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Theorem (Davenport—Heilbronn; 1971)

The average size of the 3-torsion subgroup Clk[3] for quadratic
fields K/Q is exactly 5/3.

That is, if Fo(X) := {K/Q quad. : |Disc(K)| < X}, then
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Davenport—Heilbronn: This is consistent with

o Prob(rkp,Clk[3] > m) = 31727 for imaginary quadratic K,
and

e Prob(rky,Clk[3] > m) = 372™ for real quadratic K.

(Now believed to be wrong.)
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If K is a quadratic field and ¢ is an odd prime, then Clk[(] should
look like a “random” elementary abelian £-group.

More specitically, for any k > 1, the limit

1
I Clla]|* =: A Clgl¢
Xgnoo#fz( )KE%X)I k[A]* =: Avgz, (IClk[])

exists.

e Davenport—Heilbronn remains the only known case.
e Smith: Studies the distribution of 2Clx[2°].
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For n > 2, let G C S, be transitive.l Let

Fe(X):={[K :Q] = n: Gal(K/Q) ~ G, |Disc(K)| < X}.

Conjecture (Cohen—Martinet; 1990)
For ¢ a “good” prime and k > 1, the limit

1
li E: Clkla* =: A Clgle
Xinoo #]‘-G( ) Ke}'G(X)’ K[ ” Vg]:G(’ K[ ” )

exists.

Bhargava (2005): Determines the average of |Clk[2]| over S3
cubics K. (i.e., n=3, G =53, (=2, and k=1)

IN.B. In this talk, all Galois groups G are permutation groups.
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For m > 1, let Fom be the set of 2-extensions' K /Q of degree 2™.
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Theorem (LO-Wang-Wood)
Let G C Som be a transitive 2-group. If G has a transposition, then
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exists, and is given by an explicit constant.

'K /Q is a 2-extension if it is built out of successive quadratic extensions.
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Important Aside: Malle’s Conjecture for 2-extensions

Theorem
Let G C Sym be a transitive 2-group. If G has a transposition, then

#F6(X) ~ ceX
for an explicit cg > 0, and
#FG(X) = Om,e(XH/27)
if G does not have a transposition.

Proof.
Follows by combining work of Cohen—Diaz y Diaz—Olivier,
Kluners—Malle, Kliiners, and Shafarevich. O
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Corollary (LO-Wang-Wood)
Let Fp, denote the family of D4 quartic fields K/Q. Then

1
lim —————— Clk[3
X-vo0 #Fp, (X) Keg(}()' KL3]
4
exists.

Key Step: Show that ¢4 and G, x G do not contribute to the
overall average for F4.



The structure of D, quartics

e Each K € Fp, has a unique quadratic subfield F.



The structure of D, quartics

e Each K € Fp, has a unique quadratic subfield F.

e The number of K € Fp,(X) over a given F is
O.(X/|Disc(F)[>~¢).



The structure of D, quartics

e Each K € Fp, has a unique quadratic subfield F.

e The number of K € Fp,(X) over a given F is
O.(X/|Disc(F)[>~¢).

e = The number of K with |Disc(F)| > Y is O(X/Y17).



The structure of D, quartics

e Each K € Fp, has a unique quadratic subfield F.
e The number of K € Fp,(X) over a given F is
O.(X/|Disc(F)[>~¢).
e = The number of K with |Disc(F)| > Y is O(X/Y17).
e Think: 99% of K € Fp, have |Disc(F)| < 100.



The structure of D, quartics

Each K € Fp, has a unique quadratic subfield F.

The number of K € Fp,(X) over a given F is

O.(X/|Disc(F)[>~¢).

= The number of K with |Disc(F)| > Y is O(X/Y17).
e Think: 99% of K € Fp, have |Disc(F)| < 100.

Goal: Prove the same kind of thing for |Clk[3]].



The structure of D4 quartics

Each K € Fp, has a unique quadratic subfield F.

The number of K € Fp,(X) over a given F is

O.(X/|Disc(F)[>~¢).

= The number of K with |Disc(F)| > Y is O(X/Y17).
e Think: 99% of K € Fp, have |Disc(F)| < 100.

Goal: Prove the same kind of thing for |Clk[3]].

Theorem (LO-Wang-Wood; main technical result for D,)
Forany X >1and Y < X2 we have

> |CKBl = O(X/ Y ).
KeF4(X)
|Disc(F)|>Y
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The strategy for D, quartics

For K € Fp,, the 3-part factors: |Clk[3]| = [Cl¢[3]| - |Clk/r[3]]-
Thus,

SoCkBI= > ICEBI YD ClkAB]

KeFa(X) FeF(X1/?) [K:F]=2
[Disc(F)|>Y |Disc(F)|>Y [Disc(K)[<X

Davenport—Heilbronn handles first sum, if we bound the second.
For x := X /|Disc(F)|?, we have
> [Clk/elBll = N5 (xi F),

[K:F]=2
|Disc(K/F)|<x

where N5f(x; F) is the number of squarefree cubic extensions of F.

Key obstacle: The relative discriminant bound, x, may be small.
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A shifted goalpost: Bounding small cubic extensions

Let N3(x; F) := #{L/F cubic : |Disc(L/F)| < x}.
Datskovsky—Wright: N3(x; F) ~ cpx as x — 0.
Question: What is the least a s.t. N3(x; F) = O(|Disc(F)|*x) for

all x > 17

o Conjecture: Any o > 0 should work (i.e., a = ¢€).
e Goal: Get some o < 1.
e Trivial bound: 77777

Spoiler: Get aw = 1 + € pointwise, only get o < 1 on average.
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Suppose |Disc(L/F)| = D.
e L/F cyclic: get at most O(|Clg[3]| - D) extensions.
e Trivial bound: |Cl¢[3]| < |Clf| < |Disc(F)[}/?*e.
e = Get at most O(|Disc(F)[*/?t¢D¢) extensions.

e L/F noncyclic; parametrized by Clk /¢[3] for K/F quad.
|Disc(K/F)| divides D = at most O(D*¢) different K.
Given K, get O(|Clk,/r[3]| - D€) extensions.

Trivial bound: |Cly | < |Disc(F)|Y/?+<|Disc(K/F)|Y/?+<.
e = Get at most O(|Disc(F)|'/?T¢D/?+¢) extensions.

Adding across D < x, get:

First bound: Ns(x; F) = O.(|Disc(F)|*/?+¢x3/2%€) for all x > 1.

(Only usable for us if x is very small, < |Disc(F)[*~?.)
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Idea 2: Shintani zeta functions

The Shintani zeta function {£(s) is the Dirichlet series

- JAu(R)~
§r(s) = g; Disc(R/F)|*

Disc(R/F)#0
for cubic rings R/F. (Developed by Datskovsky—Wright)

e Abs. conv. for R(s) > 1; has analytic continuation, functional
equation like a degree 4 L-function over F

e Poles at s =1,5/6; no Euler product, no Ramanujan bound

First bound + “convexity principle” gives:

Second bound: N3(x; F) = O,(|Disc(F)|*x) for all x > |Disc(F)|3.
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The Shintani zeta function counts cubic rings, not just cubic fields.
e Suppose |Disc(L/F)| = D for some D < |Disc(F)|3.
e Expect ~ |Disc(F)[>/2/D/? rings R C L with
|Disc(R/F)| < |Disc(F)|3.
e = Inside all L/F with D < x, expect ~ Ny(x; F) - 2E(P)P”
rings with |Disc(R/F)| < |Disc(F)|3.
e Can't be more than total number of rings, O(|Disc(F)|3T¢),
from second bound.
o = N3(x; F) < x1/?|Disc(F)*/?*e.
e Exploit average over L to realize this expectation.

Altogether, we find:

Third bound:

|Disc(F)[3/2t<x1/2 if x < |Disc(F)|?

N3(x; F) <
30 F) {\Dise(F)|1/2+€x, if | Disc(F)|? < x < |Disc(F)|>.
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Summarizing our progress

Combining the three bounds, we find:

Theorem (LO-Wang—Wood)
If F is quadratic, then N3(x; F) = O(|Disc(F)[**¢x) for all x > 1.

e Holds also when F is a 2-extension; variant for general F
e Barely not enough for our purposes

o Recall: Needed N3(x; F) = O(|Disc(F)|*x) for some o < 1.
e Tension point is x &~ |Disc(F)|

e Handoff from class field theory to propagation of orders

Class field theory relied on trivial bound [Clk /£[3]| < [Clk/F|.

Idea 4: Do better than trivial bound “on average.”
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Lemma (Ellenberg—\Venkatesh)

Suppose K/F is degree d, ¢ > 2 is an integer, and
0 < 1/20(d —1). If there are M primes p of K, not extended from

any subextension, with Nmp < |Disc(K/F)|?, then

IC1x[€]| = Oc(|Disc(K)|*?¢/M).

e Uses the Arakelov class group, éﬂ
e Think: Clk ~ Clk x KL /O)
e = Vol(Clk) = |Cl| - Reg(K) < |Disc(K)|/2+e
e Create discs D, C 61;
e Conditions on p = discs £D,, don't intersect
o = Vol({Clx) > M,
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Arakelov class groups and prime ideals

Lemma (Ellenberg—\Venkatesh)

Suppose K/F is degree d, ¢ > 2 is an integer, and
0 < 1/20(d —1). If there are M primes p of K, not extended from

any subextension, with Nmp < |Disc(K/F)|?, then

IC1x[€]| = Oc(|Disc(K)|*?¢/M).

e Uses the Arakelov class group, éﬂ

e Think: Clk ~ Clk x KL /O)

e = Vol(Clk) = |Clk| - Reg(K) < |Disc(K)|¥/2+e
e Create discs D, C 61;

e Conditions on p = discs £D,, don't intersect

o = Vol({Clx) > M,

o = [Clx/(Clk| < Vol(Clk /(Clk) < |Disc(K)[}/2*+</M.
 Problem: Doesn't realize savings in Clk /r[{], only Clk[/].
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Lemma (LO-Wang—Wood)

Suppose K /F is degree d, ¢ > 2 is an integer, and

0 < 1/46(d —1). If there are M pairs (p,p) of conjugate primes,
not extended from the same subextension, such that

max{Nmp, Nmp} < |Disc(K/F)|?, then

|Disc(K /F)|Y/?*¢|Disc(F)|(d—1)/2+e

Clieldll < y

e Define Clk,F := ker(Nm: Clk — 6\1,/:)
o Lemma: Vol(Clyx/r) < |Disc(K/F)[/2+¢|Disc(F)|(d-1)/2+e,

e Create discs D, 5 C Clk/F.
e Conditions on p,p = discs £D, 5 don't intersect.
e = Vol({Clk/r) > M.
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|dea 4: Exploiting prime ideals

When K/F is quadratic, the previous lemma reduces to:

Lemma

Suppose K/F is quadratic, £ > 2 is an integer, and 0 < 1/4(. If
there are M split primes p in K with Nmp < |Disc(K/F)|?, then

|Disc(K /F)|Y/2*¢|Disc(F)|'/2+e

Cli el < _

e Problem: Need “lots” of small split primes in K = need lots
of primes in F

e Zero densisty estimates (LO-Thorner; Thorner-Zaman) imply:
e Almost all F have “lots” of small primes; and
e Given “good” F, almost all K/F have “lots” of split primes.

e = Get better than trivial for almost all K/F.
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Nearing final assembly

This finally yields:

Theorem (LO-Wang-Wood; main technical result for D,)
Forany X >1and Y < X2 we have

Y. OBl = O(X/ Y1),
KeF4(X)
|Disc(F)|>Y

To get the average for Fp,, it remains to:
e Handle the “sparse” groups G = C; x (5 and G = (4; and
e Piece together the contributions from F with |Disc(F)| < Y.
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Handling sparse groups

Theorem (LO-Wang—Wood)
If G =G x G or Gy, then there isa d > 0 s.t.

> Q3] = O(X* ).

KE.FG(X)

Idea:
e Technical result = assume quadratic subfield F is very small
e = F has many small primes
e = almost all K/F beat trivial |Clx[3]| < |Disc(K)|*/?+¢
e Then, combine with sparsity: #Fg(X) < X1/2+<,
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Piecing together quadratic subfields

Theorem (Datskovsky—Wright)
If F is a number field, then

> |CIkelBll ~ Cex.
[K:F]=2
|Disc(K/F)|<x

Finally, for K € Fp,(X):
e May assume |Disc(F)| < Y for any Y
o Datskovsky—Wright handles Cly ¢ for any finite set of F
e Letting Y — oo sufficiently slowly = Avg]:D4(\C1K[3]]) exists.
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The general case

Induction yields:

Theorem (LO-Wang-Wood)
Let G C Som be a transitive 2-group.
e If G has a transposition, then Avgz_(|Clk[3]|) exists.

e If G does not have a transposition, then

Y ICk[3]l = O(x* %)

KeFg(X)

for a positive constant d¢.

Thank you!



