The average size of 3-torsion in class groups of 2-extensions

Robert J. Lemke Oliver Tufts University

(joint w/ Jiuya Wang & Melanie Matchett Wood)

Theorem (Davenport-Heilbronn; 1971)

The average size of the 3-torsion subgroup $\operatorname{Cl}_{K}[3]$ for quadratic fields K/\mathbb{Q} is exactly 5/3.

Theorem (Davenport–Heilbronn; 1971)

The average size of the 3-torsion subgroup $\operatorname{Cl}_{K}[3]$ for quadratic fields K/\mathbb{Q} is exactly 5/3.

That is, if $\mathcal{F}_2(X) := \{K/\mathbb{Q} \text{ quad.} : |\mathrm{Disc}(K)| \leq X\}$, then

$$\lim_{X\to\infty}\frac{1}{\#\mathcal{F}_2(X)}\sum_{K\in\mathcal{F}_2(X)}|\mathrm{Cl}_K[3]|=\frac{5}{3}$$

Theorem (Davenport–Heilbronn; 1971)

The average size of the 3-torsion subgroup $\operatorname{Cl}_{\mathcal{K}}[3]$ for quadratic fields \mathcal{K}/\mathbb{Q} is exactly 5/3.

That is, if $\mathcal{F}_2(X) := \{K/\mathbb{Q} \text{ quad.} : |\text{Disc}(K)| \le X\}$, then

$$\lim_{X\to\infty}\frac{1}{\#\mathcal{F}_2(X)}\sum_{K\in\mathcal{F}_2(X)}|\mathrm{Cl}_K[3]|=\frac{5}{3}$$

Davenport-Heilbronn: This is consistent with

• $\operatorname{Prob}(\operatorname{rk}_{\mathbb{F}_3}\operatorname{Cl}_{\mathcal{K}}[3] \ge m) = 3^{1-2m}$ for imaginary quadratic \mathcal{K} ,

Theorem (Davenport-Heilbronn; 1971)

The average size of the 3-torsion subgroup $\operatorname{Cl}_{K}[3]$ for quadratic fields K/\mathbb{Q} is exactly 5/3.

That is, if $\mathcal{F}_2(X) := \{K/\mathbb{Q} \text{ quad.} : |\mathrm{Disc}(K)| \leq X\}$, then

$$\lim_{X\to\infty}\frac{1}{\#\mathcal{F}_2(X)}\sum_{K\in\mathcal{F}_2(X)}|\mathrm{Cl}_K[3]|=\frac{5}{3}$$

Davenport-Heilbronn: This is consistent with

- $\operatorname{Prob}(\operatorname{rk}_{\mathbb{F}_3}\operatorname{Cl}_{\mathcal{K}}[3] \ge m) = 3^{1-2m}$ for imaginary quadratic \mathcal{K} , and
- $\operatorname{Prob}(\operatorname{rk}_{\mathbb{F}_3}\operatorname{Cl}_{\mathcal{K}}[3] \ge m) = 3^{-2m}$ for real quadratic \mathcal{K} .

Theorem (Davenport-Heilbronn; 1971)

The average size of the 3-torsion subgroup $\operatorname{Cl}_{K}[3]$ for quadratic fields K/\mathbb{Q} is exactly 5/3.

That is, if $\mathcal{F}_2(X) := \{K/\mathbb{Q} \text{ quad.} : |\mathrm{Disc}(K)| \leq X\}$, then

$$\lim_{X\to\infty}\frac{1}{\#\mathcal{F}_2(X)}\sum_{K\in\mathcal{F}_2(X)}|\mathrm{Cl}_K[3]|=\frac{5}{3}$$

Davenport-Heilbronn: This is consistent with

- $\operatorname{Prob}(\operatorname{rk}_{\mathbb{F}_3}\operatorname{Cl}_{\mathcal{K}}[3] \ge m) = 3^{1-2m}$ for imaginary quadratic \mathcal{K} , and
- $\operatorname{Prob}(\operatorname{rk}_{\mathbb{F}_3}\operatorname{Cl}_{\mathcal{K}}[3] \ge m) = 3^{-2m}$ for real quadratic \mathcal{K} .

(Now believed to be wrong.)

If K is a quadratic field and ℓ is an odd prime, then $\operatorname{Cl}_{K}[\ell]$ should look like a "random" elementary abelian ℓ -group.

If K is a quadratic field and ℓ is an odd prime, then $\operatorname{Cl}_{K}[\ell]$ should look like a "random" elementary abelian ℓ -group.

More specifically, for any $k \ge 1$, the limit

$$\lim_{X\to\infty}\frac{1}{\#\mathcal{F}_2(X)}\sum_{K\in\mathcal{F}_2(X)}|\mathrm{Cl}_K[\ell]|^k=:\mathrm{Avg}_{\mathcal{F}_2}(|\mathrm{Cl}_K[\ell]|^k)$$

exists.

If K is a quadratic field and ℓ is an odd prime, then $\operatorname{Cl}_{K}[\ell]$ should look like a "random" elementary abelian ℓ -group.

More specifically, for any $k \ge 1$, the limit

$$\lim_{X\to\infty}\frac{1}{\#\mathcal{F}_2(X)}\sum_{K\in\mathcal{F}_2(X)}|\mathrm{Cl}_K[\ell]|^k=:\mathrm{Avg}_{\mathcal{F}_2}(|\mathrm{Cl}_K[\ell]|^k)$$

exists.

• Davenport-Heilbronn remains the only known case.

If K is a quadratic field and ℓ is an odd prime, then $\operatorname{Cl}_{K}[\ell]$ should look like a "random" elementary abelian ℓ -group.

More specifically, for any $k \ge 1$, the limit

$$\lim_{X\to\infty}\frac{1}{\#\mathcal{F}_2(X)}\sum_{K\in\mathcal{F}_2(X)}|\mathrm{Cl}_K[\ell]|^k=:\mathrm{Avg}_{\mathcal{F}_2}(|\mathrm{Cl}_K[\ell]|^k)$$

exists.

- Davenport-Heilbronn remains the only known case.
- Smith: Studies the distribution of 2Cl_K[2[∞]].

For $n \ge 2$, let $G \subseteq S_n$ be transitive.¹

¹N.B. In this talk, all Galois groups G are permutation groups.

For $n \ge 2$, let $G \subseteq S_n$ be transitive.¹ Let $\mathcal{F}_G(X) := \{ [K : \mathbb{Q}] = n : \operatorname{Gal}(\widetilde{K}/\mathbb{Q}) \simeq G, |\operatorname{Disc}(K)| \le X \}.$

¹N.B. In this talk, all Galois groups G are permutation groups.

For
$$n \ge 2$$
, let $G \subseteq S_n$ be transitive.¹ Let
 $\mathcal{F}_G(X) := \{ [K : \mathbb{Q}] = n : \operatorname{Gal}(\widetilde{K}/\mathbb{Q}) \simeq G, |\operatorname{Disc}(K)| \le X \}.$

Conjecture (Cohen–Martinet; 1990) For ℓ a "good" prime and $k \ge 1$, the limit

$$\lim_{X\to\infty}\frac{1}{\#\mathcal{F}_{G}(X)}\sum_{K\in\mathcal{F}_{G}(X)}|\mathrm{Cl}_{K}[\ell]|^{k}=:\mathrm{Avg}_{\mathcal{F}_{G}}(|\mathrm{Cl}_{K}[\ell]|^{k})$$

exists.

¹N.B. In this talk, all Galois groups G are permutation groups.

For
$$n \ge 2$$
, let $G \subseteq S_n$ be transitive.¹ Let
 $\mathcal{F}_G(X) := \{ [K : \mathbb{Q}] = n : \operatorname{Gal}(\widetilde{K}/\mathbb{Q}) \simeq G, |\operatorname{Disc}(K)| \le X \}.$

Conjecture (Cohen–Martinet; 1990) For ℓ a "good" prime and $k \ge 1$, the limit

$$\lim_{X\to\infty}\frac{1}{\#\mathcal{F}_{G}(X)}\sum_{K\in\mathcal{F}_{G}(X)}|\mathrm{Cl}_{K}[\ell]|^{k}=:\mathrm{Avg}_{\mathcal{F}_{G}}(|\mathrm{Cl}_{K}[\ell]|^{k})$$

exists.

Bhargava (2005): Determines the average of $|Cl_{\mathcal{K}}[2]|$ over S_3 cubics \mathcal{K} .

¹N.B. In this talk, all Galois groups G are permutation groups.

For
$$n \ge 2$$
, let $G \subseteq S_n$ be transitive.¹ Let
 $\mathcal{F}_G(X) := \{ [K : \mathbb{Q}] = n : \operatorname{Gal}(\widetilde{K}/\mathbb{Q}) \simeq G, |\operatorname{Disc}(K)| \le X \}.$

Conjecture (Cohen–Martinet; 1990) For ℓ a "good" prime and $k \ge 1$, the limit

$$\lim_{X\to\infty}\frac{1}{\#\mathcal{F}_{G}(X)}\sum_{K\in\mathcal{F}_{G}(X)}|\mathrm{Cl}_{K}[\ell]|^{k}=:\mathrm{Avg}_{\mathcal{F}_{G}}(|\mathrm{Cl}_{K}[\ell]|^{k})$$

exists.

Bhargava (2005): Determines the average of $|Cl_K[2]|$ over S_3 cubics K. (i.e., n = 3, $G = S_3$, $\ell = 2$, and k = 1)

¹N.B. In this talk, all Galois groups G are permutation groups.

The average size of 3-torsion in 2-extensions

Theorem (LO–Wang–Wood) For $m \ge 1$, let \mathcal{F}_{2^m} be the set of 2-extensions¹ K/\mathbb{Q} of degree 2^m .

 $^{{}^1{\}mathcal K}/{\mathbb Q}$ is a 2-extension if it is built out of successive quadratic extensions.

The average size of 3-torsion in 2-extensions

Theorem (LO–Wang–Wood)

For $m \ge 1$, let \mathcal{F}_{2^m} be the set of 2-extensions¹ K/\mathbb{Q} of degree 2^m . Then

$$\lim_{X\to\infty}\frac{1}{\#\mathcal{F}_{2^m}(X)}\sum_{K\in\mathcal{F}_{2^m}(X)}|\mathrm{Cl}_K[3]|$$

exists, and is given by an explicit constant.

 $^{{}^{1}}K/\mathbb{Q}$ is a 2-extension if it is built out of successive quadratic extensions.

Theorem (LO–Wang–Wood)

For $m \ge 1$, let \mathcal{F}_{2^m} be the set of 2-extensions¹ K/\mathbb{Q} of degree 2^m . Then

$$\lim_{X\to\infty}\frac{1}{\#\mathcal{F}_{2^m}(X)}\sum_{K\in\mathcal{F}_{2^m}(X)}|\mathrm{Cl}_K[3]|$$

exists, and is given by an explicit constant.

Theorem (LO–Wang–Wood) Let $G \subseteq S_{2^m}$ be a transitive 2-group.

 $^{{}^{1}}K/\mathbb{Q}$ is a 2-extension if it is built out of successive quadratic extensions.

Theorem (LO–Wang–Wood)

For $m \ge 1$, let \mathcal{F}_{2^m} be the set of 2-extensions¹ K/\mathbb{Q} of degree 2^m . Then

$$\lim_{X\to\infty}\frac{1}{\#\mathcal{F}_{2^m}(X)}\sum_{K\in\mathcal{F}_{2^m}(X)}|\mathrm{Cl}_K[3]|$$

exists, and is given by an explicit constant.

Theorem (LO–Wang–Wood)

Let $G \subseteq S_{2^m}$ be a transitive 2-group. If G has a transposition, then

$$\lim_{X\to\infty}\frac{1}{\#\mathcal{F}_{G}(X)}\sum_{K\in\mathcal{F}_{G}(X)}|\mathrm{Cl}_{K}[3]|$$

exists, and is given by an explicit constant.

 $^{{}^{1}\}mathcal{K}/\mathbb{Q}$ is a 2-extension if it is built out of successive quadratic extensions.

Important Aside: Malle's Conjecture for 2-extensions

Theorem Let $G \subseteq S_{2^m}$ be a transitive 2-group. If G has a transposition, then

$$\#\mathcal{F}_G(X)\sim c_G X$$

for an explicit $c_G > 0$, and

$$\#\mathcal{F}_{\mathcal{G}}(X) = O_{m,\epsilon}(X^{1/2+\epsilon})$$

if G does not have a transposition.

Theorem

Let $G \subseteq S_{2^m}$ be a transitive 2-group. If G has a transposition, then

$$\#\mathcal{F}_G(X)\sim c_G X$$

for an explicit $c_G > 0$, and

$$\#\mathcal{F}_{\mathcal{G}}(X) = O_{m,\epsilon}(X^{1/2+\epsilon})$$

if G does not have a transposition.

Proof.

Follows by combining work of Cohen–Diaz y Diaz–Olivier, Klüners–Malle, Klüners, and Shafarevich.

Corollary (LO–Wang–Wood)

Let \mathcal{F}_{D_4} denote the family of D_4 quartic fields K/\mathbb{Q} .

Corollary (LO–Wang–Wood)

Let \mathcal{F}_{D_4} denote the family of D_4 quartic fields K/\mathbb{Q} . Then

$$\lim_{X\to\infty}\frac{1}{\#\mathcal{F}_{D_4}(X)}\sum_{K\in\mathcal{F}_{D_4}(X)}|\mathrm{Cl}_K[3]|$$

exists.

Corollary (LO–Wang–Wood)

Let \mathcal{F}_{D_4} denote the family of D_4 quartic fields K/\mathbb{Q} . Then

$$\lim_{X\to\infty}\frac{1}{\#\mathcal{F}_{D_4}(X)}\sum_{K\in\mathcal{F}_{D_4}(X)}|\mathrm{Cl}_K[3]|$$

exists.

Key Step: Show that C_4 and $C_2 \times C_2$ do not contribute to the overall average for \mathcal{F}_4 .

• Each $K \in \mathcal{F}_{D_4}$ has a unique quadratic subfield F.

- Each $K \in \mathcal{F}_{D_4}$ has a unique quadratic subfield F.
- The number of $K \in \mathcal{F}_{D_4}(X)$ over a given F is $O_{\epsilon}(X/|\mathrm{Disc}(F)|^{2-\epsilon}).$

- Each $K \in \mathcal{F}_{D_4}$ has a unique quadratic subfield F.
- The number of $K \in \mathcal{F}_{D_4}(X)$ over a given F is $O_{\epsilon}(X/|\mathrm{Disc}(F)|^{2-\epsilon}).$
- \Rightarrow The number of K with $|\text{Disc}(F)| \ge Y$ is $O(X/Y^{1-\epsilon})$.

- Each $K \in \mathcal{F}_{D_4}$ has a unique quadratic subfield F.
- The number of $K \in \mathcal{F}_{D_4}(X)$ over a given F is $O_{\epsilon}(X/|\mathrm{Disc}(F)|^{2-\epsilon}).$
- \Rightarrow The number of K with $|\text{Disc}(F)| \ge Y$ is $O(X/Y^{1-\epsilon})$.
 - Think: 99% of $K \in \mathcal{F}_{D_4}$ have $|\text{Disc}(F)| \leq 100$.

- Each $K \in \mathcal{F}_{D_4}$ has a unique quadratic subfield F.
- The number of $K \in \mathcal{F}_{D_4}(X)$ over a given F is $O_{\epsilon}(X/|\mathrm{Disc}(F)|^{2-\epsilon}).$
- \Rightarrow The number of K with $|\text{Disc}(F)| \ge Y$ is $O(X/Y^{1-\epsilon})$.
 - Think: 99% of $K \in \mathcal{F}_{D_4}$ have $|\text{Disc}(F)| \leq 100$.
- Goal: Prove the same kind of thing for $|Cl_{\mathcal{K}}[3]|$.

- Each $K \in \mathcal{F}_{D_4}$ has a unique quadratic subfield F.
- The number of $K \in \mathcal{F}_{D_4}(X)$ over a given F is $O_{\epsilon}(X/|\mathrm{Disc}(F)|^{2-\epsilon}).$
- \Rightarrow The number of K with $|\text{Disc}(F)| \ge Y$ is $O(X/Y^{1-\epsilon})$.
 - Think: 99% of $K \in \mathcal{F}_{D_4}$ have $|\text{Disc}(F)| \leq 100$.
- Goal: Prove the same kind of thing for $|Cl_{\mathcal{K}}[3]|$.

Theorem (LO–Wang–Wood; main technical result for D_4) For any $X \ge 1$ and $Y \le X^{1/2}$, we have

$$\sum_{\substack{K \in \mathcal{F}_4(X) \\ \operatorname{Disc}(F) | \geq Y}} |\operatorname{Cl}_K[3]| = O_{\epsilon}(X/Y^{1-\epsilon}).$$

For $K \in \mathcal{F}_{D_4}$, the 3-part factors: $|\operatorname{Cl}_K[3]| = |\operatorname{Cl}_F[3]| \cdot |\operatorname{Cl}_{K/F}[3]|$.

For $K \in \mathcal{F}_{D_4}$, the 3-part factors: $|Cl_K[3]| = |Cl_F[3]| \cdot |Cl_{K/F}[3]|$. Thus,

$$\sum_{\substack{K \in \mathcal{F}_4(X) \\ |\text{Disc}(F)| \ge Y}} |\text{Cl}_K[3]|$$

For $K \in \mathcal{F}_{D_4}$, the 3-part factors: $|Cl_K[3]| = |Cl_F[3]| \cdot |Cl_{K/F}[3]|$. Thus,

$$\sum_{\substack{K \in \mathcal{F}_4(X) \\ |\operatorname{Disc}(F)| \ge Y}} |\operatorname{Cl}_K[3]| \doteq \sum_{\substack{F \in \mathcal{F}_2(X^{1/2}) \\ |\operatorname{Disc}(F)| \ge Y}} |\operatorname{Cl}_F[3]| \sum_{\substack{[K:F]=2 \\ |\operatorname{Disc}(K)| \le X}} |\operatorname{Cl}_{K/F}[3]|.$$

For $K \in \mathcal{F}_{D_4}$, the 3-part factors: $|Cl_K[3]| = |Cl_F[3]| \cdot |Cl_{K/F}[3]|$. Thus,

$$\sum_{\substack{K \in \mathcal{F}_4(X) \\ |\operatorname{Disc}(F)| \ge Y}} |\operatorname{Cl}_K[3]| \doteq \sum_{\substack{F \in \mathcal{F}_2(X^{1/2}) \\ |\operatorname{Disc}(F)| \ge Y}} |\operatorname{Cl}_F[3]| \sum_{\substack{[K:F]=2 \\ |\operatorname{Disc}(K)| \le X}} |\operatorname{Cl}_{K/F}[3]|.$$

Davenport-Heilbronn handles first sum,

For $K \in \mathcal{F}_{D_4}$, the 3-part factors: $|Cl_K[3]| = |Cl_F[3]| \cdot |Cl_{K/F}[3]|$. Thus,

$$\sum_{\substack{K \in \mathcal{F}_4(X) \\ |\operatorname{Disc}(F)| \ge Y}} |\operatorname{Cl}_K[3]| \doteq \sum_{\substack{F \in \mathcal{F}_2(X^{1/2}) \\ |\operatorname{Disc}(F)| \ge Y}} |\operatorname{Cl}_F[3]| \sum_{\substack{[K:F]=2 \\ |\operatorname{Disc}(K)| \le X}} |\operatorname{Cl}_{K/F}[3]|.$$

Davenport-Heilbronn handles first sum, if we bound the second.

For $K \in \mathcal{F}_{D_4}$, the 3-part factors: $|Cl_K[3]| = |Cl_F[3]| \cdot |Cl_{K/F}[3]|$. Thus,

$$\sum_{\substack{K \in \mathcal{F}_4(X) \\ |\operatorname{Disc}(F)| \geq Y}} |\operatorname{Cl}_K[3]| \doteq \sum_{\substack{F \in \mathcal{F}_2(X^{1/2}) \\ |\operatorname{Disc}(F)| \geq Y}} |\operatorname{Cl}_F[3]| \sum_{\substack{[K:F]=2 \\ |\operatorname{Disc}(K)| \leq X}} |\operatorname{Cl}_{K/F}[3]|.$$

Davenport–Heilbronn handles first sum, if we bound the second. For $x := X/|\text{Disc}(F)|^2$, we have

$$\sum_{\substack{[K:F]=2\\ \text{Disc}(K/F)|\leq x}} |\text{Cl}_{K/F}[3]| \doteq N_3^{\text{sf}}(x;F),$$

The strategy for D_4 quartics

For $K \in \mathcal{F}_{D_4}$, the 3-part factors: $|Cl_K[3]| = |Cl_F[3]| \cdot |Cl_{K/F}[3]|$. Thus,

$$\sum_{\substack{K \in \mathcal{F}_4(X) \\ |\operatorname{Disc}(F)| \geq Y}} |\operatorname{Cl}_K[3]| \doteq \sum_{\substack{F \in \mathcal{F}_2(X^{1/2}) \\ |\operatorname{Disc}(F)| \geq Y}} |\operatorname{Cl}_F[3]| \sum_{\substack{[K:F]=2 \\ |\operatorname{Disc}(K)| \leq X}} |\operatorname{Cl}_{K/F}[3]|.$$

Davenport–Heilbronn handles first sum, if we bound the second. For $x := X/|\text{Disc}(F)|^2$, we have

$$\sum_{\substack{[K:F]=2\\ \text{Disc}(K/F)|\leq x}} |\text{Cl}_{K/F}[3]| \doteq N_3^{\text{sf}}(x;F),$$

where $N_3^{\text{sf}}(x; F)$ is the number of squarefree cubic extensions of F.

The strategy for D_4 quartics

For $K \in \mathcal{F}_{D_4}$, the 3-part factors: $|Cl_K[3]| = |Cl_F[3]| \cdot |Cl_{K/F}[3]|$. Thus,

$$\sum_{\substack{K \in \mathcal{F}_4(X) \\ |\operatorname{Disc}(F)| \geq Y}} |\operatorname{Cl}_K[3]| \doteq \sum_{\substack{F \in \mathcal{F}_2(X^{1/2}) \\ |\operatorname{Disc}(F)| \geq Y}} |\operatorname{Cl}_F[3]| \sum_{\substack{[K:F]=2 \\ |\operatorname{Disc}(K)| \leq X}} |\operatorname{Cl}_{K/F}[3]|.$$

Davenport–Heilbronn handles first sum, if we bound the second. For $x := X/|\text{Disc}(F)|^2$, we have

$$\sum_{\substack{[K:F]=2\\ \text{Disc}(K/F)|\leq x}} |\text{Cl}_{K/F}[3]| \doteq N_3^{\text{sf}}(x;F),$$

where $N_3^{\text{sf}}(x; F)$ is the number of squarefree cubic extensions of F. **Key obstacle:** The relative discriminant bound, x, may be small.

A shifted goalpost: Bounding small cubic extensions

Let $N_3(x; F) := \#\{L/F \text{ cubic} : |\text{Disc}(L/F)| \le x\}.$

A shifted goalpost: Bounding small cubic extensions

Let
$$N_3(x; F) := \#\{L/F \text{ cubic} : |\text{Disc}(L/F)| \le x\}.$$

Datskovsky–Wright: $N_3(x; F) \sim c_F x$ as $x \to \infty$.

Let
$$N_3(x; F) := \#\{L/F \text{ cubic} : |\text{Disc}(L/F)| \le x\}.$$

Question: What is the least α s.t. $N_3(x; F) = O(|\text{Disc}(F)|^{\alpha}x)$ for all $x \ge 1$?

Let
$$N_3(x; F) := \#\{L/F \text{ cubic} : |\text{Disc}(L/F)| \le x\}.$$

Question: What is the least α s.t. $N_3(x; F) = O(|\text{Disc}(F)|^{\alpha}x)$ for all $x \ge 1$?

• **Conjecture:** Any $\alpha > 0$ should work (i.e., $\alpha = \epsilon$).

Let
$$N_3(x; F) := \#\{L/F \text{ cubic} : |\text{Disc}(L/F)| \le x\}.$$

Question: What is the least α s.t. $N_3(x; F) = O(|\text{Disc}(F)|^{\alpha}x)$ for all $x \ge 1$?

- **Conjecture:** Any $\alpha > 0$ should work (i.e., $\alpha = \epsilon$).
- **Goal:** Get some $\alpha < 1$.

Let
$$N_3(x; F) := \#\{L/F \text{ cubic} : |\text{Disc}(L/F)| \le x\}.$$

Question: What is the least α s.t. $N_3(x; F) = O(|\text{Disc}(F)|^{\alpha}x)$ for all $x \ge 1$?

- **Conjecture:** Any $\alpha > 0$ should work (i.e., $\alpha = \epsilon$).
- **Goal:** Get some $\alpha < 1$.
- Trivial bound: ?????

Let
$$N_3(x; F) := \#\{L/F \text{ cubic} : |\text{Disc}(L/F)| \le x\}.$$

Question: What is the least α s.t. $N_3(x; F) = O(|\text{Disc}(F)|^{\alpha}x)$ for all $x \ge 1$?

- **Conjecture:** Any $\alpha > 0$ should work (i.e., $\alpha = \epsilon$).
- **Goal:** Get some $\alpha < 1$.
- Trivial bound: ?????

Spoiler: Get $\alpha = 1 + \epsilon$ pointwise,

Let
$$N_3(x; F) := \#\{L/F \text{ cubic} : |\text{Disc}(L/F)| \le x\}.$$

Question: What is the least α s.t. $N_3(x; F) = O(|\text{Disc}(F)|^{\alpha}x)$ for all $x \ge 1$?

- **Conjecture:** Any $\alpha > 0$ should work (i.e., $\alpha = \epsilon$).
- **Goal:** Get some $\alpha < 1$.
- Trivial bound: ?????

Spoiler: Get $\alpha = 1 + \epsilon$ pointwise, only get $\alpha < 1$ on average.

```
Suppose |\text{Disc}(L/F)| = D.
```

Suppose |Disc(L/F)| = D.

L/F cyclic: get at most O(|Cl_F[3]| · D^ϵ) extensions.

- L/F cyclic: get at most $O(|Cl_F[3]| \cdot D^{\epsilon})$ extensions.
 - Trivial bound: $|\operatorname{Cl}_F[3]| \le |\operatorname{Cl}_F| \ll |\operatorname{Disc}(F)|^{1/2+\epsilon}$.

- L/F cyclic: get at most $O(|Cl_F[3]| \cdot D^{\epsilon})$ extensions.
 - Trivial bound: $|\operatorname{Cl}_F[3]| \le |\operatorname{Cl}_F| \ll |\operatorname{Disc}(F)|^{1/2+\epsilon}$.
 - \Rightarrow Get at most $O(|\text{Disc}(F)|^{1/2+\epsilon}D^{\epsilon})$ extensions.

- L/F cyclic: get at most O(|Cl_F[3]| · D^ϵ) extensions.
 - Trivial bound: $|\operatorname{Cl}_F[3]| \le |\operatorname{Cl}_F| \ll |\operatorname{Disc}(F)|^{1/2+\epsilon}$.
 - \Rightarrow Get at most $O(|\text{Disc}(F)|^{1/2+\epsilon}D^{\epsilon})$ extensions.
- L/F noncyclic; parametrized by $Cl_{K/F}[3]$ for K/F quad.

- L/F cyclic: get at most O(|Cl_F[3]| · D^ϵ) extensions.
 - Trivial bound: $|\operatorname{Cl}_F[3]| \le |\operatorname{Cl}_F| \ll |\operatorname{Disc}(F)|^{1/2+\epsilon}$.
 - \Rightarrow Get at most $O(|\text{Disc}(F)|^{1/2+\epsilon}D^{\epsilon})$ extensions.
- L/F noncyclic; parametrized by $Cl_{K/F}[3]$ for K/F quad.
 - |Disc(K/F)| divides $D \Rightarrow \text{at most } O(D^{\epsilon})$ different K.

- L/F cyclic: get at most O(|Cl_F[3]| · D^ϵ) extensions.
 - Trivial bound: $|\operatorname{Cl}_F[3]| \le |\operatorname{Cl}_F| \ll |\operatorname{Disc}(F)|^{1/2+\epsilon}$.
 - \Rightarrow Get at most $O(|\text{Disc}(F)|^{1/2+\epsilon}D^{\epsilon})$ extensions.
- L/F noncyclic; parametrized by $Cl_{K/F}[3]$ for K/F quad.
 - |Disc(K/F)| divides $D \Rightarrow \text{at most } O(D^{\epsilon})$ different K.
 - Given K, get $O(|Cl_{K/F}[3]| \cdot D^{\epsilon})$ extensions.

- L/F cyclic: get at most O(|Cl_F[3]| · D^ϵ) extensions.
 - Trivial bound: $|\operatorname{Cl}_F[3]| \le |\operatorname{Cl}_F| \ll |\operatorname{Disc}(F)|^{1/2+\epsilon}$.
 - \Rightarrow Get at most $O(|\text{Disc}(F)|^{1/2+\epsilon}D^{\epsilon})$ extensions.
- L/F noncyclic; parametrized by $Cl_{K/F}[3]$ for K/F quad.
 - |Disc(K/F)| divides $D \Rightarrow \text{at most } O(D^{\epsilon})$ different K.
 - Given K, get $O(|Cl_{K/F}[3]| \cdot D^{\epsilon})$ extensions.
 - Trivial bound: $|\operatorname{Cl}_{K/F}| \ll |\operatorname{Disc}(F)|^{1/2+\epsilon} |\operatorname{Disc}(K/F)|^{1/2+\epsilon}$.

- L/F cyclic: get at most O(|Cl_F[3]| · D^ϵ) extensions.
 - Trivial bound: $|\operatorname{Cl}_F[3]| \le |\operatorname{Cl}_F| \ll |\operatorname{Disc}(F)|^{1/2+\epsilon}$.
 - \Rightarrow Get at most $O(|\text{Disc}(F)|^{1/2+\epsilon}D^{\epsilon})$ extensions.
- L/F noncyclic; parametrized by $Cl_{K/F}[3]$ for K/F quad.
 - |Disc(K/F)| divides $D \Rightarrow \text{at most } O(D^{\epsilon})$ different K.
 - Given K, get $O(|Cl_{K/F}[3]| \cdot D^{\epsilon})$ extensions.
 - Trivial bound: $|\operatorname{Cl}_{K/F}| \ll |\operatorname{Disc}(F)|^{1/2+\epsilon} |\operatorname{Disc}(K/F)|^{1/2+\epsilon}$.
 - \Rightarrow Get at most $O(|\text{Disc}(F)|^{1/2+\epsilon}D^{1/2+\epsilon})$ extensions.

Suppose |Disc(L/F)| = D.

- L/F cyclic: get at most O(|Cl_F[3]| · D^ϵ) extensions.
 - Trivial bound: $|\operatorname{Cl}_F[3]| \le |\operatorname{Cl}_F| \ll |\operatorname{Disc}(F)|^{1/2+\epsilon}$.
 - \Rightarrow Get at most $O(|\text{Disc}(F)|^{1/2+\epsilon}D^{\epsilon})$ extensions.
- L/F noncyclic; parametrized by $Cl_{K/F}[3]$ for K/F quad.
 - |Disc(K/F)| divides $D \Rightarrow \text{at most } O(D^{\epsilon})$ different K.
 - Given K, get $O(|Cl_{K/F}[3]| \cdot D^{\epsilon})$ extensions.
 - Trivial bound: $|\operatorname{Cl}_{K/F}| \ll |\operatorname{Disc}(F)|^{1/2+\epsilon} |\operatorname{Disc}(K/F)|^{1/2+\epsilon}$.
 - \Rightarrow Get at most $O(|\text{Disc}(F)|^{1/2+\epsilon}D^{1/2+\epsilon})$ extensions.

Adding across $D \leq x$, get:

First bound: $N_3(x; F) = O_{\epsilon}(|\text{Disc}(F)|^{1/2+\epsilon}x^{3/2+\epsilon})$ for all $x \ge 1$.

Suppose |Disc(L/F)| = D.

- L/F cyclic: get at most O(|Cl_F[3]| · D^ϵ) extensions.
 - Trivial bound: $|\operatorname{Cl}_F[3]| \le |\operatorname{Cl}_F| \ll |\operatorname{Disc}(F)|^{1/2+\epsilon}$.
 - \Rightarrow Get at most $O(|\text{Disc}(F)|^{1/2+\epsilon}D^{\epsilon})$ extensions.
- L/F noncyclic; parametrized by $Cl_{K/F}[3]$ for K/F quad.
 - |Disc(K/F)| divides $D \Rightarrow \text{at most } O(D^{\epsilon})$ different K.
 - Given K, get $O(|Cl_{K/F}[3]| \cdot D^{\epsilon})$ extensions.
 - Trivial bound: $|\operatorname{Cl}_{K/F}| \ll |\operatorname{Disc}(F)|^{1/2+\epsilon} |\operatorname{Disc}(K/F)|^{1/2+\epsilon}$.
 - \Rightarrow Get at most $O(|\text{Disc}(F)|^{1/2+\epsilon}D^{1/2+\epsilon})$ extensions.

Adding across $D \leq x$, get:

First bound: $N_3(x; F) = O_{\epsilon}(|\text{Disc}(F)|^{1/2+\epsilon}x^{3/2+\epsilon})$ for all $x \ge 1$.

(Only usable for us if x is very small, $\leq |\text{Disc}(F)|^{1-\delta}$.)

Idea 2: Shintani zeta functions

$$\xi_{\mathsf{F}}(s) = \sum_{\substack{R/F:\\ \operatorname{Disc}(R/F)\neq 0}} \frac{|\operatorname{Aut}(R)|^{-1}}{|\operatorname{Disc}(R/F)|^s}$$

for cubic rings R/F. (Developed by Datskovsky–Wright)

$$\xi_F(s) = \sum_{\substack{R/F:\\ \operatorname{Disc}(R/F) \neq 0}} \frac{|\operatorname{Aut}(R)|^{-1}}{|\operatorname{Disc}(R/F)|^s}$$

for cubic rings R/F. (Developed by Datskovsky–Wright)

 Abs. conv. for ℜ(s) > 1; has analytic continuation, functional equation like a degree 4 *L*-function over *F*

$$\xi_{\mathcal{F}}(s) = \sum_{\substack{R/F:\\ \operatorname{Disc}(R/F) \neq 0}} \frac{|\operatorname{Aut}(R)|^{-1}}{|\operatorname{Disc}(R/F)|^s}$$

for cubic rings R/F. (Developed by Datskovsky–Wright)

- Abs. conv. for ℜ(s) > 1; has analytic continuation, functional equation like a degree 4 L-function over F
- Poles at s = 1, 5/6; no Euler product, no Ramanujan bound

$$\xi_F(s) = \sum_{\substack{R/F:\\ \operatorname{Disc}(R/F) \neq 0}} \frac{|\operatorname{Aut}(R)|^{-1}}{|\operatorname{Disc}(R/F)|^s}$$

for cubic rings R/F. (Developed by Datskovsky–Wright)

- Abs. conv. for ℜ(s) > 1; has analytic continuation, functional equation like a degree 4 *L*-function over *F*
- Poles at s = 1, 5/6; no Euler product, no Ramanujan bound

First bound + "convexity principle" gives:

Second bound: $N_3(x; F) = O_{\epsilon}(|\operatorname{Disc}(F)|^{\epsilon}x)$ for all $x \ge |\operatorname{Disc}(F)|^3$.

The Shintani zeta function counts cubic rings, not just cubic fields.

• Suppose $|\operatorname{Disc}(L/F)| = D$ for some $D \leq |\operatorname{Disc}(F)|^3$.

- Suppose $|\operatorname{Disc}(L/F)| = D$ for some $D \leq |\operatorname{Disc}(F)|^3$.
 - Expect $\approx |\text{Disc}(F)|^{3/2}/D^{1/2}$ rings $R \subseteq L$ with $|\text{Disc}(R/F)| \leq |\text{Disc}(F)|^3$.

- Suppose $|\operatorname{Disc}(L/F)| = D$ for some $D \leq |\operatorname{Disc}(F)|^3$.
 - Expect $\approx |\operatorname{Disc}(F)|^{3/2}/D^{1/2}$ rings $R \subseteq L$ with $|\operatorname{Disc}(R/F)| \leq |\operatorname{Disc}(F)|^3$.
- \Rightarrow Inside all L/F with $D \le x$, expect $\approx N_3(x; F) \cdot \frac{|\operatorname{Disc}(F)|^{3/2}}{x^{1/2}}$ rings with $|\operatorname{Disc}(R/F)| \le |\operatorname{Disc}(F)|^3$.

- Suppose $|\operatorname{Disc}(L/F)| = D$ for some $D \leq |\operatorname{Disc}(F)|^3$.
 - Expect $\approx |\operatorname{Disc}(F)|^{3/2}/D^{1/2}$ rings $R \subseteq L$ with $|\operatorname{Disc}(R/F)| \leq |\operatorname{Disc}(F)|^3$.
- \Rightarrow Inside all L/F with $D \le x$, expect $\approx N_3(x; F) \cdot \frac{|\operatorname{Disc}(F)|^{3/2}}{x^{1/2}}$ rings with $|\operatorname{Disc}(R/F)| \le |\operatorname{Disc}(F)|^3$.
- Can't be more than total number of rings, $O(|\text{Disc}(F)|^{3+\epsilon})$, from second bound.

- Suppose $|\operatorname{Disc}(L/F)| = D$ for some $D \leq |\operatorname{Disc}(F)|^3$.
 - Expect $\approx |\operatorname{Disc}(F)|^{3/2}/D^{1/2}$ rings $R \subseteq L$ with $|\operatorname{Disc}(R/F)| \leq |\operatorname{Disc}(F)|^3$.
- \Rightarrow Inside all L/F with $D \le x$, expect $\approx N_3(x; F) \cdot \frac{|\operatorname{Disc}(F)|^{3/2}}{x^{1/2}}$ rings with $|\operatorname{Disc}(R/F)| \le |\operatorname{Disc}(F)|^3$.
- Can't be more than total number of rings, $O(|\text{Disc}(F)|^{3+\epsilon})$, from second bound.
 - $\Rightarrow N_3(x; F) \ll x^{1/2} |\operatorname{Disc}(F)|^{3/2+\epsilon}$.

- Suppose $|\operatorname{Disc}(L/F)| = D$ for some $D \leq |\operatorname{Disc}(F)|^3$.
 - Expect $\approx |\operatorname{Disc}(F)|^{3/2}/D^{1/2}$ rings $R \subseteq L$ with $|\operatorname{Disc}(R/F)| \leq |\operatorname{Disc}(F)|^3$.
- \Rightarrow Inside all L/F with $D \le x$, expect $\approx N_3(x; F) \cdot \frac{|\operatorname{Disc}(F)|^{3/2}}{x^{1/2}}$ rings with $|\operatorname{Disc}(R/F)| \le |\operatorname{Disc}(F)|^3$.
- Can't be more than total number of rings, $O(|\text{Disc}(F)|^{3+\epsilon})$, from second bound.
 - $\Rightarrow N_3(x; F) \ll x^{1/2} |\operatorname{Disc}(F)|^{3/2+\epsilon}$.
- Exploit average over *L* to realize this expectation.

The Shintani zeta function counts cubic rings, not just cubic fields.

- Suppose $|\operatorname{Disc}(L/F)| = D$ for some $D \leq |\operatorname{Disc}(F)|^3$.
 - Expect $\approx |\operatorname{Disc}(F)|^{3/2}/D^{1/2}$ rings $R \subseteq L$ with $|\operatorname{Disc}(R/F)| \leq |\operatorname{Disc}(F)|^3$.
- \Rightarrow Inside all L/F with $D \le x$, expect $\approx N_3(x; F) \cdot \frac{|\operatorname{Disc}(F)|^{3/2}}{x^{1/2}}$ rings with $|\operatorname{Disc}(R/F)| \le |\operatorname{Disc}(F)|^3$.
- Can't be more than total number of rings, $O(|\text{Disc}(F)|^{3+\epsilon})$, from second bound.
 - $\Rightarrow N_3(x; F) \ll x^{1/2} |\operatorname{Disc}(F)|^{3/2+\epsilon}$.
- Exploit average over *L* to realize this expectation.

Altogether, we find:

Third bound: $N_3(x; F) \ll \begin{cases} |\operatorname{Disc}(F)|^{3/2+\epsilon} x^{1/2}, & \text{if } x \leq |\operatorname{Disc}(F)|^2 \\ |\operatorname{Disc}(F)|^{1/2+\epsilon} x, & \text{if } |\operatorname{Disc}(F)|^2 \leq x \leq |\operatorname{Disc}(F)|^3. \end{cases}$

Summarizing our progress

Combining the three bounds, we find:

Theorem (LO–Wang–Wood)

If F is quadratic, then $N_3(x; F) = O(|\text{Disc}(F)|^{1+\epsilon}x)$ for all $x \ge 1$.

Theorem (LO–Wang–Wood)

If F is quadratic, then $N_3(x; F) = O(|\text{Disc}(F)|^{1+\epsilon}x)$ for all $x \ge 1$.

• Holds also when F is a 2-extension; variant for general F

Theorem (LO–Wang–Wood)

- Holds also when F is a 2-extension; variant for general F
- Barely not enough for our purposes

Theorem (LO–Wang–Wood)

- Holds also when F is a 2-extension; variant for general F
- Barely not enough for our purposes
 - Recall: Needed $N_3(x; F) = O(|\text{Disc}(F)|^{\alpha}x)$ for some $\alpha < 1$.

Theorem (LO–Wang–Wood)

- Holds also when F is a 2-extension; variant for general F
- Barely not enough for our purposes
 - Recall: Needed $N_3(x; F) = O(|\text{Disc}(F)|^{\alpha}x)$ for some $\alpha < 1$.
- Tension point is $x \approx |\text{Disc}(F)|$

Theorem (LO–Wang–Wood)

- Holds also when F is a 2-extension; variant for general F
- Barely not enough for our purposes
 - Recall: Needed $N_3(x; F) = O(|\text{Disc}(F)|^{\alpha}x)$ for some $\alpha < 1$.
- Tension point is $x \approx |\text{Disc}(F)|$
 - Handoff from class field theory to propagation of orders

Theorem (LO–Wang–Wood)

- Holds also when F is a 2-extension; variant for general F
- Barely not enough for our purposes
 - Recall: Needed $N_3(x; F) = O(|\text{Disc}(F)|^{\alpha}x)$ for some $\alpha < 1$.
- Tension point is $x \approx |\text{Disc}(F)|$
 - Handoff from class field theory to propagation of orders
- Class field theory relied on trivial bound $|Cl_{K/F}[3]| \le |Cl_{K/F}|$.

Theorem (LO–Wang–Wood)

- Holds also when F is a 2-extension; variant for general F
- Barely not enough for our purposes
 - Recall: Needed $N_3(x; F) = O(|\text{Disc}(F)|^{\alpha}x)$ for some $\alpha < 1$.
- Tension point is $x \approx |\text{Disc}(F)|$
 - Handoff from class field theory to propagation of orders
- Class field theory relied on trivial bound $|Cl_{K/F}[3]| \le |Cl_{K/F}|$.
- Idea 4: Do better than trivial bound "on average."

Lemma (Ellenberg–Venkatesh)

Suppose K/F is degree d, $\ell \ge 2$ is an integer, and $\theta < 1/2\ell(d-1)$. If there are M primes p of K, not extended from any subextension, with $\text{Nmp} \le |\text{Disc}(K/F)|^{\theta}$, then

 $|\operatorname{Cl}_{\kappa}[\ell]| = O_{\epsilon}(|\operatorname{Disc}(\kappa)|^{1/2+\epsilon}/M).$

Lemma (Ellenberg–Venkatesh)

Suppose K/F is degree d, $\ell \ge 2$ is an integer, and $\theta < 1/2\ell(d-1)$. If there are M primes p of K, not extended from any subextension, with $\text{Nmp} \le |\text{Disc}(K/F)|^{\theta}$, then

$$|\operatorname{Cl}_{\mathcal{K}}[\ell]| = O_{\epsilon}(|\operatorname{Disc}(\mathcal{K})|^{1/2+\epsilon}/M).$$

• Uses the Arakelov class group, $\overline{\mathrm{Cl}}_{\mathcal{K}}$

Lemma (Ellenberg–Venkatesh)

Suppose K/F is degree d, $\ell \ge 2$ is an integer, and $\theta < 1/2\ell(d-1)$. If there are M primes p of K, not extended from any subextension, with $\text{Nmp} \le |\text{Disc}(K/F)|^{\theta}$, then

- Uses the Arakelov class group, $\widehat{\mathrm{Cl}}_{\mathcal{K}}$
 - Think: $\widetilde{\operatorname{Cl}}_{\mathcal{K}} \simeq \operatorname{Cl}_{\mathcal{K}} \times \mathcal{K}^1_{\infty} / \mathcal{O}_{\mathcal{K}}^{\times}$

Lemma (Ellenberg–Venkatesh)

Suppose K/F is degree d, $\ell \ge 2$ is an integer, and $\theta < 1/2\ell(d-1)$. If there are M primes p of K, not extended from any subextension, with $\text{Nmp} \le |\text{Disc}(K/F)|^{\theta}$, then

- Uses the Arakelov class group, $\widehat{\mathrm{Cl}}_{\mathcal{K}}$
 - Think: $\widetilde{\operatorname{Cl}_{K}} \simeq \operatorname{Cl}_{K} \times K_{\infty}^{1} / \mathcal{O}_{K}^{\times}$
 - $\Rightarrow \operatorname{Vol}(\widetilde{\operatorname{Cl}}_{\kappa}) = |\operatorname{Cl}_{\kappa}| \cdot \operatorname{Reg}(\kappa) \ll |\operatorname{Disc}(\kappa)|^{1/2+\epsilon}$

Lemma (Ellenberg–Venkatesh)

Suppose K/F is degree d, $\ell \ge 2$ is an integer, and $\theta < 1/2\ell(d-1)$. If there are M primes p of K, not extended from any subextension, with $\text{Nmp} \le |\text{Disc}(K/F)|^{\theta}$, then

- Uses the Arakelov class group, $\widehat{\mathrm{Cl}}_{\mathcal{K}}$
 - Think: $\widetilde{\operatorname{Cl}_{K}} \simeq \operatorname{Cl}_{K} \times K_{\infty}^{1} / \mathcal{O}_{K}^{\times}$
 - $\Rightarrow \operatorname{Vol}(\widetilde{\operatorname{Cl}}_{\mathcal{K}}) = |\operatorname{Cl}_{\mathcal{K}}| \cdot \operatorname{Reg}(\mathcal{K}) \ll |\operatorname{Disc}(\mathcal{K})|^{1/2+\epsilon}$
- Create discs $D_{\mathfrak{p}} \subseteq \widetilde{\operatorname{Cl}}_{\mathcal{K}}$

Lemma (Ellenberg–Venkatesh)

Suppose K/F is degree d, $\ell \ge 2$ is an integer, and $\theta < 1/2\ell(d-1)$. If there are M primes p of K, not extended from any subextension, with $\text{Nmp} \le |\text{Disc}(K/F)|^{\theta}$, then

- Uses the Arakelov class group, $\widehat{\mathrm{Cl}}_{\mathcal{K}}$
 - Think: $\widetilde{\operatorname{Cl}_{K}} \simeq \operatorname{Cl}_{K} \times K_{\infty}^{1} / \mathcal{O}_{K}^{\times}$
 - $\Rightarrow \operatorname{Vol}(\widetilde{\operatorname{Cl}}_{\mathcal{K}}) = |\operatorname{Cl}_{\mathcal{K}}| \cdot \operatorname{Reg}(\mathcal{K}) \ll |\operatorname{Disc}(\mathcal{K})|^{1/2+\epsilon}$
- Create discs $D_{\mathfrak{p}} \subseteq \widetilde{\operatorname{Cl}}_{K}$
 - Conditions on $\mathfrak{p} \Rightarrow \text{discs } \ell D_{\mathfrak{p}} \text{ don't intersect}$

Lemma (Ellenberg–Venkatesh)

Suppose K/F is degree d, $\ell \ge 2$ is an integer, and $\theta < 1/2\ell(d-1)$. If there are M primes p of K, not extended from any subextension, with $\text{Nmp} \le |\text{Disc}(K/F)|^{\theta}$, then

- Uses the Arakelov class group, $\mathrm{Cl}_{\mathcal{K}}$
 - Think: $\widetilde{\operatorname{Cl}_{K}} \simeq \operatorname{Cl}_{K} \times K_{\infty}^{1} / \mathcal{O}_{K}^{\times}$
 - $\Rightarrow \operatorname{Vol}(\widetilde{\operatorname{Cl}}_{\mathcal{K}}) = |\operatorname{Cl}_{\mathcal{K}}| \cdot \operatorname{Reg}(\mathcal{K}) \ll |\operatorname{Disc}(\mathcal{K})|^{1/2+\epsilon}$
- Create discs $D_{\mathfrak{p}} \subseteq \widetilde{\operatorname{Cl}}_{\mathcal{K}}$
 - Conditions on $\mathfrak{p} \Rightarrow \mathsf{discs} \ \ell D_\mathfrak{p} \ \mathsf{don't} \ \mathsf{intersect}$
 - \Rightarrow Vol $(\ell Cl_{\kappa}) \gg M$,

Lemma (Ellenberg–Venkatesh)

Suppose K/F is degree d, $\ell \ge 2$ is an integer, and $\theta < 1/2\ell(d-1)$. If there are M primes p of K, not extended from any subextension, with $\text{Nmp} \le |\text{Disc}(K/F)|^{\theta}$, then

- Uses the Arakelov class group, $\widehat{\mathrm{Cl}}_{\mathcal{K}}$
 - Think: $\widetilde{\operatorname{Cl}_{K}} \simeq \operatorname{Cl}_{K} \times K_{\infty}^{1} / \mathcal{O}_{K}^{\times}$
 - $\Rightarrow \operatorname{Vol}(\widetilde{\operatorname{Cl}}_{\kappa}) = |\operatorname{Cl}_{\kappa}| \cdot \operatorname{Reg}(\kappa) \ll |\operatorname{Disc}(\kappa)|^{1/2+\epsilon}$
- Create discs $D_{\mathfrak{p}} \subseteq \widetilde{\operatorname{Cl}}_{\mathcal{K}}$
 - Conditions on $\mathfrak{p} \Rightarrow \mathsf{discs} \ \ell D_\mathfrak{p} \ \mathsf{don't} \ \mathsf{intersect}$
 - \Rightarrow Vol $(\ell Cl_{\kappa}) \gg M$,
 - $\Rightarrow |\operatorname{Cl}_{\mathcal{K}}/\ell\operatorname{Cl}_{\mathcal{K}}| \ll \operatorname{Vol}(\widetilde{\operatorname{Cl}_{\mathcal{K}}}/\ell\widetilde{\operatorname{Cl}_{\mathcal{K}}}) \ll |\operatorname{Disc}(\mathcal{K})|^{1/2+\epsilon}/M.$

Lemma (Ellenberg–Venkatesh)

Suppose K/F is degree d, $\ell \ge 2$ is an integer, and $\theta < 1/2\ell(d-1)$. If there are M primes p of K, not extended from any subextension, with $\text{Nmp} \le |\text{Disc}(K/F)|^{\theta}$, then

- Uses the Arakelov class group, $\mathrm{Cl}_{\mathcal{K}}$
 - Think: $\widetilde{\operatorname{Cl}}_{\mathcal{K}} \simeq \operatorname{Cl}_{\mathcal{K}} \times \mathcal{K}^1_{\infty} / \mathcal{O}_{\mathcal{K}}^{\times}$
 - $\Rightarrow \operatorname{Vol}(\widetilde{\operatorname{Cl}}_{\mathcal{K}}) = |\operatorname{Cl}_{\mathcal{K}}| \cdot \operatorname{Reg}(\mathcal{K}) \ll |\operatorname{Disc}(\mathcal{K})|^{1/2+\epsilon}$
- Create discs $D_{\mathfrak{p}} \subseteq Cl_{\mathcal{K}}$
 - Conditions on $\mathfrak{p} \Rightarrow \mathsf{discs} \ \ell D_\mathfrak{p} \ \mathsf{don't} \ \mathsf{intersect}$
 - \Rightarrow Vol $(\ell Cl_{\kappa}) \gg M$,
 - $\Rightarrow |\operatorname{Cl}_{\mathcal{K}}/\ell\operatorname{Cl}_{\mathcal{K}}| \ll \operatorname{Vol}(\widetilde{\operatorname{Cl}_{\mathcal{K}}}/\ell\widetilde{\operatorname{Cl}_{\mathcal{K}}}) \ll |\operatorname{Disc}(\mathcal{K})|^{1/2+\epsilon}/M.$
- **Problem:** Doesn't realize savings in $\operatorname{Cl}_{K/F}[\ell]$, only $\operatorname{Cl}_{K}[\ell]$.

Lemma (LO–Wang–Wood)

Suppose K/F is degree d, $\ell \ge 2$ is an integer, and $\theta < 1/4\ell(d-1)$.

Lemma (LO–Wang–Wood)

Suppose K/F is degree d, $\ell \geq 2$ is an integer, and $\theta < 1/4\ell(d-1)$. If there are M pairs $(\mathfrak{p},\overline{\mathfrak{p}})$ of conjugate primes, not extended from the same subextension, such that $\max\{\operatorname{Nm\mathfrak{p}}, \operatorname{Nm\overline{\mathfrak{p}}}\} \leq |\operatorname{Disc}(K/F)|^{\theta}$,

Lemma (LO–Wang–Wood)

Suppose K/F is degree d, $\ell \geq 2$ is an integer, and $\theta < 1/4\ell(d-1)$. If there are M pairs $(\mathfrak{p},\overline{\mathfrak{p}})$ of conjugate primes, not extended from the same subextension, such that $\max\{\operatorname{Nm\mathfrak{p}}, \operatorname{Nm\overline{\mathfrak{p}}}\} \leq |\operatorname{Disc}(K/F)|^{\theta}$, then

$$|\operatorname{Cl}_{\mathcal{K}/\mathcal{F}}[\ell]| \ll \frac{|\operatorname{Disc}(\mathcal{K}/\mathcal{F})|^{1/2+\epsilon}|\operatorname{Disc}(\mathcal{F})|^{(d-1)/2+\epsilon}}{M}$$

Lemma (LO–Wang–Wood)

Suppose K/F is degree d, $\ell \ge 2$ is an integer, and $\theta < 1/4\ell(d-1)$. If there are M pairs $(\mathfrak{p},\overline{\mathfrak{p}})$ of conjugate primes, not extended from the same subextension, such that $\max\{\operatorname{Nm\mathfrak{p}}, \operatorname{Nm\overline{\mathfrak{p}}}\} \le |\operatorname{Disc}(K/F)|^{\theta}$, then

$$|\operatorname{Cl}_{\mathcal{K}/\mathcal{F}}[\ell]| \ll \frac{|\operatorname{Disc}(\mathcal{K}/\mathcal{F})|^{1/2+\epsilon}|\operatorname{Disc}(\mathcal{F})|^{(d-1)/2+\epsilon}}{M}.$$

• Define $\widetilde{\operatorname{Cl}_{K/F}} := \operatorname{ker}(\operatorname{Nm} \colon \widetilde{\operatorname{Cl}_K} \to \widetilde{\operatorname{Cl}_F}).$

Lemma (LO–Wang–Wood)

Suppose K/F is degree d, $\ell \ge 2$ is an integer, and $\theta < 1/4\ell(d-1)$. If there are M pairs $(\mathfrak{p},\overline{\mathfrak{p}})$ of conjugate primes, not extended from the same subextension, such that $\max\{\operatorname{Nm\mathfrak{p}}, \operatorname{Nm\overline{\mathfrak{p}}}\} \le |\operatorname{Disc}(K/F)|^{\theta}$, then

$$|\operatorname{Cl}_{K/F}[\ell]| \ll \frac{|\operatorname{Disc}(K/F)|^{1/2+\epsilon}|\operatorname{Disc}(F)|^{(d-1)/2+\epsilon}}{M}$$

• Define $\widetilde{\operatorname{Cl}_{K/F}} := \operatorname{ker}(\operatorname{Nm} \colon \widetilde{\operatorname{Cl}_K} \to \widetilde{\operatorname{Cl}_F}).$

• Lemma: $\operatorname{Vol}(\widetilde{\operatorname{Cl}_{K/F}}) \ll |\operatorname{Disc}(K/F)|^{1/2+\epsilon} |\operatorname{Disc}(F)|^{(d-1)/2+\epsilon}.$

Lemma (LO–Wang–Wood)

Suppose K/F is degree d, $\ell \geq 2$ is an integer, and $\theta < 1/4\ell(d-1)$. If there are M pairs $(\mathfrak{p},\overline{\mathfrak{p}})$ of conjugate primes, not extended from the same subextension, such that $\max\{\operatorname{Nm\mathfrak{p}}, \operatorname{Nm\overline{\mathfrak{p}}}\} \leq |\operatorname{Disc}(K/F)|^{\theta}$, then

$$|\operatorname{Cl}_{K/F}[\ell]| \ll \frac{|\operatorname{Disc}(K/F)|^{1/2+\epsilon}|\operatorname{Disc}(F)|^{(d-1)/2+\epsilon}}{M}$$

• Define $\widetilde{\operatorname{Cl}_{K/F}} := \operatorname{ker}(\operatorname{Nm} \colon \widetilde{\operatorname{Cl}_K} \to \widetilde{\operatorname{Cl}_F}).$

• Lemma: $\operatorname{Vol}(\widetilde{\operatorname{Cl}_{K/F}}) \ll |\operatorname{Disc}(K/F)|^{1/2+\epsilon} |\operatorname{Disc}(F)|^{(d-1)/2+\epsilon}.$

• Create discs
$$D_{\mathfrak{p},\overline{\mathfrak{p}}} \subseteq \widehat{\mathrm{Cl}}_{K/F}$$
.

Lemma (LO–Wang–Wood)

Suppose K/F is degree d, $\ell \ge 2$ is an integer, and $\theta < 1/4\ell(d-1)$. If there are M pairs $(\mathfrak{p},\overline{\mathfrak{p}})$ of conjugate primes, not extended from the same subextension, such that $\max\{\operatorname{Nm\mathfrak{p}}, \operatorname{Nm\overline{\mathfrak{p}}}\} \le |\operatorname{Disc}(K/F)|^{\theta}$, then

$$|\operatorname{Cl}_{K/F}[\ell]| \ll \frac{|\operatorname{Disc}(K/F)|^{1/2+\epsilon}|\operatorname{Disc}(F)|^{(d-1)/2+\epsilon}}{M}$$

• Define $\widetilde{\operatorname{Cl}_{K/F}} := \operatorname{ker}(\operatorname{Nm} \colon \widetilde{\operatorname{Cl}_K} \to \widetilde{\operatorname{Cl}_F}).$

• Lemma: $\operatorname{Vol}(\widetilde{\operatorname{Cl}_{K/F}}) \ll |\operatorname{Disc}(K/F)|^{1/2+\epsilon} |\operatorname{Disc}(F)|^{(d-1)/2+\epsilon}.$

• Create discs
$$D_{\mathfrak{p},\overline{\mathfrak{p}}} \subseteq \widetilde{\mathrm{Cl}}_{K/F}$$
.

• Conditions on $\mathfrak{p}, \overline{\mathfrak{p}} \Rightarrow \text{discs } \ell D_{\mathfrak{p}, \overline{\mathfrak{p}}} \text{ don't intersect.}$

Lemma (LO–Wang–Wood)

Suppose K/F is degree d, $\ell \geq 2$ is an integer, and $\theta < 1/4\ell(d-1)$. If there are M pairs $(\mathfrak{p},\overline{\mathfrak{p}})$ of conjugate primes, not extended from the same subextension, such that $\max\{\operatorname{Nm\mathfrak{p}}, \operatorname{Nm\overline{\mathfrak{p}}}\} \leq |\operatorname{Disc}(K/F)|^{\theta}$, then

$$|\operatorname{Cl}_{K/F}[\ell]| \ll \frac{|\operatorname{Disc}(K/F)|^{1/2+\epsilon}|\operatorname{Disc}(F)|^{(d-1)/2+\epsilon}}{M}$$

• Define $\widetilde{\operatorname{Cl}_{K/F}} := \operatorname{ker}(\operatorname{Nm} \colon \widetilde{\operatorname{Cl}_K} \to \widetilde{\operatorname{Cl}_F}).$

• Lemma: $\operatorname{Vol}(\widetilde{\operatorname{Cl}_{K/F}}) \ll |\operatorname{Disc}(K/F)|^{1/2+\epsilon} |\operatorname{Disc}(F)|^{(d-1)/2+\epsilon}.$

• Create discs
$$D_{\mathfrak{p},\overline{\mathfrak{p}}} \subseteq \widetilde{\mathrm{Cl}}_{K/F}$$
.

- Conditions on $\mathfrak{p}, \overline{\mathfrak{p}} \Rightarrow \text{discs } \ell D_{\mathfrak{p}, \overline{\mathfrak{p}}} \text{ don't intersect.}$
- $\Rightarrow \operatorname{Vol}(\ell \widetilde{\operatorname{Cl}}_{K/F}) \gg M.$

When K/F is quadratic, the previous lemma reduces to:

Lemma

$$|\operatorname{Cl}_{K/F}[\ell]| \ll \frac{|\operatorname{Disc}(K/F)|^{1/2+\epsilon}|\operatorname{Disc}(F)|^{1/2+\epsilon}}{M}.$$

When K/F is quadratic, the previous lemma reduces to:

Lemma

Suppose K/F is quadratic, $\ell \ge 2$ is an integer, and $\theta < 1/4\ell$. If there are M split primes \mathfrak{p} in K with $\operatorname{Nm}\mathfrak{p} \le |\operatorname{Disc}(K/F)|^{\theta}$, then

$$|\operatorname{Cl}_{K/F}[\ell]| \ll \frac{|\operatorname{Disc}(K/F)|^{1/2+\epsilon}|\operatorname{Disc}(F)|^{1/2+\epsilon}}{M}.$$

• Problem: Need "lots" of small split primes in K

When K/F is quadratic, the previous lemma reduces to:

Lemma

Suppose K/F is quadratic, $\ell \ge 2$ is an integer, and $\theta < 1/4\ell$. If there are M split primes \mathfrak{p} in K with $\operatorname{Nm}\mathfrak{p} \le |\operatorname{Disc}(K/F)|^{\theta}$, then

$$|\operatorname{Cl}_{\mathcal{K}/\mathcal{F}}[\ell]| \ll \frac{|\operatorname{Disc}(\mathcal{K}/\mathcal{F})|^{1/2+\epsilon}|\operatorname{Disc}(\mathcal{F})|^{1/2+\epsilon}}{M}.$$

• **Problem:** Need "lots" of small split primes in *K* ⇒ need lots of primes in *F*

When K/F is quadratic, the previous lemma reduces to:

Lemma

$$|\operatorname{Cl}_{\mathcal{K}/\mathcal{F}}[\ell]| \ll \frac{|\operatorname{Disc}(\mathcal{K}/\mathcal{F})|^{1/2+\epsilon}|\operatorname{Disc}(\mathcal{F})|^{1/2+\epsilon}}{M}.$$

- **Problem:** Need "lots" of small split primes in *K* ⇒ need lots of primes in *F*
- Zero densisty estimates (LO-Thorner; Thorner-Zaman) imply:

When K/F is quadratic, the previous lemma reduces to:

Lemma

$$|\operatorname{Cl}_{\mathcal{K}/\mathcal{F}}[\ell]| \ll \frac{|\operatorname{Disc}(\mathcal{K}/\mathcal{F})|^{1/2+\epsilon}|\operatorname{Disc}(\mathcal{F})|^{1/2+\epsilon}}{M}.$$

- **Problem:** Need "lots" of small split primes in *K* ⇒ need lots of primes in *F*
- Zero densisty estimates (LO-Thorner; Thorner-Zaman) imply:
 - Almost all F have "lots" of small primes;

When K/F is quadratic, the previous lemma reduces to:

Lemma

$$|\operatorname{Cl}_{\mathcal{K}/\mathcal{F}}[\ell]| \ll \frac{|\operatorname{Disc}(\mathcal{K}/\mathcal{F})|^{1/2+\epsilon}|\operatorname{Disc}(\mathcal{F})|^{1/2+\epsilon}}{M}.$$

- **Problem:** Need "lots" of small split primes in *K* ⇒ need lots of primes in *F*
- Zero densisty estimates (LO-Thorner; Thorner-Zaman) imply:
 - Almost all F have "lots" of small primes; and
 - Given "good" F, almost all K/F have "lots" of split primes.

When K/F is quadratic, the previous lemma reduces to:

Lemma

$$|\operatorname{Cl}_{\mathcal{K}/\mathcal{F}}[\ell]| \ll \frac{|\operatorname{Disc}(\mathcal{K}/\mathcal{F})|^{1/2+\epsilon}|\operatorname{Disc}(\mathcal{F})|^{1/2+\epsilon}}{M}.$$

- **Problem:** Need "lots" of small split primes in *K* ⇒ need lots of primes in *F*
- Zero densisty estimates (LO-Thorner; Thorner-Zaman) imply:
 - Almost all F have "lots" of small primes; and
 - Given "good" F, almost all K/F have "lots" of split primes.
- \Rightarrow Get better than trivial for almost all K/F.

Nearing final assembly

This finally yields:

Theorem (LO–Wang–Wood; main technical result for D_4) For any $X \ge 1$ and $Y \le X^{1/2}$, we have

$$\sum_{\substack{K \in \mathcal{F}_4(X) \\ \operatorname{Disc}(F) | \geq Y}} |\operatorname{Cl}_K[3]| = O_{\epsilon}(X/Y^{1-\epsilon}).$$

Nearing final assembly

This finally yields:

Theorem (LO–Wang–Wood; main technical result for D_4) For any $X \ge 1$ and $Y \le X^{1/2}$, we have

$$\sum_{\substack{K \in \mathcal{F}_4(X) \\ \operatorname{Disc}(F) | \geq Y}} |\operatorname{Cl}_K[3]| = O_{\epsilon}(X/Y^{1-\epsilon}).$$

To get the average for \mathcal{F}_{D_4} , it remains to:

• Handle the "sparse" groups $G = C_2 \times C_2$ and $G = C_4$;

Nearing final assembly

This finally yields:

Theorem (LO–Wang–Wood; main technical result for D_4) For any $X \ge 1$ and $Y \le X^{1/2}$, we have

$$\sum_{\substack{K \in \mathcal{F}_4(X) \\ \operatorname{Disc}(F) | \geq Y}} |\operatorname{Cl}_K[3]| = O_{\epsilon}(X/Y^{1-\epsilon}).$$

To get the average for \mathcal{F}_{D_4} , it remains to:

- Handle the "sparse" groups $G = C_2 \times C_2$ and $G = C_4$; and
- Piece together the contributions from F with $|\text{Disc}(F)| \leq Y$.

Handling sparse groups

Theorem (LO–Wang–Wood) If $G = C_2 \times C_2$ or C_4 ,

Handling sparse groups

Theorem (LO–Wang–Wood) If $G = C_2 \times C_2$ or C_4 , then there is a $\delta > 0$ s.t.

$$\sum_{K\in \mathcal{F}_{\mathcal{G}}(X)} |\mathrm{Cl}_{K}[3]| = O(X^{1-\delta}).$$

Theorem (LO–Wang–Wood) If $G = C_2 \times C_2$ or C_4 , then there is a $\delta > 0$ s.t. $\sum_{K \in \mathcal{F}_G(X)} |\operatorname{Cl}_K[3]| = O(X^{1-\delta}).$

Idea:

• Technical result \Rightarrow assume quadratic subfield F is very small

Theorem (LO–Wang–Wood) If $G = C_2 \times C_2$ or C_4 , then there is a $\delta > 0$ s.t. $\sum_{K \in \mathcal{F}_G(X)} |Cl_K[3]| = O(X^{1-\delta}).$

Idea:

- Technical result \Rightarrow assume quadratic subfield F is very small
- \Rightarrow *F* has many small primes

Theorem (LO–Wang–Wood) If $G = C_2 \times C_2$ or C_4 , then there is a $\delta > 0$ s.t. $\sum_{K \in \mathcal{F}_G(X)} |\operatorname{Cl}_K[3]| = O(X^{1-\delta}).$

Idea:

- Technical result \Rightarrow assume quadratic subfield F is very small
- \Rightarrow *F* has many small primes
- \Rightarrow almost all K/F beat trivial $|\operatorname{Cl}_{K}[3]| \ll |\operatorname{Disc}(K)|^{1/2+\epsilon}$

Theorem (LO–Wang–Wood) If $G = C_2 \times C_2$ or C_4 , then there is a $\delta > 0$ s.t. $\sum_{K \in \mathcal{F}_G(X)} |\operatorname{Cl}_K[3]| = O(X^{1-\delta}).$

Idea:

- Technical result \Rightarrow assume quadratic subfield F is very small
- \Rightarrow *F* has many small primes
- \Rightarrow almost all K/F beat trivial $|\operatorname{Cl}_{K}[3]| \ll |\operatorname{Disc}(K)|^{1/2+\epsilon}$
- Then, combine with sparsity: $\#\mathcal{F}_G(X) \ll X^{1/2+\epsilon}$.

Piecing together quadratic subfields

Piecing together quadratic subfields

Theorem (Datskovsky–Wright) If F is a number field, then

$$\sum_{\substack{[K:F]=2\\ \text{Disc}(K/F)|\leq x}} |\text{Cl}_{K/F}[3]| \sim C_F x.$$

Piecing together quadratic subfields

```
Theorem (Datskovsky–Wright)
If F is a number field, then
```

$$\sum_{\substack{[K:F]=2\\ |\operatorname{Disc}(K/F)| \leq x}} |\operatorname{Cl}_{K/F}[3]| \sim C_F x.$$

Finally, for $K \in \mathcal{F}_{D_4}(X)$:

• May assume $|\text{Disc}(F)| \leq Y$ for any Y

```
Theorem (Datskovsky–Wright)
If F is a number field, then
```

$$\sum_{\substack{[K:F]=2\\ |\operatorname{Disc}(K/F)| \leq x}} |\operatorname{Cl}_{K/F}[3]| \sim C_F x.$$

Finally, for $K \in \mathcal{F}_{D_4}(X)$:

- May assume $|\text{Disc}(F)| \leq Y$ for any Y
- Datskovsky–Wright handles $\operatorname{Cl}_{K/F}$ for any finite set of F

```
Theorem (Datskovsky–Wright)
If F is a number field, then
```

$$\sum_{\substack{[K:F]=2\\ |\operatorname{Disc}(K/F)| \leq x}} |\operatorname{Cl}_{K/F}[3]| \sim C_F x.$$

Finally, for $K \in \mathcal{F}_{D_4}(X)$:

- May assume $|\text{Disc}(F)| \leq Y$ for any Y
- Datskovsky–Wright handles Cl_{K/F} for any finite set of F
- Letting $Y \to \infty$ sufficiently slowly $\Rightarrow \operatorname{Avg}_{\mathcal{F}_{D_4}}(|\operatorname{Cl}_{\mathcal{K}}[3]|)$ exists.

The general case

Induction yields:

Induction yields:

Theorem (LO–Wang–Wood)

Let $G \subseteq S_{2^m}$ be a transitive 2-group.

• If G has a transposition, then $\operatorname{Avg}_{\mathcal{F}_G}(|\operatorname{Cl}_{\mathcal{K}}[3]|)$ exists.

Induction yields:

Theorem (LO–Wang–Wood)

Let $G \subseteq S_{2^m}$ be a transitive 2-group.

- If G has a transposition, then $\operatorname{Avg}_{\mathcal{F}_G}(|\operatorname{Cl}_{\mathcal{K}}[3]|)$ exists.
- If G does not have a transposition, then

$$\sum_{\mathsf{K}\in\mathcal{F}_{G}(X)} |\mathrm{Cl}_{\mathsf{K}}[3]| = O(X^{1-\delta_{\mathcal{G}}})$$

for a positive constant δ_G .

Induction yields:

Theorem (LO–Wang–Wood)

Let $G \subseteq S_{2^m}$ be a transitive 2-group.

- If G has a transposition, then $\operatorname{Avg}_{\mathcal{F}_G}(|\operatorname{Cl}_{\mathcal{K}}[3]|)$ exists.
- If G does not have a transposition, then

$$\sum_{\mathsf{K}\in\mathcal{F}_{G}(X)} |\mathrm{Cl}_{\mathsf{K}}[3]| = O(X^{1-\delta_{\mathcal{G}}})$$

for a positive constant δ_G .

Thank you!