}-c_{g,n}-\epsilon}$

for each $n \ge g$, where $c_{g,n}$ is explicit and $\rightarrow 0$ as $n \rightarrow \infty$.

Question

What's the truth? How does $\#\mathcal{F}_n^C(X; G)$ behave for other G? For other C? What does this reveal about the geometry of C?