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A number field K of degree n is formed by an irreducible poly.:

K= QIx]/(f(x)) = Qo)

Central Question: How many degree n number fields are there
w/ Disc(K) < X7
Conjecture: ~ ¢,X as X — o0

Open Problem: How many degree 6 number fields are there w/
Disc(K) < X?
Best known upper bound: O(X?)
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Irreducible polynomials

Theorem (Hilbert Irreducibility)

“100% of monic integer polynomials of degree n are irreducible.”
4 y

True for f(x) = x" + a;x" "1 + - -+ + a, with:
® each |a;| < H, as H — oc;
® each |aj| < H', as H — 0.

(Lots of other cases/families tool!)

Naive thought: If it's easy to write down irreducible polynomials,
shouldn't it be easy to write down number fields?
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Rings of integers

Let Ok be the ring of integers of K. Then
Disc(K) := Disc(Ok).
If Ok = Z[a], then Disc(Ok) = Disc(fy(x)).

Problem: Usually Ok # Z[a] for any a!

Definition: If Ok = Z[«] for some «, K is called monogenic.

Typically, K is not monogenic = Ok = Z[ai, ..., am]
= Disc(K) more complicated (need all «;, not just one)

Example: K = Q[x]/(x®+ 4x% + 3x + 8) needs m = 2
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A schematic

Polynomials

|

Number fields

< monogenic
B

9277

1277

Rings of integers ——— Discriminants

Bhargava
n<b

Prehomogeneous vector spaces

Key Obstacle: We “run out” of prehomogeneous vector spaces
= No direct route to discriminants for n > 6.

Upshot: We have to settle for upper and lower bounds when n > 6
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For n > 2, let Ny(X) := #{K/Q : [K : Q] = n, |Disc(K)| < X}.

Conjecture: N,(X) ~ ¢, X for some ¢, > 0.
Known only for n < 5. (Davenport—Heilbronn; Bhargava)

Lower bounds: N,(X) >, X2%5.
Uses monogenic fields. (Bhargava—Shankar-Wang)

Upper bounds: This talk!
Much further from expected answer.

Previous work of Schmidt, Ellenberg—Venkatesh, Couveignes.
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Upper bounds on number fields

Recall: Np(X) i= #{K/Q: [K : Q] = n, [Disc(K)| < X}
o Schmidt (1995): Nn(X) < X"+
* Ellenberg—Venkatesh (2006): N,(X) <, X",
e Couveignes (2019): N,(X) <, X<(legm®

Theorem (L.O.—Thorne; 2020)

N,,(X) <n Xc(logn)2_

This improves on Schmidt for large n (in fact, n > 95).

® AIM (2022+; in progress): Improve Schmidt for all n
® Lose to LO-Thorne for n sufficiently large (e.g., n > 100)
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Idea: Every field is cut out by a polynomial.

Question: Given K, what's the “smallest” polynomial
f(x)=x"+ax" 1+ +a,st. K~Q(x)/(f(x))?

Factoring f(x) = (x — 1) ... (x — apy) over C, we obtain:

Nearly equivalent question: Given K, what's the smallest
a € Ok measured by max{|a|, ..., |an|} = ||a]|?

Minkowski embedding: Ok is a lattice in R", covolume

\/|Disc(K)|, shortest vector =<, 1,

= Ja € Ok with ||a|] <p \DiSC(K)yflfz_
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Schmidt’s Idea, pt. 2

Just saw Ja € Ok with ||| <, ’DiSC(K)P"lj.
In fact, Ja € Ok with ||a|| <, |Disc(K)\ﬁ and Trg g(a) = 0.
Then fy(x) = x" 4+ aax" 2 + --- + a,, with

a; <, [Disc(K)|72 < X7z,

2 4.4 n_ n+2 . .
There are <, X202 2—2 = X 4 such polynomials in Z[x],
n+2
= there are <, X" fields.

This is Schmidt's theorem.

(Caution: Slight issue: what if K # Q(«)? Schmidt inducts,
details not important for this talk.)
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What if we instead consider pairs «, 5 € Ok?
Bad idea: Could write down f,(x) and f3(x) following Schmidt.

fa(X) —— (TI'K/Q(OZ), TI'K/Q(Oéz), . ,TI'K/Q(Oén)) cZ"

fs(x) <= (Tri/0(B), Tri/0(B°), - - -, Trko(B")) € Z"

Good idea: Let o and 3 mingle. Consider TrK/Q(o/ﬁf) eZ.



Invariants of pairs «, 3

Suppose «a, 5 € Ok. Then

Triso(a’B) = a4 B + ahBh + -+ + o Bl



Invariants of pairs «, 3

Suppose «a, 5 € Ok. Then
Tricjg(a’B) = afB] + abB + -+ + o}

There are (”;2) ~ "72 “mixed traces” Try q(e/F) with i +j < n.



Invariants of pairs «, 3

Suppose «a, 5 € Ok. Then
Triejqa’ ) = 0] + a5 + -+ aih.
There are (”;2) ~ "72 “mixed traces” Try q(e/F) with i +j < n.

Idea: If “enough” Try q(a’ () are specified, can solve for
a1, 0n, 1,5 B



Invariants of pairs «, 3

Suppose «a, 5 € Ok. Then

Triso(a’B) = a4 B + ahBh + -+ + o Bl

There are (”;2) ~ "72 “mixed traces” Try q(e/F) with i +j < n.

Idea: If “enough” Try q(a’ () are specified, can solve for
a1, 0n, 1,5 B

Ellenberg—Venkatesh: ~ 8n mixed traces are enough.



Invariants of pairs «, 3

Suppose «a, 5 € Ok. Then

Triso(a’B) = a4 B + ahBh + -+ + o Bl

There are (”;2) ~ "72 “mixed traces” Try q(e/F) with i +j < n.

Idea: If “enough” Try q(a’ () are specified, can solve for
a1, 0n, 1,5 B

Ellenberg—Venkatesh: ~ 8n mixed traces are enough.

L.O.—Thorne: The 2n mixed traces with smallest i + j are
enough.



Invariants of pairs «, 3

Suppose «a, 5 € Ok. Then

Triso(a’B) = a4 B + ahBh + -+ + o Bl

There are (”;2) ~ "72 “mixed traces” Try q(e/F) with i +j < n.
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L.O.—Thorne: The 2n mixed traces with smallest i + j are
enough. (More on this later!)
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Consequences for field counting

The 2n traces TrK/@(oz"Bj) with smallest / + j are “enough.”
= i+j=~2yn

If [lal, 18] < ¥, then Ty gl @) < YiH = YO,

2n different invariants = there are <, Y O(n*"%) choices for a, B8
= YO*?) choices for K

Schmidt: Y = Xﬁ. For “technical reasons,” we take Y = X%.

Theorem: N,(X) <, X3V,
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Going further

We can apply the same idea to triples «, 8,7 € Ok, looking at
TI'K/Q(OKIBJ’}/I() c 7.

Or, more generally, to r-tuples ay,...,a, € Ok, looking at
Trig(af ...ar) € Z.

Ellenberg—Venkatesh: ~ 2°"~n mixed traces are “enough” to
determine a1, ..., a, (and therefore K).

L.O.—Thorne: r - n traces with “small” iy + --- + i, are enough.
Main theorem uses r = log n.

Question: How do we actually show a set of traces is enough?
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Enough is enough: an example

Suppose n = 3 and r = 2. Replace "variables” «; by x; and 3; by
vi. We're considering the equations

T170: X1+ X0+ X3 = Tr(a), T071: vi+y+ys= Tr(,B),

Too: X12 + x22 + X32 = Tr(ozz), Ti1: x1y1 + xoy2 + x3y3 = Tr(af),

Too: v2+y3 +yi="Tr(B?), T3,0: X3+ 3 4 x5 = Tr(a®).
We want to show we can “solve” for xi,..., y3 given the traces.

Actual goal: Want to show the variety cut out by these eq’ns has
dimension 0.
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Computing dimensions

Goal: Show that dim V(TLQ, T071, T270, T171, To,z, T3,0) =0.
Compute the tangent space, i.e. the kernel of the 6 x 6 matrix

\Y% T170
VToa
VT
VT
v T072
v T3,0

Hope ker D =0, i.e. det D £ 0. In fact,

det D = —12(x1—x2)(x1—x3)(x2—x3)(X1y2—X1y3—X2y1+X2y3+X3y1—X3Y2).
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Back to number fields

Upshot: det D is a non-zero polynomial such that if

=,

det D(&, B) # 0, then the traces
Tr(a), Tr(B), Tr(a?), Tr(aB), Tr(5?), Tr(a) determine K.

Lemma
If P: (C")" — C is a non-zero polynomial and [K : Q] = n, then
there exist ai,...,a, € Ok with each ||a;|| < p [Disc(K)|Y/"

such that P(aa,...,a,) # 0.

Applied to det D with n =3, r = 2, we find:

1+1+4+2424243
e e X11/3 .

N3(X) < X 3

In general, we've transformed the problem into showing a
(horrible!) determinant is a non-zero polynomial.
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Determinants when r = 2

Theorem (LO-Thorne; r = 2)
If D is the 2n x 2n matrix of partial derivatives of the first 2n

functions T170, 7-()717 T2,0, T1,1, ..., with
n
o b
T37b T inayi 3
i=1
then det D is a non-zero polynomial in xq, ..., yn.
Proof.
Induction. n+ n+ 1 gives two new rows and two new columns.
Cofactor expansion = new 2 x 2 contribution not canceled. O

Leads to the bound N,(X) < X3V7.
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Determinants when r > 2

Theorem (LO-Thorne; r > 2)
Let n > 6 and r > 3. Suppose d is such that (d“Il) >r-n, and

r—
that (d, r,n) # (3,5,7),(4,5,14). Then there is a set of r - n
functions of the form T,, . a with ai + ---+ a, = d such that

det D is a non-zero polynomial.

Proof.

Uses a hammer from algebraic geometry, the
Alexander—Hirschowitz theorem. O

d 1
n

Leads to the bound Np(X) <, (X0)™ = X9 = xO(*n™T),
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1) Let d be the least integer for which (df) >2n+1. Then
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2) Let 3 < r < n and let d be such that (df_rzl) > rn. Then
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Summary

Theorem (LO-Thorne; explicit version)
1) Let d be the least integer for which (df) >2n+1. Then

Np(X) <, X249~ =gl < x5
2) Let 3 < r < n and let d be such that (df_rzl) > rn. Then
Nn(X) <pra X"

Theorem (LO-Thorne; asymptotic version)

There is a constant ¢ > 0 such that N,(X) <, xc(logn)® " In fact,
c = 1.564 is admissible.



Thank you!



