
AN APPROXIMATE FORM OF ARTIN’S HOLOMORPHY CONJECTURE

AND NON-VANISHING OF ARTIN L-FUNCTIONS

ROBERT J. LEMKE OLIVER, JESSE THORNER, AND ASIF ZAMAN

Abstract. Let k be a number field and G be a finite group. Let FGk (Q) be the family of number
fields K with absolute discriminant DK at most Q such that K/k is normal with Galois group
isomorphic to G. If G is the symmetric group Sn or any transitive group of prime degree, then
we unconditionally prove that for all K ∈ FGk (Q) with at most Oε(Q

ε) exceptions, the L-functions
associated to the faithful Artin representations of Gal(K/k) have a region of holomorphy and non-
vanishing commensurate with predictions by the Artin conjecture and the generalized Riemann
hypothesis. This result is a special case of a more general theorem. As applications, we prove that:

(1) there exist infinitely many degree n Sn-fields over Q whose class group is as large as the Artin
conjecture and GRH imply, settling a question of Duke;

(2) for a prime p, the periodic torus orbits attached to the ideal classes of almost all totally real
degree p fields F over Q equidistribute on PGLp(Z)\PGLp(R) with respect to Haar measure;

(3) for each ` ≥ 2, the `-torsion subgroups of the ideal class groups of almost all degree p fields
over k (resp. almost all degree n Sn-fields over k) are as small as GRH implies; and

(4) an effective variant of the Chebotarev density theorem holds for almost all fields in such
families.

1. Introduction

Let K/k be a normal extension of number fields with Galois group G. Many natural arithmetic
properties of K are controlled by the Artin L-functions L(s, ρ) attached to the irreducible complex
representations ρ of G. The Artin conjecture asserts that L(s, ρ) is entire for every nontrivial ρ,
and the generalized Riemann hypothesis (GRH) asserts that L(s, ρ) 6= 0 for Re(s) > 1

2 . Artin’s
conjecture is known for very few groups G, and GRH remains open. In this paper, we substantially
enlarge the region of holomorphy and non-vanishing for Artin L-functions in an average sense.

We begin with work of Aramata, Artin, and Brauer towards the Artin conjecture: the quotient
ζK(s)/ζk(s) of Dedekind zeta functions is entire, and for each Artin representation ρ of Gal(K/k),
the L-function L(s, ρ) is holomorphic and non-vanishing in any region where ζK(s) 6= 0. In many
applications, existing zero-free regions are not strong enough to deduce the desired results. There-
fore, one might hope to average over number fields K in a family F and prove that apart from a
small collection of K ∈ F, the ratios ζK(s)/ζk(s) have a large zero-free region that can be used
to deduce a large region of holomorphy and non-vanishing for each L(s, ρ) associated with K/k.
We fix a finite nontrivial group G and consider the family FGk of normal extensions K/k such that
Gal(K/k) ∼= G. When G is abelian, each nontrivial representation is one-dimensional and can be
realized as a Hecke character whose L-function is entire, so we focus on nonabelian groups G.

Two obstacles quickly emerge. First, we do not yet know that the entire L-function ζK(s)/ζk(s)
factors as a product of L-functions associated to cuspidal automorphic representations defined over
k, as the strong Artin conjecture asserts. This hinders most methods of averaging over K ∈ FGk .
The second obstacle, which we loosely term the subfield problem, arises from the work of Aramata,
Artin, and Brauer—if F ⊆ K is a subextension of k, then a zero of ζF (s) is a zero of ζK(s).
Moreover, the same field F may arise as a subfield of many different K in the family FGk . For
example, this is the case for the family of Sn-extensions of k, where different fields may share a
common quadratic subfield; see (3.3) below. Consequently, any problematic zero of a single ζF (s)
could propagate to many different ζK(s), so our ability to study the zeros of the ratios ζK(s)/ζk(s)
as we average over K ∈ FGk is both technically limited by one’s ability to control the frequency with

which fields K ∈ FGk intersect and structurally limited by the fact that such intersections do occur.
1



2 ROBERT J. LEMKE OLIVER, JESSE THORNER, AND ASIF ZAMAN

Pierce, Turnage–Butterbaugh, and Wood [44] were the first to codify the subfield problem in
the context of modern arithmetic statistics by relating it to other, more understood problems.
Additionally, when k = Q, they use unconditional field counting results for certain nonabelian
groups G, including the symmetric groups Sn for n ∈ {3, 4, 5} and the dihedral groups Dp with p an
odd prime, to control the subfield problem by restricting to K ∈ FGQ satisfying certain ramification
conditions. Apart from G = S5, the strong Artin conjecture is known for each of these groups,
so the quotient ζK(s)/ζQ(s) factors in terms of automorphic L-functions. Using a zero density
estimate for automorphic L-functions due to Kowalski and Michel [32], they then proved that for
almost all of the K ∈ FGQ satisfying certain ramification conditions, the ratio ζK(s)/ζQ(s) and each
Artin L-function in the associated factorization enjoy a very wide zero-free region.

Avoiding unproven hypotheses on the automorphy of the factors of ζK(s), Thorner and Zaman
[52] proved for any finite group G for which the subfield problem may be controlled that for al-
most all fields K ∈ FGQ, ζK(s)/ζQ(s) has a much larger zero-free region than was known previously,
commensurate with what GRH implies. This work also further clarified the subfield problem, dis-
tilling it into a question about so-called “intersection multiplicities” (see (3.2) below). As described
earlier, the classical work of Aramata, Artin, and Brauer then shows that each irreducible Artin
L-function must be both non-vanishing and holomorphic in this region, independent of whether
it is known to be automorphic. Thus, the work in [52] avoids assumptions of automorphy, which
it does by proving a new large sieve for the family FGQ, but it does not address the technical and
structural limitations presented by the subfield problem. In particular, their work avoids these
limitations when G is simple (where the subfield problem trivially disappears) but it cannot avoid
them in most other families, including the natural situation when G = Sn.

We offer a new approach to producing large regions of holomorphy and non-vanishing for Artin
L-functions associated to almost all fields in a family of Galois extensions that simultaneously ad-
dresses the subfield problem and the absence of automorphy results. The novelty lies in reducing
these obstacles to a group theoretic computation that is tractable for groups like Sn, but which in
full generality apparently requires the complete classification of finite simple groups. Our approach
has two independent components. The first component changes the averaging process in [52] in a
way that avoids the subfield problem (Section 3.2). This new average, however, no longer produces
a result that is amenable to the classical results of Aramata, Artin, and Brauer. The second com-
ponent, therefore, is a new result in character theory that handles this complication by expressing
the characters of certain Artin representations in terms of inductions of one-dimensional characters
with restricted components, which neither Artin nor Brauer induction can address (Section 3.3).
We view these two components together as an approximate form of Artin’s conjecture that also
provides a strong zero-free region for almost all K ∈ FGk for any number field k.

Before we describe our method, we give a representative example of what our approach can prove
for faithful Artin representations associated to the fields K ∈ FGk , where G is the symmetric group
Sn or a transitive group of prime degree. There is little to no progress towards the Artin conjecture
when the degree of G is at least 5 or towards basic counting problems in arithmetic statistics when
the degree of G is at least 6. Despite these setbacks, we prove:

Theorem 1.1. Let k be a number field. Let G be the symmetric group Sn for some n ≥ 2 or a
transitive subgroup of Sp for some prime p. Let Q ≥ 1. For all ε > 0, there exists an effectively
computable constant c1 = c1(|G|, [k : Q], ε) > 0 such that for all except O|G|,[k:Q],ε(Q

ε) normal
extensions K/k with Gal(K/k) ' G and absolute discriminant DK at most Q, each irreducible
faithful Artin representation ρ of Gal(K/k) satisfies∣∣∣ ∑

Nk/Qp≤x
tr ρ(Frobp)

∣∣∣�|G|,[K:Q],ε x exp(−c1

√
log x)

for all x ≥ (logDK)81|G|/ε. The sum is over prime ideals of k with absolute norm at most x.
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Remark. Under GRH, the exponent 81|G|/ε may be replaced by 2 + ε for all K.

Remark. The constant c1 is the same as in Lemma 7.4 below.

Remark. We use the notation f �ν g and f = Oν(g) to denote the existence of an effectively
computable constant cν > 0, depending at most on ν, such that |f | ≤ cν |g| in the range indicated.
We use the notation f �ν g to indicate that f �ν g and g �ν f .

2. Applications

Theorem 1.1 and the ideas leading to it produce several desirable arithmetic results. We will
now sample a few of them. In Section 3, we will discuss the ideas leading to Theorem 1.1.

2.1. The extremal order of class numbers. Let Kn be the family of totally real number fields
F with [F : Q] = n whose normal closure over Q has the full symmetric group Sn as its Galois
group. Using lower bounds on the regulator of F due to Remak [45], Duke [17] proved under GRH
and the Artin conjecture that if F ∈ Kn, then

|Cl(F )| �n
D

1/2
F (log logDF )n−1

(logDF )n−1
,

where DF is the absolute discriminant of F . Furthermore, still under the assumption of GRH and
the Artin conjecture, Duke showed that this upper bound is sharp, in that

(2.1) there exist F ∈ Kn with DF arbitrarily large and |Cl(F )| �n
D

1/2
F (log logDF )n−1

(logDF )n−1
.

The conclusion (2.1) is proved without recourse to unproven hypotheses when n ∈ {2, 3, 4} [10, 12,
40]. Cho [10] proved that (2.1) holds when n ≥ 5 using only the strong Artin conjecture, removing
the reliance of Duke’s argument on GRH. We use Theorem 1.1 to prove the following unconditional
result that removes the hypotheses of Artin’s conjecture and GRH as well as the requirement that
F be totally real.

Theorem 2.1. For any fixed integers r1, r2 ≥ 0 with n := r1 + 2r2 ≥ 2, there are number fields
F of signature (r1, r2) with arbitrarily large discriminant DF whose normal closure has the full
symmetric group Sn as its Galois group, for which

(2.2) |Cl(F )| �r1,r2
D

1/2
F (log logDF )r1+2r2−1

(logDF )r1+r2−1
.

Remark. Fix 0 < τ < 1/(n2 − n). Our proof shows that there exists a constant c2 = c2(n, τ) > 0
such that if Q ≥ c2, then there are at least Qτ number fields F that satisfy the conclusion of
Theorem 2.1. See Theorem 10.5.

2.2. Distribution of periodic torus orbits and subconvexity. Let F/Q be a totally real field
of degree n with ring of integers OF . Then F may be naturally embedded into Rn by the product
of its real embeddings, and in this embedding, the integers OF form a full rank lattice. More
generally, a subset Λ ⊆ F is a lattice if it is a free Z-submodule of rank n. The F -equivalence class
of Λ, or the F -homothety class, is the set of lattices Λ′ ⊆ F for which Λ′ = αΛ for some α ∈ F×.
If we let O = OΛ := {α ∈ F : αΛ ⊆ Λ}, then O is an order in OF , and two equivalent lattices
have the same associated order O. Moreover, there is a representative of the class of Λ that is an
ideal a in O, and the set of such ideal representatives constitute the ideal class of a in O. Thus,
equivalence classes of lattices in F are naturally identified with ideal classes in orders O ⊆ OF .

The space of lattices in Rn is naturally identified with GLn(Z)\GLn(R). By considering its action
via multiplication, F× embeds into the maximal split torus Hn ⊆ GLn(R) consisting of diagonal
matrices. Thus, F -equivalent lattices give rise to elements of the manifold PGLn(Z)\PGLn(R)
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equivalent under the action of Hn. By the above discussion, we may think of an ideal class in
an order O ⊆ OF as parametrizing a full Hn-orbit in PGLn(Z)\PGLn(R). In a pair of papers
[21, 22], Einsiedler, Lindenstrauss, Michel, and Venkatesh showed that every closed Hn-orbit on
PGLn(Z)\PGLn(R) arises as a periodic torus orbit in this manner. When n is prime, they connected
the equidistribution of these torus orbits as the discriminant disc(O)→∞ to the problem of proving
a discriminant-aspect subconvexity bound for ζF (s) of the form

(2.3) |ζF (1
2 + it)| �[F :Q] D

1
4
−θ

F (1 + |t|)A,

where θ ∈ (0, 1
4) and A > 0 are constants that depend at most on [F : Q]. In the case n = 2,

this leads to a reinterpretation of Duke’s theorem [15] on equidistribution of geodesics on the
modular curve associated to real quadratic fields. When n = 3, there was enough progress toward
subconvexity that Einsieder, Lindenstrauss, Michel, and Venkatesh could prove that the analogous
equidistribution result holds on PGL3(Z)\PGL3(R).

Despite tremendous progress on proving subconvexity bounds for various families of automorphic
L-functions, the bound (2.3) is only known when F is a normal extension over a fixed base field
k with either an abelian or generalized dihedral Galois group, as well as the case when F is an
arbitrary cubic extension of a fixed field k. In these cases, the Dedekind zeta function factors as a
product of standard L-functions associated to cuspidal automorphic representations of GL1(Ak) or
GL2(Ak), and the bound (2.3) follows from work of Michel and Venkatesh [37] (see also [6, 8, 18]).

We produce many new number fields F that are extensions of k satisfying (2.3) even if we do
not yet know whether ζF (s) factors into a product of L-functions that are automorphic over k. To
state our result, we introduce some notation. Let k be a number field, p be a prime, n ≥ 2 be an
integer, and Q ≥ 1. We define the families

(2.4)
F p
k := {F : [F : k] = p}, F p

k (Q) := {F ∈ F p
k : DF ≤ Q}

Fn,Sn
k := {F : [F : k] = n, Gal(F̃ /k) ∼= Sn}, Fn,Sn

k (Q) := {F ∈ Fn,Sn
k : DF ≤ Q},

where F̃ is the Galois closure of F over k. The ideas leading to Theorem 1.1 (see Section 3.4)
enable us to prove the following unconditional result.

Theorem 2.2. Let t ∈ R, Q ≥ 1, and k be a number field. Let p be prime and n ≥ 2.

(1) Let ε > 0. For all except Op,[k:Q],ε(Q
ε) of the fields F ∈ F p

k (Q), we have

|ζF (1
2 + it)| �p,[k:Q] D

O(ε)
k D

1
4

(1− ε
1010(p!)2

)

F (1 + |t|)O(p[k:Q]).

(2) Let ε > 0. For all except On,[k:Q],ε(Q
ε) of the fields F ∈ Fn,Sn

k (Q), we have

|ζF (1
2 + it)| �n,[k:Q] D

O(ε)
k D

1
4

(1− ε
1010(n!)2

)

F (1 + |t|)O(n[k:Q]).

Remark. Ellenberg and Venkatesh [24, Theorem 1.1] proved that there exist effectively computable
constants c3 = c3(n, k) > 0 and c4 = c4(p, k) > 0 such that if Q ≥ 1, then

(2.5) |Fn,Sn
k (Q)| ≥ c3Q

1
2 , |F p

k (Q)| ≥ c4Q
1
2 .

This ensures that Theorem 2.2 is not vacuous.

Taking k = Q in part 1 of Theorem 2.2, we deduce our next result.

Theorem 2.3. Let p ≥ 5 be prime and let F p,+
Q ⊆ F p

Q be the set of totally real degree p extensions

of Q. For any ε > 0, there exists a set E p
ε ⊆ F p,+

Q such that

(1) |{F : F ∈ E p
ε ∩F p,+

Q (Q)}| �p,ε Q
ε for all Q ≥ 1, and
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(2) if (Oj)∞j=1 is a sequence of orders in {O : there exists F ∈ F p,+
Q − E p

ε such that O ⊆ OF }
with limj→∞ disc(Oj) = ∞, then as j → ∞, the union of Hp-orbits associated to the
ideal classes of Oj described above becomes equidistributed with respect to Haar measure on
PGLp(Z)\PGLp(R).

In particular, if (Fj)
∞
j=1 is a sequence of fields in F p,+

Q − E p
ε ordered by discriminant, then the

measures µFj on PGLp(Z)\PGLp(R) associated to the Hp-orbits of the ideal classes of OFj converge
to Haar measure on PGLp(Z)\PGLp(R) in the weak-* limit as j →∞.

Remark. It follows from minor modifications to the work of Ellenberg and Venkatesh [24] that for all

primes p, there exists a constant c5 = c5(p) > 0 such that for all Q ≥ 1, we have |F p,+
Q (Q)| ≥ c5Q

1
2 .

Consequently, this result is not vacuous.

2.3. `-torsion in class groups. Let F/k be an extension of number fields, and let Cl(F ) denote
the class group of F . For any integer ` ≥ 2 and any ε > 0, it is expected that the `-torsion
subgroup Cl(F )[`] satisfies |Cl(F )[`]| �`,[F :Q],ε D

ε
F [16]. This is known only for prime ` when the

normal closure of F has a Galois group that is an `-group [31]. The trivial bound |Cl(F )[`]| ≤
|Cl(F )| �[F :Q],ε D

1/2+ε
F follows from Minkowski’s bound. Ellenberg and Venkatesh [25, Proposition

3.1] showed that GRH implies for all ε > 0 the improvement

(2.6) |Cl(F )[`]| �[F :Q],`,ε D
1
2
− 1

2`([F :k]−1)
+ε

F .

The fields F for which there unconditionally exists a constant δ > 0 (depending at most on `

and [F : k]) such that |Cl(F )[`]| �[F :Q],`,ε D
1/2−δ
F are scarce [4, 25, 29, 43, 54, 55]. The key to

the `-torsion bounds in [25, 54, 55] is a lemma of Ellenberg and Venkatesh [25, Lemma 2.3] that

exploits non-inert primes of norm at most D
1/2`([F :k]−1)
F .

The works of An [1]; Ellenberg, Pierce, and Wood [23]; Pierce, Turnage-Butterbaugh, and Wood
[44]; and Thorner and Zaman [52] consider the problem of proving that (2.6) holds for k = Q and
all number fields F with DF ≤ Q in certain families, provided that an exceptional set of relative
density zero is omitted. Each of these results uses the work of Ellenberg and Venkatesh [25, Lemma
2.3] to reduce the problem to the study of small primes that split completely in the fields under
consideration. Table 1 below summarizes the current progress that makes no recourse to unproven
hypotheses (with n ≥ 2 denoting an integer and p denoting a prime).

Table 1. On-average `-torsion results for extensions of Q from [1, 23, 44, 52]

Source Galois structure Restrictions Family size Exceptional set size

[44] degree n Z/nZ-fields on tamely ramified primes ∼ cnQ
1

n−1 Qε

[1] degree 4 D4-fields none ∼ b4Q Q
1
2+ε

[44] degree p Dp-fields, p ≥ 3 on tamely ramified primes �p Q
2

p−1 Q
1

p−1+ε

[23] degree 3 S3-fields none ∼ c3Q Q1− 1
4`+ε

[44] degree 3 S3-fields squarefree discriminants ∼ d3Q Q
1
3+ε

[23] degree 4 S4-fields ` ≥ 8 ∼ c4Q Q1− 1
6`+ε

[44] degree 4 S4-fields squarefree discriminants ∼ d4Q Q
1
2+ε

[23] degree 5 S5-fields ` ≥ 25 ∼ c5Q Q1− 1
8`+ε

[52] degree n An-fields, n ≥ 5 none �n Q
1
30 Qε

Using Theorem 1.1 in concert with [25, Lemma 2.3] we obtain the following result.

Theorem 2.4. Let ` ≥ 2 be an integer, k be a number field, and Q ≥ 1. Let p be prime, n ≥ 2 be

an integer, and the families F p
k (Q) and Fn,Sn

k (Q) be as in (2.4).
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(1) Let ε > 0 and η > 0. For all except Op,[k:Q],ε(Q
ε) fields F ∈ F p

k (Q), there holds

|Cl(F )[`]| �p,k,`,ε,η D
1
2
− 1

2`([F :k]−1)
+η

F .

(2) Let ε > 0 and η > 0. For all except On,[k:Q],ε(Q
ε) fields F ∈ Fn,Sn

k (Q), there holds

|Cl(F )[`]| �n,k,`,ε,η D
1
2
− 1

2`([F :k]−1)
+η

F .

Remark. Unlike the work in [1, 23, 44, 52], Theorem 2.4 crucially relies on the fact that the lemma
of Ellenberg and Venkatesh exploits non-inert primes, not just primes that split completely.

Remark. The lower bounds in (2.5) ensure that Theorem 2.4 is not vacuous.

Theorem 2.4 is new for degree p fields over a base field k 6= Q, and it is new when k = Q and
p ≥ 7. When p = 3 or 5, Theorem 2.4 greatly reduces the sizes of the exceptional sets in [23, 44].
Theorem 2.4 is new for degree n Sn-fields over any given base field k 6= Q when n ≥ 4 (see An [2]
for n = 3), and it is new when k = Q for n ≥ 6. When n ≤ 5, Theorem 2.4 greatly reduces the
sizes of the exceptional sets in [23, 44].

We also prove a mutual refinement of Theorem 2.1 and Theorem 2.4 wherein we produce an
infinitude of number fields F with a given signature (r1, r2) whose Galois closure over Q has Galois
group Sn and whose class group satisfies both (2.6) for any fixed integer ` ≥ 2 and (2.2). This gives
the first examples of number fields of high degree whose class groups have a nontrivial upper bound
on the `-torsion subgroup that provably does not hold for the full class group. See Theorem 10.5
below. Additionally, when we choose r2 = 0 so that such F are totally real, we can show that
each of the aforementioned fields have a point of exact order `0 in their class group, where `0 ≥ 2
is an arbitrary fixed integer. When ` = `0, this gives the first examples of number fields of high
degree with a nontrivial upper bound on the `-torsion subgroup when the `-torsion subgroup itself
is nontrivial. See Theorem 10.6 below.

2.4. An effective Chebotarev density theorem for fibers. Let x ≥ 1. For a normal extension
K/k, let C ⊆ G ' Gal(K/k) be a conjugacy class, and define

πC(x;K/k) := #{p ⊆ Ok prime: Nk/Qp ≤ x,Frobp ∈ C},

where Ok denotes the ring of integers of k. The Chebotarev density theorem asserts that

(2.7) πC(x;K/k) ∼ |C|
|G|

πk(x) as x→∞,

where πk(x) is the prime ideal counting function of k. When ζK(s) has no Landau–Siegel zero,
Thorner and Zaman [53, Corollary 1.2] proved a stronger result, namely

πC(x;K/k) ∼ |C|
|G|

πk(x) as
log x

log([K : Q][K:Q]DK)
→∞.

A similar result holds when a Landau–Siegel zero exists. This improves previous work of Lagarias
and Odlyzko [33] and V. K. Murty [42].

Let n ≥ 5 be an integer, let G be the full symmetric group Sn, and define

FSnk (Q) := {K: K/k is normal, Gal(K/k) ∼= Sn, DK ≤ Q}.

Using Theorem 1.1, we obtain an effective variant of the Chebtarev density theorem that holds in a
much wider range for almost all K ∈ FSnk (Q). However, since Theorem 1.1 imposes the restriction
that the representations ρ be faithful, we do not obtain an equidistribution result in the sense of
(2.7). Instead, we show that as p varies, the conjugacy class of Frobp is equidistributed in each
fiber of the projection Sn → Sn/An.
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Theorem 2.5. Let n ≥ 5 be an integer and k be a number field. Let C ⊆ Sn be a conjugacy
class. Given K ∈ FSnk (Q), let k(

√
∆K)/k be the unique quadratic extension contained in K/k. Let

Q ≥ 1. For all ε > 0, there exists a constant c1 = c1(|Sn|, [k : Q], ε) > 0 such that for all except

On,[k:Q],ε(Q
ε) fields K ∈ FSnk (Q), one has that for any x ≥ (logDK)81n!/ε, there holds

πC(x;K/k) =
2|C|
n!

πsgn(C)(x; k(
√

∆K)/k) +On,[k:Q],ε(x exp(−c1

√
log x)).

We highlight two immediate corollaries of Theorem 2.5. First, the Chebotarev density theorem
implies that πsgn(C)(x; k(

√
∆K)/k) ∼ 1

2πk(x), so Theorem 2.5 is consistent with (2.7). Indeed, by

fixing the quadratic subfield k(
√

∆K), we find the following.

Corollary 2.6. Let n ≥ 5 be an integer, k be a number field, and ∆ ∈ k be a non-square element.
Let ε > 0 and Q ≥ 1. For all except On,[k:Q],ε(Q

ε) of the fields K ∈ FSnk (Q) whose quadratic subfield

is k(
√

∆), there holds for any x ≥ (logDK)81n!/ε,

πC(x;K/k) =
|C|
n!

Li(x) +On,k,∆,ε(x exp(−c1

√
log x)).

Remark. For all non-square ∆ ∈ k and all integers n ≥ 5, it follows from [34, Theorem 1.3] that
there exist effectively computable constants c6 = c6(n, k,∆) > 0 and c7 = c7(n) > 0 such that the

number of K ∈ FSnk (Q) that contain the quadratic subfield k(∆)/k is at least c6Q
c7 . This ensures

that Corollary 2.6 is not vacuous.

In the full family FSnk (Q), where the quadratic resolvent is not assumed fixed, Theorem 2.5 does
not directly permit access to primes whose Frobenius element lies in a single conjugacy class C.
However, in many applications of effective Chebotarev density theorems (e.g., to bounding `-torsion
subgroups of the class group), it is desirable to produce primes whose Frobenius element lies in one
of several conjugacy classes. Theorem 2.5 provides access to such primes, provided that not all of
the desired classes have the same sign. As a particularly simple instance of this, we have:

Corollary 2.7. Let n ≥ 5 be an integer and k be a number field. Let C, C′ ⊆ Sn be conjugacy
classes of opposite parity. Let Q ≥ 1 and ε > 0. For all except On,[k:Q],ε(Q

ε) fields K ∈ FSnk (Q),

one has that for any x ≥ (logDK)81n!/ε, there holds

n!

|C|
πC(x;K/k) +

n!

|C′|
πC′(x;K/k) = 2πk(x) +On,[k:Q],ε(x exp(−c1

√
log x)).

Finally, we note that while we have stated Theorem 2.5 for the family of Sn extensions, an
analogous result will hold for the family of fields K whose Galois group G is a given transitive
group of prime degree. Such groups have a unique minimal normal subgroup N , and the role of the
quadratic subfield k(

√
∆K) will instead be played by the subfield of K fixed by N . An analogue

of Corollary 2.7 will hold for any set of conjugacy classes that surjects onto the set of conjugacy
classes of the quotient G/N .

Organization

In Section 3, we state and give context for our main technical results (Theorems 3.1, 3.3 and 3.7
and Corollary 3.8) after summarizing the work in [44, 52].

In Section 4, we recall the definition and basic properties of Artin L-functions.
In Section 5, we prove Theorem 3.3, which ensures that a zero-free region for the quotient

ζK(s)/ζKN (s) “transfers” to Artin L-functions not coming from KN .
Section 6 and 7 contain the main analytic results of this paper, including the proofs of Theo-

rems 3.1 and 3.7.
In Section 8, we discuss how our results apply to the family of degree p extensions, regardless of

Galois structure.
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In Section 9, we prove the fibered Chebotarev density theorem in Theorem 3.10.
In Section 10, we prove the applications to class groups in Theorems 2.1 and 2.4.
In Section 11, we prove the applications to subconvexity and the equidistribution of periodic

torus orbits in Theorems 2.2 and 2.3.
In Section 12, we give heuristics for a key quantity called the intersection multiplicity introduced

below and use this discussion to contrast our results with those of [44] and [52].
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3. Main results: holomorphy and non-vanishing of Artin L-functions

We now describe the ideas leading to Theorem 1.1. As above, let k be a number field and let
G be a finite group. We let FGk denote the family of number fields K inside a fixed choice of the
algebraic closure k̄ that are normal extensions of k with Galois group Gal(K/k) isomorphic to G.
For any Q ≥ 1, let

FGk (Q) := {K ∈ FGk : DK ≤ Q},
where DK denotes the absolute discriminant of K over Q.

3.1. Summary of preceding work. It is instructive to briefly review the ideas in [44, 52]. Let
k = Q. The approach of Pierce, Turnage-Butterbaugh, and Wood in [44] relied on the zero density
estimate for L-functions of families of cuspidal automorphic representations proved by Kowalski
and Michel [32]. Assuming the strong Artin conjecture, the L-function ζK(s)/ζQ(s) associated to
each K ∈ FGQ is the L-function associated to an isobaric non-cuspidal automorphic representation

ΠK defined over Q. Note that if K1,K2 ∈ FGQ(Q) are distinct, then ΠK1 and ΠK2 might have some

cuspidal constituents in common (as would happen if K1 and K2 share a common subfield), in
which case there exists a cuspidal automorphic representation π0 such that L(s,ΠK1)/L(s, π0) and
L(s,ΠK2)/L(s, π0) are entire. If one studies the zeros of the L-functions L(s,ΠK) with K ∈ FGQ(Q)

and many of the L(s,ΠK) share a particular common factor L(s, π0), then the zeros of L(s, π0) are
counted with high multiplicity. If this multiplicity is too high, then the zero density estimate is
rendered trivial.

Let RG denote a particular condition on the primes that tamely ramify in a normal extension
K/Q with Gal(K/Q) ∼= G, and let FGQ(Q,RG) be the subset of FGQ(Q) whose fields satisfy RG. For
certain groups G, Pierce, Turnage-Butterbaugh, and Wood find conditions RG that enable them to
relate the distribution of fields K1,K2 ∈ FGQ(Q,RG) such that ΠK1 and ΠK2 share some cuspidal

constituents to the arithmetic-statistical problem of counting number fields K ∈ FGQ(Q,RG) that

share a given discriminant. In the situations where their approach works (see Section 6.3 and
Theorems 3.1 and 3.3 in [44]), they prove that if one assumes the strong Artin conjecture for G,
then for all ε > 0 and all K ∈ FGQ(Q,RG) with at most

O|G|,ε(Q
ε max
D≤Q

|{K ∈ FGQ(Q,RG) : DK = D}|)

exceptions, the ratio ζK(s)/ζQ(s) (and all of the Artin L-functions in its factorization, which are
assumed to be automorphic, hence entire) is nonvanishing in the region

Re(s) ≥ 1− ε, |Im(s)| ≤ (logDK)2/ε.
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A “discriminant multiplicity conjecture” of Duke [16] implies that

(3.1) max
D≤Q

|{K ∈ FGQ(Q,RG) : DK = D}| �G,ε Q
ε.

Since the strong Artin conjecture is assumed in [44], this would imply that for all except O|G|,ε(Q
ε)

of the K ∈ FGQ(Q,RG), the L-functions of the Artin representations attached to Gal(K/Q) have a

strong zero-free region for the low-lying zeros, provided that there exists a constant τ = τ(G) > 0
such that |FGQ(Q,RG)| �|G| Qτ . Much of the work in [44] centers around making progress towards

(3.1) for groups G for which the strong Artin conjecture holds and for which |FGQ(Q,RG)| �|G| Qτ
with τ suitably large, including cyclic groups, dihedral groups of order 2p for odd primes p, S3, and
S4.

Note, however, that if the ramification restriction RG is non-empty then the results of Pierce,
Turnage-Butterbaugh, and Wood do not quantify the number of exceptional fields in the full family
FGQ(Q), even assuming the full force of Duke’s discriminant multiplicity conjecture (3.1) and the
strong Artin conjecture. See Section 12 for a discussion of the limitations.

Let ρK be the Artin representation of Gal(K/Q) such that L(s, ρK) = ζK(s)/ζQ(s). The approach
of Thorner and Zaman [52] removes the need to assume the strong Artin conjecture by proving the
first unconditional large sieve for the Artin representations ρK as K ∈ FGQ(Q) varies. They used
character theory for the tensor products ρK1 ⊗ ρK2 and Galois theory in lieu of automorphy. In
the process, they simplified the arithmetic-statistical problem that one must solve to address the
subfield problem. Defining the “intersection multiplicity”

(3.2) mG
k (Q) := max

K1∈FGk (Q)
|{K2 ∈ FGk (Q) : K1 ∩K2 6= k}|,

they unconditionally proved that for all K ∈ FGQ(Q) with at most OG,ε(m
G
Q(Q)Qε) exceptions, the

ratio ζK(s)/ζQ(s) is nonvanishing in a region containing the box

1− ε

108|G|3
≤ Re(s) ≤ 1, |Im(s)| ≤ D1000

K .

This result is nontrivial if there exists a constant δ > 0 such that

mG
Q(Q)�G,δ Q

−δ|FGQ(Q)|.

Since two normal extensions meet in a normal extension, if G is simple, then mG
Q(Q) = 1. Otherwise,

the best bounds on mG
Q(Q) follow from progress toward (3.1) and typically also require restrictions

RG on ramification. Therefore, the need for the strong Artin conjecture is removed, but the
subfield problem still remains unaddressed apart from a handful of special cases. If a suitable
bound for mG

Q(Q) is known, then for all K ∈ FGQ(Q) with few exceptions, the large zero-free region

of ζK(s)/ζQ(s) will translate to a large region of holomorphy and non-vanishing for all of L-functions
associated to the nontrivial Artin representations of Gal(K/Q). This last step crucially uses Artin
induction to express L(s, ρ) in terms of L-functions of one-dimensional representations of cyclic
subgroups of G, each of which inherits the zero-free region of ζK(s)/ζQ(s).

For an arbitrary group G, and in particular those for which Malle’s conjecture is not known, it
seems quite difficult to prove that there exists a constant δ = δ(|G|, k) > 0 such that mG

k (Q)�|G|,k
Q−δ|FGk (Q)|, regardless of whether k = Q. (Recall that Malle’s conjecture predicts an asymptotic

formula for the growth of |FGk (Q)| as Q → ∞, and this is known only in few cases.) This is the
technical limitation that we discussed in Section 1.

If G is simple, then this issue disappears as mG
k (Q) = 1, but if G is not simple, then one should

expect mG
k (Q) �G,k Q

c for some constant c depending on G (see Conjecture 12.1 below). This is

the strucutral limitation discussed in Section 1. For example, for the family FSnk (Q), it follows from
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[34, Theorem 1.3] that

(3.3) mSn
k (Q)�n,k Q

( 1
8
− 27

32n
) 1
n! .

In fact, it follows from Conjecture 12.1 below that we should expect that for all ε > 0, we have
mSn
k (Q) �k,n,ε Q

−ε|FSnk (Q)|. Thus, the desired bound mG
k (Q) �G,k,ε Q

−δ|FGk (Q)| is not expected
to hold when G = Sn, nor is it expected to hold in many other natural situations.

3.2. Changing the average. As we mentioned earlier, our new approach that circumvents the
technical and structural limitations of the approach in [52] has two independent components. To
describe them, let N E G be a nontrivial normal subgroup and, for any K ∈ FGk , let KN denote
the subfield of K fixed by N under the given isomorphism Gal(K/k) ' G. Note that N = G is
permissible, in which case KN = k. In our current setting, we no longer require our base field k to
equal Q.

The first component of our new method is to study the L-function ζK(s)/ζKN (s) as K ∈ FGk (Q)
varies instead of the L-functions ζK(s)/ζk(s). The quotient ζK(s)/ζKN (s) is entire by the Aramata–
Brauer theorem. With suitable modifications to the ideas in [52], the work of Brauer in [7] and
Galois theory will once again alleviate the need for unproven analytic hypotheses such as the Artin
conjecture. The crux of our new average is that we trade the intersection multiplicity mG

k (Q) in
(3.2) that arises in [52] for a new multiplicity, namely

(3.4) mG,N
k (Q) := max

K1∈FGk (Q)
|{K2 ∈ FGk (Q) : K1 ∩K2 6= KN

1 ∩KN
2 }|.

The first component of our new approach is summarized in the following theorem.

Theorem 3.1. Let Q ≥ 1. Let G be a finite group, N E G be a nontrivial normal subgroup, and k

be a number field. Let mG,N
k (Q) be as in (3.4). There exists an absolute and effectively computable

constant c8 > 0 such that for all ε > 0 and all number fields K ∈ FGk (Q) with O|G|,[k:Q],ε(m
G,N
k (Q)Qε)

exceptions, the quotient ζK(s)/ζKN (s) is non-vanishing in the region ΩK(ε) defined by

(3.5) 1− Re(s) ≤


ε

10|G|
logDK

logDK + [k : Q] log(3 + |Im(s)|)
if |Im(s)| ≤ exp(D

ε/(6CG[k:Q])
K ),

c8

logDK + |G|[k : Q] log(3 + |Im(s)|)
if |Im(s)| > exp(D

ε/(6CG[k:Q])
K ).

The constant CG, which depends at most on |G|, is the same as in Theorem 6.1 below.

Remark. It follows from work of Lagarias and Odlyzko [33, Section 8] that ζK(s)/ζKN (s) does not
vanish in the region

(3.6) 1− Re(s) ≤ c8

logDK + |G|[k : Q] log(3 + |Im(s)|)
apart from at most one exceptional zero of ζK(s), which (if it exists) is necessarily real and simple.
By comparison, the zero-free region ΩK(ε) defined by (3.5) contains the box

1− ε

20|G|
≤ Re(s) ≤ 1, |Im(s)| ≤ D1000/[k:Q]

K

when DK is sufficiently large with respect to ε and |G|. Thus, the zero-free region ΩK(ε) constitutes
a substantial improvement over (3.6), and it applies for the vast majority of K ∈ FGk (Q) when we

can prove that mG,N
k (Q) is small.

Note that mG,G
k (Q) = mG

k (Q). Therefore, our new results subsume all of the work in [52].

The novelty of Theorem 3.1 is that when N 6= G, the quantity mG,N
k (Q) can often be controlled

independently of one’s ability to estimate the size of the family FGk (Q). Notably, if G has a unique
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minimal nontrivial normal subgroup N , then mG,N
k (Q) = 1 for all Q ≥ 1. This is the case for many

groups of interest, including:

• all transitive permutation groups of prime degree, including the dihedral groups Dp;
• the affine linear group AGLd(Fp) for any integer d ≥ 1 and any prime p;
• the full symmetric group Sn for any n ≥ 2; and
• the non-simple alternating group A4.

In fact, generalizing these examples, any primitive permutation group has at most 2 minimal
normal subgroups [14, Theorem 4.3B]. The determination of which of these has a unique minimal
normal is a consequence of the O’Nan–Scott theorem [14, Theorem 4.1A]. As a consequence of
this, for example, if n is not equal to |T |k for some nonabelian simple group T and integer k ≥ 1,
then every primitive group of degree n has a unique minimal normal subgroup. Many imprimitive
groups have unique minimal normal subgroups as well, corresponding to subgroups stabilizing the
nontrivial blocks, but these are not our main focus.

3.3. Character theory with restricted components. LetK ∈ FGk . Suppose that ζK(s)/ζKN (s)
is non-vanishing in some region Ω ⊆ C, e.g., the region ΩK(ε) in Theorem 3.1. In light of the
factorization

(3.7)
ζK(s)

ζKN (s)
=

∏
ρ∈Irr(G)
ker ρ 6⊇N

L(s, ρ)dim ρ,

it is reasonable to hope that the zero-free region Ω extends to each of the irreducible Artin L-
functions L(s, ρ) whose associated representation has kernel not containing N . However, since it is
not known that the L-functions L(s, ρ) appearing in this factorization are holomorphic, this does
not immediately follow, nor does it follow in general from any existing result on Artin L-functions.
The second component of our approach, therefore, is a new conjecture in the character theory of
finite groups that would accommodate such a transfer of zero-free regions. We prove this conjecture
in many cases of interest (including for the symmetric group and groups of prime degree), and we
provide a reduction that suggests a general attack based on the classification of finite simple groups.

To describe this conjecture, we begin by recalling classical work of Artin. In particular, for each
representation ρ of a finite group G, none of whose irreducible consituents is trivial, Artin showed
that there are rational constants cρ,χ such that

(3.8) tr ρ =
∑
H

∑
χ∈Irr(H):
dimχ=1

cρ,χIndGHχ,

where the summation over H runs over the cyclic subgroups of G. This leads to a corresponding
factorization of the Artin L-function in terms of Hecke L-functions,

(3.9) L(s, ρ) =
∏
H

∏
χ∈Irr(H):
dimχ=1

L(s, χ)cρ,χ ,

from which Artin deduced that some integral power of L(s, ρ) possesses meromorphic continuation
to all of C. This work was later extended by Brauer to show that each L(s, ρ) itself is mero-
morphic by using a different class of subgroups (namely, so called “elementary” subgroups) but
the decomposition of L(s, ρ) into Hecke L-functions, or equivalently of tr ρ into the induction of
1-dimensional characters, remains essentially the only general way of inferring analytic properties
of Artin L-functions outside the region of absolute convergence.

To infer consequences toward non-vanishing, we note that in the factorization of the quotient
ζK(s)/ζk(s) in (3.9), every L(s, χ) associated to a cyclic subgroup can be taken to appear with a
positive exponent. It follows that if ζK(s)/ζk(s) is non-vanishing in a region Ω, then every L(s, χ)
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is non-vanishing in Ω as well. Consequently, every L(s, ρ) is both holomorphic and non-vanishing
in Ω by means of the factorization (3.9). For our purposes, however, we wish to assume only that
ζK(s)/ζKN (s) is non-vanishing in some region, and infer the holomorphy and non-vanishing of every
irreducible Artin L-function L(s, ρ) whose kernel does not contain N . From (3.9), this only follows
for those irreducible representations that are induced from N , which is typically a small subset of
the irreducible representations at hand.

We propose the following hypothesis on the finite group G and normal subgroup N EG.

Hypothesis T(G,N). If ρ is an irreducible representation of G such that N 6⊆ ker ρ, then for each
subgroup H ⊆ G and each one-dimensional character χ of H for which H ∩N 6⊆ kerχ, there exists
cρ,χ ∈ Q such that

tr ρ =
∑
H⊆G

∑
χ∈Irr(H)
dimχ=1

H∩N 6⊆kerχ

cρ,χIndGHχ.

Conjecture 3.2. For all finite groups G and normal subgroups N EG, Hypothesis T(G,N) holds.

Two remarks are in order. First, Conjecture 3.2 lies much deeper than (3.8), the proof of which
is almost immediate from a modern perspective. In particular, Conjecture 3.2 is not amenable
to standard techniques exploiting the adjointness of the induction and restriction maps. For this
reason, it appears to be much more group theoretic in nature than (3.8). Additionally, the analogue
of Conjecture 3.2 does not hold if the subgroups H are required to be cyclic or even abelian. For
this reason, a wider set of subgroups is required, analogous to how Brauer enlarged the set of
subgroups to obtain a version of (3.8) with integral coefficients. We note that most, or perhaps all,
proofs of Brauer induction rely on the module structure of the character ring of G and proceed by
finding a representation of the trivial character in terms of inductions of characters from elementary
subgroups. However, such an approach cannot work for Conjecture 3.2—there is less inherent
module structure at play and the trivial character is not in the subspace under consideration.

Second, the 1-dimensional characters appearing in Conjecture 3.2, namely those χ such that
kerχ 6⊇ H ∩N , are precisely those whose induction to G may be decomposed solely in terms of the
characters of irreducible representations ρ of G whose kernel does not contain N . Thus, this is the
largest set of 1-dimensional characters to which a zero-free region of ζK(s)/ζKN (s) might plausibly
transfer. Indeed, we show in Lemma 5.5 that such a transfer always occurs; thus, the importance
of Conjecture 3.2 is made clear by the following result.

Theorem 3.3. Let G be a finite group, N E G be a nontrivial normal subgroup for which Hypothesis
T(G,N) holds, and k be a number field. For any K ∈ FGk , if ζK(s)/ζKN (s) is non-zero in a region
Ω ⊆ C, then for each irreducible Artin representation ρ of Gal(K/k) whose kernel does not contain
N , the Artin L-function L(s, ρ) is holomorphic and non-vanishing on Ω.

Remark. It is worthwhile to compare Theorem 3.3 with a well known theorem of Stark [51, Theorem
3]. Let K/k be a normal extension of number fields. Stark shows that if ζK(s) has a simple zero,
then this zero must be inherited from the Dedekind zeta function of a cyclic extension of k, and that
it is not a zero or pole of any Artin L-function that does not factor through this cyclic extension. (If
this simple zero is also real, then the cyclic extension must in fact be at most a quadratic extension.
This is how Stark’s theorem is most commonly invoked.) Since cyclic extensions of k contained in
K correspond to normal subgroups N for which G/N is cyclic, Stark’s theorem may be interpreted
as showing that simple zeros of ζK(s) are constrained to arise from zeros of Dedekind zeta functions
ζKN (s) for cyclic extensions KN/k, and that these zeros do not propagate to Artin L-functions
attached to representations whose kernel does not contain N . By contrast, a simple consequence
of Theorem 3.3 is that if s0 is a zero of ζK(s) of any order that is “explained” by ζKN (s) in the
sense that ζK(s)/ζKN (s) is analytic and non-vanishing at s0, then this zero does not propagate, i.e.
every Artin L-function that does not factor through KN must be analytic and non-vanishing at s0.
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We now record our progress toward Conjecture 3.2.

Theorem 3.4. Let G be a finite group and let N E G be a nontrivial normal subgroup. Then
Hypothesis T(G,N) holds if the index [G : N ] is a prime power or if N is solvable (and thus also
if G is solvable). Additionally, it holds if the order of G is at most 2000 or if G is a transitive
permutation group of degree at most 31.

Proof. When N is solvable or the index [G : N ] is a prime power, this follows from Theorem 5.6
below. The remaining claims follow from a computation in Magma. �

The following corollary to Theorem 3.4 is crucial for the applications in Section 2.

Corollary 3.5. Let n ≥ 2 be an integer and p be prime. Then Hypothesis T(G,N) holds when G
is the symmetric group Sn or a transitive group of degree p, and N is any normal subgroup of G.

Proof. If n 6= 4, the only nontrivial normal subgroups of Sn are Sn itself and the alternating group
An. Both of these have prime power index. If n = 4, there is also the Klein four subgroup, which is
abelian (hence solvable). If p is prime, then the transitive groups of degree p have been classified; see
Lemma 8.2 below. It follows from this classification that either G is solvable or the unique minimal
normal subgroup of G has prime power index, in which case every nontrivial normal subgroup will
also have prime power index. �

Finally, we have succeeded in reducing the general conjecture, Conjecture 3.2, to the case that
N is a minimal normal subgroup and G ⊆ Aut(N). Exploiting the characterization of minimal
normal subgroups, along with the techniques used in Theorem 3.4, gives the following.

Theorem 3.6. Let T be a nonabelian simple group and let p be a prime. If Hypothesis T(G,N)
holds for all groups G ⊆ Aut(T ) oCp containing N = T p for which the quotient G/N is cyclic, then
it holds for all finite groups.

3.4. Holomorphy and non-vanishing. Our main result follows from the combination of Theo-
rems 3.1 and 3.3. In what follows, we define χρ(p) := tr ρ(Frobp).

Theorem 3.7. Let G be a finite group, and let N E G be a nontrivial normal subgroup such that

Hypothesis T(G,N) holds. Let Q ≥ 1, let k be a number field, and recall mG,N
k (Q) is defined by

(3.4). For all ε > 0, there exists an effectively computable constant c1 = c1(|G|, [k : Q], ε) > 0

such that for all K ∈ FGk (Q) apart from at most O|G|,[k:Q],ε(m
G,N
k (Q)Qε) exceptions, the following

properties hold for the Artin representations ρ of Gal(K/k) whose kernel does not contain N :

(1) L(s, ρ) is holomorphic and non-vanishing in the region ΩK(ε) defined by (3.5), and

(2) if x ≥ (logDK)81|G|/ε, then

(3.10)
∣∣∣ ∑

Nk/Qp≤x
χρ(p)

∣∣∣�|G|,[k:Q],ε x exp(−c1

√
log x).

If N is the unique minimal nontrivial normal subgroup of G, then mG,N
k (Q) = 1.

Remark. One of the primary benefits of a strong zero-free region for an L-function is that one can
typically prove a correspondingly strong analogue of the prime number theorem, provided that one
can suitably bound the logarithmic derivative. This is usually done by exploiting the full analytic
continuation of the L-function, but this is not something afforded by Theorem 3.3. However, using
the central ideas of its proof, we are still able to prove the strong effective prime number theorem
(3.10) for the L(s, ρ) considered in Theorem 3.3. This is why we list the region of holomorphy and
non-vanishing separately from the effective prime number theorem in Theorem 3.7.
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Proof of Theorem 1.1. Let G be Sn for some integer n ≥ 2 or a transitive subgroup of Sp for some
prime p. By Corollary 3.5, G satisfies Conjecture 3.2. By Lemma 8.1, G has a unique nontrivial
minimal normal subgroup, say N(G). Since N(G) is nontrivial, it cannot be contained in the

kernel of a faithful representation ρ of G since ker ρ is trivial. Therefore, since m
G,N(G)
k (Q) = 1,

Theorem 1.1 follows from Theorem 3.7. �

Let G be a finite group, and let N E G be a nontrivial normal subgroup. We observe that if
F is a subfield of K ∈ FGk (Q) for which F ∩KN = k, then the kernel of the Artin representation
ρF of Gal(K/k) associated to the Artin L-function ζF (s)/ζk(s) does not contain N . Therefore,
Theorem 3.7 is applicable. We emphasize two widely applicable cases of this in our next result;
these will enable us to prove the applications in Section 2.

Corollary 3.8. Let k be a number field and Q ≥ 1. For a field F , let F̃ denote its normal closure
over k and let ρ be the Artin representation satisfying L(s, ρF ) = ζF (s)/ζk(s).

(1) Let n ≥ 3. For all ε > 0, there exists an effectively computable constant c9 = c9(n, [k :

Q], ε) > 0 such that for all except On,[k:Q],ε(Q
ε) fields F ∈ Fn,Sn

k (Q),
(a) L(s, ρF ) is holomorphic and non-vanishing in the region Ω

F̃
(ε/n!), and

(b) if x ≥ (logDF )81(n!)2/ε, then

(3.11)
∣∣∣ ∑

Nk/Qp≤x
χρF (p)

∣∣∣�n,[k:Q],ε x exp(−c9

√
log x).

(2) Let p be prime. For all ε > 0, there exists an effectively computable constant c10 = c10(p, [k :
Q], ε) > 0 such that for all except Op,[k:Q],ε(Q

ε) fields F ∈ F p
k (Q),

(a) L(s, ρF ) is holomorphic and non-vanishing in the region Ω
F̃

(ε/p!), and

(b) if x ≥ (logDF )81(p!)2/ε, then

(3.12)
∣∣∣ ∑

Nk/Qp≤x
χρF (p)

∣∣∣�p,[k:Q],ε x exp(−c10

√
log x).

Proof. (1) When G = Sn, let N be the unique minimal nontrivial normal subgroup of G, which
is either An or V4. In either case, N is transitive, and thus its interesection with a stabilizer

subgroup of Sn has index n in N . Additionally, since N is the unique minimal, mG,N
k (R) = 1 for

all R ≥ 1, and Hypothesis T(G,N) is satisfied via Corollary 3.5. Finally, there exists an effectively

computable constant c11 = c11(n, [k : Q]) > 0 such that D
F̃
≤ c11D

[F̃ :k]
F ≤ c11D

[F :k]!
F . Thus, for

each F ∈ Fn,Sn
k (Q), the normal closure F̃ over k lies in FSnk (c11Q

[F :k]!). If F ∈ Fn,Sn
k (Q), then

F ∩ F̃N = k because F is the fixed field of a stabilizer subgroup. The result now follows from
Theorem 3.7.

(2) The proof is the same as the previous part, except that we combine the contributions from all
of the transitive subgroups of Sp (of which there are Op(1)). We invoke Lemma 8.1 and Corollary 3.5
to each of these transitive subgroups in order to apply Theorem 3.7. �

Remark. The lower bounds in (2.5) ensure that Corollary 3.8 is not vacuous.

Our proofs for Theorems 2.1, 2.4 and 3.10 rely on the bounds (3.11) and (3.12). Our proof of
Theorem 2.2, and hence our proof of Theorem 2.3, uses the strong zero-free region in Corollary 3.8.

3.5. Further examples. As is made clear in the previous sections, our results are strongest for
groups G possessing a unique minimal normal subgroup N for which T(G,N) holds. In particular,
we obtain the following analogue of Theorem 1.1 for such groups G.

Theorem 3.9. Let k be a number field. Let G be a finite group with a unique minimal normal
subgroup N such that Hypothesis T(G,N) holds. Let Q ≥ 1. For all ε > 0, there exists an effectively
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computable constant c1 = c1(|G|, [k : Q], ε) > 0 such that for all except O|G|,[k:Q],ε(Q
ε) normal

extensions K/k with Gal(K/k) ' G and absolute discriminant DK at most Q, each irreducible
faithful Artin representation ρ of Gal(K/k) satisfies∣∣∣ ∑

Nk/Qp≤x
tr ρ(Frobp)

∣∣∣�|G|,[K:Q],ε x exp(−c1

√
log x)

for all x ≥ (logDK)81|G|/ε.

There are many groups G satisfying both hypotheses of Theorem 3.9. For example, there are 50
transitive groups of degree 8, of which 42 are subject to Theorem 3.9, and of the 1954 transitive
groups of degree 16, there are 1706 subject to Theorem 3.9. We therefore do not aim to provide
an exhaustive list of such groups. Instead, we highlight a few systematic examples beyond the
symmetric groups Sn and transitive groups of prime degree that have played a role earlier in this
paper.

• All simple groups G, with N = G.
• The non-simple alternating group A4, with N = V4, the Klein four subgroup.
• The affine general linear group AGLd(Fp), with N = (Z/pZ)d, and more generally any

group of the form G0 o (Z/pZ)d with G0 an irreducible subgroup of GLd(Fp).
• Almost simple groups G whose socle has prime power index in G.
• Wreath products S3 oH and S4 oH for transitive permutation groups H of degree d, with
N = Ad3 and N = V d

4 , respectively.

All but the last of these are primitive permutation groups, and consequently it is straightforward
to obtain a version of Theorem 2.4 for these groups equal in quality to that for Sn and groups of
prime degree. It is also possible to obtain a version for imprimitive groups, but with a somewhat
worse bound on the `-torsion subgroup. Additionally, for any group G with a unique minimal
normal subgroup N for which Hypothesis T(G,N) holds, primitive or otherwise, an analogue of
Theorem 2.5 holds with the quadratic resolvent replaced by the subfield KN fixed by N .

Theorem 3.10. Let G be a finite group with a unique minimal normal subgroup N for which
Hypothesis T(G,N) holds. Let k be a number field. Let C ⊆ G be a conjugacy class and let [C]G/N
denote the associated conjugacy class in G/N . Let Q ≥ 1. For all ε > 0, there exists a constant
c1 = c1(|G|, [k : Q], ε) > 0 such that for all except On,[k:Q],ε(Q

ε) fields K ∈ FGk (Q), one has that for

any x ≥ (logDK)81|G|/ε, there holds

πC(x;K/k) =
|C|

|N | · |[C]G/N |
π[C]G/N (x;KN/k) +On,[k:Q],ε(x exp(−c1

√
log x)),

where KN denotes the subfield of K fixed by N .

4. Preliminaries on Artin L-functions

We recall the definition of an Artin L-function following [41, Chapter 2]. Let K/k be a Galois
extension of number fields with Galois group G = Gal(K/k). Let Ok be the ring of integers of k.
For each prime p of k and each prime P of K lying over p, let DP = Gal(KP/kp), where KP and kp
are the completions of K and k at P and p, respectively. Let FP and Fp denote the residue fields
of P and p. There is a map from DP to Gal(FP/Fp) that is surjective by Hensel’s lemma. Define
IP to be the kernel of this map; we then have an exact sequence

1→ IP → DP → Gal(FP/Fp)→ 1.

The group Gal(FP/Fp) is cyclic with generator x 7→ xNp. Choose σP ∈ DP whose image in
Gal(FP/Fp) is this generator; it is only defined modulo IP. We have IP = 1 for all unramified
p, so for these p, σP is well-defined. If we choose another prime P′ above p, then IP′ and DP′
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are conjugates of IP and DP. For p unramified, we denote by σp the conjugacy class of Frobenius
automorphisms at primes P above p.

Let ρ : G → GLn(C) be a complex representation of G, and let V be the underlying complex
vector space on which ρ acts. We may restrict this action to the decomposition group DP and see

that the quotient DP/IP acts on the subspace V IP of V on which IP acts trivially. Any σP will
have the same characteristic polynomial on this subspace. For Re(s) > 1, we define

Lp(s, ρ) = det(1− ρ(σP)|V IPNp−s)−1 =
n∏
j=1

(1− αj,ρ(p)Np−s)−1.

Note that the matrix ρ(σP)|V IP remains the same if one changes the prime P lying above p; indeed,

if p is unramified, then ρ(σP)|V IP = ρ(σp). We then define

(4.1) L(s, ρ) =
∏
p

Lp(s, ρ) =
∑
n

λρ(n)

Nns
.

We have that |αj,ρ(p)| ≤ 1 for all j and p, so L(s, ρ) has an absolutely convergent Dirichlet series
and Euler product for Re(s) > 1.

Let ΓR(s) := π−s/2Γ(s/2). For each archimedean place v of k, we define

Lv(s, ρ) =

{
ΓR(s)nΓR(s+ 1)n if kv = C,

ΓR(s)aΓR(s+ 1)n−a if kv = R,

where a = a(ρ) is the dimension of the +1 eigenspace of complex conjugation. We define the
numbers µρ(j) by the identity

L∞(s, ρ) =
∏

v archim.

Lv(s, ρ) =

n[k:Q]∏
j=1

ΓR(s+ µρ(j)).

Let the integral ideal qρ ⊆ Ok denote the conductor of ρ over k. The completed L-function is
defined by

(4.2) Λ(s, ρ) := (Dn
kNk/Qqρ)

s/2L(s, ρ)L∞(s, ρ).

There exists W (ρ) ∈ C of modulus one such that

Λ(s, ρ) = W (ρ)Λ(1− s, ρ)

for all s ∈ C at which Λ(s, ρ) is holomorphic, where ρ is the complex conjugate of ρ. We define the
analytic conductor of ρ by

(4.3) C(ρ, t) := Dn
kNk/Qqρ

n[k:Q]∏
j=1

(3 + |µρ(j) + it|), C(ρ) := C(ρ, 0).

We observe that

(4.4) C(ρ, t)�n,[k:Q] D
n
kNk/Qqρ(3 + |t|)n[k:Q].

Lemma 4.1. If ρ is an n-dimensional Artin representation over k whose L-function L(s, ρ) is
entire, then for Re(s) ≥ 1/2, then

|L(s, ρ)| �n,[k:Q] C(ρ, t)max{ 1−σ
2
,0}(logC(ρ, t))d[k:Q](2σ−1).

Proof. The bound |L(1 + it, ρ)| �n,[k:Q] (logC(ρ, t))n[k:Q] follows by proceeding as in the proof of

[9, Theorem 2]. The bound |L(1
2 + it, ρ)| �n,[k:Q] C(ρ, t)n[k:Q]/4 follows from the convexity bound

due to Heath-Brown [28]. �
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If ρ is 1-dimensional, then Artin reciprocity shows that L(s, ρ) is a Hecke L-function and is thus
entire if ρ is nontrivial. The Artin conjecture asserts that L(s, ρ) is entire for every nontrivial
irreducible representation of G = Gal(K/k), but this is unknown in general. The best general
result is due to Brauer, and is a consequence of his induction theorem.

Lemma 4.2 (Brauer induction). For any complex representation ρ of Gal(K/k), the Artin L-
function L(s, ρ) has a meromorphic continuation to C.

We shall speak interchangably about the Artin L-function associated to ρ and to its character
χρ (i.e., its trace). For example, if 1G denotes the character of the trivial representation of G, then
L(s,1G) = ζk(s). Also, for any ρ, if there are rational coefficients ci such that

χρ =
k∑
i=1

ciχρi ,

where for each i ≤ k, ρi is complex representation of G, then Artin showed

L(s, ρ) = L(s, χρ) =
k∏
i=1

L(s, χρi)
ci =

k∏
i=1

L(s, ρi)
ci .

Finally, if χ is a character of a subgroup H ⊂ G, let χ∗ = IndGHχ denote the character of G induced
by χ. Then there is an equality of the associated L-functions,

L(s, χ) = L(s, χ∗),

where L(s, χ) is an Artin L-function associated to K/KH and KH denotes the subfield fixed by H.

5. Transfer of zero-free regions

The goal of this section is to prove Theorems 3.3 and 3.4, whose setup we briefly recall. Let K/k
be a normal extension of number fields with Galois group G. Let N E G be a normal subgroup
and let KN denote the fixed field of N . We wish to show that if ζK(s)/ζKN (s) is non-zero in
a region Ω ⊆ C, then L(s, ρ) is holomorphic and non-vanishing on Ω for every irreducible Artin
representation ρ of K/k whose kernel does not contain N . We shall make this more precise shortly,
but in loose terms, the idea is to first show that a zero-free region for ζK(s)/ζKN (s) transfers to
L-functions attached to certain 1-dimensional characters of subgroups H ⊆ G. We do so in Lemma
5.5 for the largest possible set of characters for which this conclusion could reasonably hold, namely
those whose kernel does not contain H ∩N . The next step is to show that this transfer of zero-free
region to L-functions associated to 1-dimensional characters suffices. This transfer is equivalent to
showing that the inductions of these 1-dimensional characters generate all characters of G whose
kernel does not contain N . This is Hypothesis T(G,N), which we restate in an equivalent manner
below. Conjecture 3.2 asserts that Hypothesis T(G,N) holds for all finite groups G and normal
subgroups N EG. If Hypothesis T(G,N) holds, then Theorem 3.3 readily follows. The verification
of Hypothesis T(G,N) is the most subtle piece of the argument. We are unable to prove Hypothesis
T(G,N) holds in general; however, we do show in Theorem 5.6 that it holds in many natural cases,
most notably when either the index [G : N ] is a prime power or N is solvable. We then provide
the proof of Theorem 3.6 that reduces the general Conjecture 3.2 to proving Hypothesis T(G,N)
for a concrete set of groups. We close this section by illuminating the ideas of this paper with the
example G = S5 and N = A5.

Our approach is inspired by Brauer’s approach to the Aramata–Brauer theorem that the quotient
ζK(s)/ζk(s) is entire. The ideas of Brauer’s proof quickly establish the theorem in the special case
N = G, and thus with KN = k. In fact, as Brauer’s work is also an ingredient in our proof of the
general case, we find it useful to briefly summarize his ideas.
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5.1. The Aramata–Brauer theorem and Theorem 3.3 when N = G. We first introduce
some notation. Given a subgroup H ⊆ G, we let 1H denote the trivial character of H. Given any

character χ of H and any subgroup H ′ ⊇ H, we let IndH
′

H χ denote the character of H ′ induced by
χ. We begin with the following lemma of Brauer [7].

Lemma 5.1 (Brauer). Let N be a finite group. For each nontrivial character χ of a cyclic subgroup
of N , there is a positive rational constant cχ such that

IndN1 1− 1N =
∑
g∈N
g 6=id

∑′

χ∈〈̂g〉

cχIndN〈g〉χ,

where χ runs over the nontrivial characters of the cyclic group 〈g〉.

Proof. Brauer shows that if χ is a nontrivial character of the cyclic subroup 〈g〉, one may take

cχ =
1

|N |
∑
h∈〈g〉
〈h〉=〈g〉

(1− χ̄(h)).

This is rational (it is invariant under the action of Galois) and positive (because χ is nontrivial). �

From Lemma 5.1, it is straightforward to deduce the Aramata–Brauer theorem and a first con-
sequence toward non-vanishing.

Lemma 5.2. The quotient ζK(s)/ζKN (s) is entire. Moreover, let H ⊆ N be a cyclic subgroup and
let χ be a nontrivial irreducible character of H. If ζK(s)/ζKN (s) is non-zero in a region Ω ⊆ C,
then L(s, χ) is holomorphic and non-vanishing in Ω.

Proof. By Lemma 5.1, it follows for Re(s) > 1 that

ζK(s)

ζKN (s)
=
∏
g∈N
g 6=id

∏′

χ∈〈̂g〉

L(s, χ)cχ .

Each character χ is abelian, hence each L(s, χ) is entire. Since ζK(s)/ζKN (s) is meromorphic and
since each cχ is positive, it follows that ζK(s)/ζKN (s) is entire. The statement on non-vanishing
similarly follows from the positivity of each cχ and the fact that each L(s, χ) is entire. �

For the next lemma, we introduce some additional notation. For any finite group G, let RZ(G)
denote the ring of virtual characters of G, i.e. integral linear combinations of the irreducible
characters of G, and let RQ(G) = RZ(G)⊗Q and RC(G) = RZ(G)⊗ C. The space RC(G) is the
space of class functions on G, on which there is an inner product

〈f1, f2〉G =
1

|G|
∑
g∈G

f1(g)f2(g).

The irreducible characters of G form an orthonormal basis for RC(G) with respect to this inner
product. The orthogonal complement of the trivial character is the space of class functions with
mean 0 on G. By Frobenius reciprocity, this condition is invariant under induction. We also note
that this inner product is defined on RQ(G) as well.

Our next lemma is essentially the Artin induction theorem.

Lemma 5.3 (Artin induction). The orthogonal complement of the trivial character in RQ(G) is
spanned by the induction of nontrivial characters of cyclic subgroups of G.
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Proof. It suffices to prove the analogous statement over C. Given g 6= id, let fg be the class function
on the cyclic group H = 〈g〉 defined by

fg(h) =


1, if h = g,

−1 if h = id,

0 if h /∈ {g, id}.
As fg has mean 0 on H, it may be expressed as a linear combination of the non-trivial characters of

H. Its induction IndGHfg thus also has mean 0, and is supported on the identity and the conjugacy
class of g. Varying over all g 6= id, such functions naturally span the orthogonal complement of the
trivial character. �

Combining Lemmas 5.2 and 5.3, we obtain:

Lemma 5.4. Suppose that ζK(s)/ζKN (s) is non-zero in a region Ω ⊆ C. Let ψ ∈ RQ(N) lie
in the orthogonal complement of the trivial character of N . Then the Artin L-function L(s, ψ) is
holomorphic and non-vanishing in Ω.

Proof. Applying Lemma 5.3 to N , there are rational numbers cχ,ψ such that

ψ =
∑
g∈N
g 6=id

∑
χ∈〈̂g〉
χ 6=1

cχ,ψIndN〈g〉χ,

where the sum runs over the nontrivial characters of 〈g〉. Consequently, we find the factorization

L(s, ψ) =
∏
g∈N
g 6=id

∏
χ∈〈̂g〉
χ 6=1

L(s, χ)cχ,ψ .

By Lemma 5.2, each L(s, χ) is holomorphic and non-vanishing in Ω, so the same must hold for
L(s, ψ) as well. �

Lemma 5.4 yields Theorem 3.3 in the case N = G. The general case is apparently more subtle,
however.

5.2. Inductions of characters with restricted components. Recall that there is a natural
injection RQ(G/N) ↪→ RQ(G) given by pullback, so we may regard RQ(G/N) as a subgroup of
RQ(G). Exploiting the inner product onRQ(G), we may thus consider an orthogonal decomposition

(5.1) RQ(G) = RQ(G/N)⊕RQ(G/N)⊥,

whereRQ(G/N)⊥ denotes the orthogonal complement ofRQ(G/N). So doing,RQ(G/N) is spanned

by the irreducible constituents of the character IndGN1N . Consequently, RQ(G/N)⊥ is most nat-
urally spanned by the irreducible characters whose kernel does not contain N . These are exactly
the characters of the type considered in Theorem 3.3. However, as in the previous subsection, the
analytic properties of the L-functions attached to such characters are not easily accessed directly
and are only understood by comparison to L-functions attached to 1-dimensional characters.

Hypothesis T(G,N) asserts a refinement of the Artin induction theorem that respects the orthog-
onal decomposition (5.1). It follows from Lemma 5.3 that RQ(G/N) is spanned by the induction
of one-dimensional characters whose induction itself lies in RQ(G/N); in fact, characters of cyclic
subgroups suffice. In other words, it follows that

RQ(G/N) = spanQ
⋃
H⊆G
{IndGHχ : χ ∈ Irr(H), dimχ = 1, and IndGHχ ∈ RQ(G/N)},

where Irr(H) denotes the set of irreducible complex representations of a subgroup H ⊂ G.
Hypothesis T(G,N) is equivalent to the corresponding statement for RQ(G/N)⊥.
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Hypothesis (Equivalent formulation of Hypothesis T(G,N)). The space RQ(G/N)⊥ is spanned
by the induction of one-dimensional characters whose induction lies in RQ(G/N)⊥. In other words,
we have that

RQ(G/N)⊥ = spanQ
⋃
H⊆G
{IndGHχ : χ ∈ Irr(H), dimχ = 1, and IndGHχ ∈ RQ(G/N)⊥}.

The main result of this section, Theorem 5.6 below, establishes Hypothesis T(G,N) when N is
solvable or the index [G : N ] is a prime power. Its proof concludes that of Theorem 3.4.

The subtlety of Hypothesis T(G,N) is revealed upon noting that the orthogonal decomposition
(5.1) is preserved neither upon restriction to subgroups H ⊆ G nor upon induction from subgroups.
For example, the trivial character of H always lies in RQ(H/H ∩N), but its induction to G need
not lie in RQ(G/N). Thus, typical elementary approaches exploiting the adjointness of induction
and restriction do not obviously apply. Moreover, it is not the case that the induction of characters
of cyclic, or even abelian, subgroups suffice to span RQ(G/N)⊥ in general.

We first prove a non-vanishing result for L-functions attached to the characters we shall use. For
this, we note that if χ is a 1-dimensional character of a subgroup H ⊆ G, then IndGHχ ∈ RQ(G/N)⊥

if and only if the kernel of χ does not contain H ∩N .

Lemma 5.5. Let H ⊆ G be a subgroup and suppose that χ is a 1-dimensional character of H
whose kernel does not contain H ∩N . If ζK(s)/ζKN (s) is non-vanishing in a region Ω ⊆ C, then
L(s, χ) is holomorphic and non-vanishing in Ω.

Proof. Since χ is 1-dimensional, it follows from Artin reciprocity that L(s, χ) is a Hecke L-function,
and since χ is nontrivial, it is thus entire. To show that L(s, χ) is non-vanishing in Ω, let χ∗ =
IndGHχ, and consider the character θN = IndGN1N − 1G of G. Then χ∗ + θNχ

∗ = χ∗IndGN1N =
IndGNχ

∗
N , where χ∗N := χ∗|N denotes the restriction of χ∗ to N . It follows that

L(s, χ)L(s, χ∗ ⊗ θN ) = L(s, χ∗N ).

By our assumption on χ, the character χ∗N of N is orthogonal to the trivial character. Thus, by
Lemma 5.4, L(s, χ∗N ) is holomorphic and non-vanishing on Ω. Consequently, the lemma will follow
provided we show that L(s, χ∗ ⊗ θN ) is entire.

By Lemma 5.1 applied to G/N , we may express θN as a positive rational linear combination of
the induction ψ∗ of characters ψ of cyclic subgroups of G/N . Since L(s, χ∗ ⊗ θN ) is meromorphic
by Lemma 4.2, it suffices to show that each L(s, χ∗ ⊗ ψ∗) is entire. Let Kψ ⊆ KN be the cyclic
subextension from which ψ is induced and let F ′/F be the cyclic extension corresponding to χ.
Let ψF denote the restriction of ψ to the subgroup Gal(FKN/FKψ) ⊆ Gal(KN/Kψ).

If F ′ is linearly disjoint from FKψ over F , then we may regard both χ and ψF as characters of
the abelian Galois group Gal(F ′KN/FKψ). Thus, the product χψF is well-defined, and we have
L(s, χ∗ ⊗ ψ∗) = L(s, χψF ). Our assumption on χ ensures that F ′ is not contained in FKN , so the
character χψF is non-trivial, and hence L(s, χ∗ ⊗ ψ∗) is entire in this case.

If F ′ is not linearly disjoint from FKψ over F , the character χψF need not be defined. However,
we may regard χ as a character of GF = Gal(KNF ′/F ) and ψF as a character of its subgroup

Gψ = Gal(KNF ′/FKψ). So doing, we find χIndGFGψψF = IndGFGψ (ψFχψ), where χψ := χ|Gψ denotes

the restriction of χ to Gψ. Then L(s, χ∗ ⊗ ψ∗) = L(s, ψFχψ). As above, by our assumption on
χ, the (abelian) character ψFχψ is non-trivial, and we again conclude that L(s, χ∗ ⊗ ψ∗) is entire.
This completes the proof of the lemma. �

Theorem 5.6. Let G be a finite group and N E G a normal subgroup. If N is solvable or the
index [G : N ] is a prime power, then Hypothesis T(G,N) holds.

Proof. Notice that the induction of a character χ from a subgroup H is in the orthogonal comple-
ment of RQ(G/N) if and only if its kernel does not contain H ∩ N . Thus, the conclusion of the
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theorem holds if every irreducible character of G is the induction of a 1-dimensional character of a
subgroup of G, i.e. if G is monomial. Consequently, the theorem holds whenever G is abelian or,
more generally, whenever G is nilpotent [47, Chapter 8]. In fact, all monomial groups are solvable,
so this fact is subsumed by the statement of the theorem. We find it convenient to note also that
all p-groups are nilpotent, so the statement is known in this case. It also holds when N = G by
Lemma 5.3. Finally, we note that it is also known when N is abelian by work of Deligne and
Henniart [13, Proposition 2.2].

We first consider the case that N is solvable. We proceed by induction on the order of G, taking
as a base case the statement for abelian G. If N is trivial, then the conclusion is vacuous, so we may
assume that N is nontrivial. Let N ′ be a nontrivial minimal normal subgroup of G contained in N .
Since N is solvable, N ′ must be solvable as well. Additionally, since N ′ must be characteristically
simple, it is isomorphic to a group of the form T d for a simple group T . Since N ′ is solvable, T
must be cyclic of prime order, so N ′ is abelian. Consequently, by [13, Proposition 2.2], it follows
that T(G,N ′) holds.

If N ′ = N , then this establishes the result. If N ′ ( N , then RQ(G/N) is a proper subspace of
RQ(G/N ′) and RQ(G/N ′)⊥ is a subspace of RQ(G/N)⊥, where all spaces are viewed as subspaces
of RQ(G). Moreover,

RQ(G/N)⊥ = RQ(G/N ′)⊥ ⊕
(
RQ(G/N ′) ∩RQ(G/N)⊥

)
.

Since T(G,N ′) holds,RQ(G/N ′)⊥ is spanned by the induction of 1-dimensional characters whose in-
ductions lie inRQ(G/N ′)⊥, which must also lie inRQ(G/N)⊥. It remains to show thatRQ(G/N ′)∩
RQ(G/N)⊥ is spanned by such characters. However, since N ′ ⊂ N , G/N ' (G/N ′)/(N/N ′), and
the elements of RQ(G/N ′) ∩ RQ(G/N)⊥ are obtained by pullback from RQ((G/N ′)/(N/N ′))⊥ ⊆
RQ(G/N ′), where we regard RQ(G/N ′) in this final statement as its own space and not as a sub-
space of RQ(G). Since N ′ is nontrivial, T(G/N ′, N/N ′) must hold by the inductive hypothesis, and
we conclude that RQ((G/N ′)/(N/N ′))⊥ is spanned by the induction of 1-dimensional characters
whose kernel does not contain N/N ′. Pulling back a basis of such characters, we deduce that
RQ(G/N ′)∩RQ(G/N)⊥ is spanned by the induction of 1-dimensional characters whose kernel does
not contain N . This yields the result in the case N is solvable.

We now consider the case that [G : N ] is a prime power. We once again induct on the order
of G, exploiting the subgroups of G. It suffices to work with complex coefficients, that is, to
show the orthogonal complement of RC(G/N) inside RC(G) is spanned by the induction of such
characters. We therefore consider a class function f of G that is orthogonal to the induction of all
such characters, with the goal of showing that it lies in RC(G/N). Equivalently, we wish to show
that f is constant on cosets of N , that is, that f(a) = f(b) whenever ab−1 ∈ N . Consider two such
elements a, b ∈ G.

By Frobenius reciprocity and the inductive hypothesis, it follows that if a and b lie in the same
proper subgroup H, then f(a) = f(b). In particular, if a and b do not generate G, then we may
take H to be the subgroup generated by a and b. Thus, we may assume that a and b generate G.
This implies that G/N is cyclic, since we have assumed that aN = bN .

Next, since the index of N in G is a power of a prime, we may write [G : N ] = pk. By our
inductive hypothesis applied to the cyclic subgroup generated by a, or noting that such a group
is abelian, we see that f(a) = f(am) whenever m ≡ 1 (mod pk). Thus, replacing a by a suitable
power if necessary, we may assume that the order of a is a power of p. Similarly, we assume that
the order of b is a power of p. Let H be a Sylow p-subgroup of G containing a, possibly equal
to G itself. Since f is a class function, we may conjugate b if necessary to assume that b ∈ H as
well. But H is a p-group, so the theorem holds for H. As we have ab−1 ∈ H ∩N , it follows that
f(a) = f(b). This establishes the theorem in the case [G : N ] is a prime power. �
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Proof of Theorem 3.3. With these facts in hand, the proof of Theorem 3.3 is now straightforward.
Any irreducible representation ρ of G whose kernel does not contain N lies in the orthogonal
complement of RQ(G/N). If Hypothesis T(G,N) holds, and in particular under the assumptions
of Theorem 5.6, there are rational constants cχ(ρ) such that

L(s, ρ) =
∏
χ

L(s, χ)cχ(ρ),

where the product runs over 1-dimensional characters χ of subgroups H of G whose kernel does not
contain N . By Lemma 5.5, if ζK(s)/ζKN (s) is non-vanishing in the region Ω ⊆ C, then each L(s, χ)
is holomorphic and non-vanishing in Ω. Thus, the same must be true for L(s, ρ). This completes
the proof. �

Proof of Theorem 3.6. The proof of Theorem 5.6 given above shows it is sufficient to understand
Hypothesis T(G,N) for finite groups G with nonabelian minimal normal subgroups N such that
G/N is cyclic of non-prime power order. We begin by showing it is further possible to reduce to
the case that G is a subgroup of Aut(N).

Let K be the kernel of the map G → Aut(N) given by conjugation. Since N is nonabelian
and minimal, K ∩ N is trivial, and this realizes G as the fiber product G/N ×G/NK G/K. The
quotient G/K is naturally a subgroup of Aut(N) containing N , and we suppose that Hypothesis
T(G/K,N) is true. Since G/N is abelian, any irreducible character of G may be decomposed as
a product (χ1, χ2), where χ1 is a character of G/N and χ2 is a character of G/K, with two such
products being the same if they differ by a factor (ψ, ψ̄) for a character ψ of the common quotient,
G/NK. Let (χ1, χ2) be an irreducible character of G not contained in RQ(G/N), so in particular
χ2 is an irreducible character of G/K lying in RQ(G/KN)⊥. Since we have assumed T(G/K,N)
holds, there are constants cχ ∈ Q such that

χ2 =
∑

H⊆G/K

∑
χ∈Irr(H)
χ(1)=1

kerχ 6⊇H∩N

cχInd
G/K
H χ.

For a subgroup H ⊆ G/K, let HG denote the corresponding subgroup of G, i.e. HG = {(a, h) ∈
G/N ×G/NK G/K : h ∈ H}. Then any 1-dimensional character χ of H is also a character of
HG and the character χ1 restricts to a character on HG. Moreover, if N ∩ H 6⊆ kerχ, then
N ∩HG 6⊆ ker(χ · χ1|HG) as well. Additionally, we have

(χ1, χ2) =
∑

H⊆G/K

∑
χ∈Irr(H)
χ(1)=1

kerχ 6⊇H∩N

cχIndGHG(χ · χ1|HG),

which shows thatT(G,N) holds provided T(G/K,N) does. This reduces Conjecture 3.2 to the case
that G is a subgroup of Aut(N), where N is a nonabelian minimal normal subgroup of G.

Since N is minimal, it is characteristically simple, and hence of the form T d for some nonabelian
simple group T , in which case G is a subgroup of the wreath product Aut(T ) o Sd. Applying the
reductions in the proof of Theorem 5.6, we may assume G/N is cyclic. This implies that d must be
prime, since otherwise the degree d permutation action of G would have nontrivial blocks, violating
the assumption that N is minimal. This yields the theorem. �

5.3. An example: The symmetric group S5. We illustrate the proof of Theorem 3.3, in par-
ticular Lemma 5.5 and Theorem 5.6, with one of the simplest interesting examples. Let G = S5

and N = A5, let K/k be a normal extension with Galois group S5, and assume that ζK(s)/ζKA5 (s)
is non-vanishing in some region Ω ⊆ C. Apart from the trivial character, S5 also admits the sign
character, which we denote χsgn, whose kernel is equal to A5. Every other irreducible complex
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representation of S5 is faithful. We denote these ρ4, ρ4 ⊗ χsgn, ρ5, ρ5 ⊗ χsgn, and ρ6, where the
subscript indicates the dimension of the representation; for the purposes of this discussion, the
choice of which 4-dimensional representation we denote ρ4 and which we denote ρ4⊗χsgn is neither
important nor illuminating, nor is the choice of ρ5 and ρ5 ⊗ χsgn. Theorem 3.3 asserts that the
L-functions attached to these five faithful representations should be holomorphic and non-vanishing
in Ω.

For L(s, ρ6), this follows from Lemma 5.4 since ρ6 is its own twist by χsgn and is therefore
induced from an irreducible representation of A5. In general, a representation is induced from A5

if and only if it is its own twist by χsgn, and the A5-representation is orthogonal to the trivial
character if and only if the associated L-function is holomorphic at s = 1. Thus, for the other
faithful representations, it only follows from Lemma 5.4 that the products L(s, ρ4)L(s, ρ4 ⊗ χsgn)
and L(s, ρ5)L(s, ρ5 ⊗ χsgn) are holomorphic and non-vanishing in Ω.

Let now χC6 be either primitive character of the cyclic subgroup C6 := 〈(123)(45)〉 ⊆ S5. The
kernel of χC6 is trivial, but C6 ∩A5 is not, so L(s, χC6) is subject to Lemma 5.5. Indeed, the proof
of Lemma 5.5 in this case amounts to observing that the character χC6⊗χsgn = χ4

C6
is another non-

trivial character of C6 whose kernel does not contain C6∩A5. The product L(s, χC6)L(s, χC6⊗χsgn)
is then induced from a representation of A5 that must be orthogonal to the trivial representation
of A5 since the L-function does not have a pole at s = 1. It follows from Lemma 5.4 that this
product is holomorphic and non-vanishing in Ω, and since each factor is entire, the same holds for
both L(s, χC6) and L(s, χC6 ⊗ χsgn).

By expressing the induction of χC6 in terms of the irreducible representations of S5, we now
compute that

L(s, χC6) = L(s, ρ4)L(s, ρ5)L(s, ρ5 ⊗ χsgn)L(s, ρ6).

Observe that L(s, ρ4) may therefore be expressed as a quotient of functions that are holomorphic and
non-vanishing in Ω, so it must be holomorphic and non-vanishing as well. By instead considering
L(s, χC6 ⊗ χsgn), we similarly find that L(s, ρ4 ⊗ χsgn) is holomorphic and non-vanishing in Ω.

To show that L(s, ρ5) and L(s, ρ5⊗χsgn) are holomorphic and non-vanishing in Ω, it is necessary
to work with non-abelian subgroups of S5, since a computation reveals that the induction of char-
acters from other abelian subgroups gives at most the same information as χC6 above. Thus, we
consider the 2-Sylow subgroup D4 ⊆ S5. The sign character restricts to a non-trivial character of
D4, but there are two other quadratic characters of D4 that are twists of each other by χsgn, thus
witnessing again the proof of Lemma 5.5. Let χD4 denote one of these characters. Then L(s, χD4)
is holomorphic and non-vanishing in Ω, and we compute

L(s, χD4) = L(s, ρ4)L(s, ρ5)L(s, ρ6).

From the above discussion, both L(s, ρ4) and L(s, ρ6) are holomorphic and non-vanishing in Ω, so
it follows that L(s, ρ5) must be too. Finally, working instead with L(s, χD4 ⊗ χsgn), we conclude
that L(s, ρ5 ⊗ χsgn) is holomorphic and non-vanishing in Ω as well.

In general, an analysis of the proof of Theorem 5.6 shows that it always suffices to consider
characters of abelian subgroups and of subgroups of p-Sylow subgroups for p | [G : N ]. Unlike the
above example, however, the proof of Theorem 5.6 proceeds indirectly via class functions to avoid
needing a careful understanding of the character theory of G and its subgroups. We leave open
the questions of whether there is a more direct proof of Theorem 5.6, whether Hypothesis T(G,N)
holds in general, and whether there is an explicit description of a sufficient set of characters.

6. The zero density estimate

We now turn to establishing the main zero density estimate, from which Theorem 3.1 will ul-
timately follow. Let k be a number field, let G be a finite group, and let N E G be a normal
subgroup. Recall the definitions of FGk and FGk (Q).
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Given K ∈ FGk , define

NK/KN (σ, T ) := #
{
β + iγ : β ≥ σ, |γ| ≤ T, ζK(β + iγ)

ζKN (β + iγ)
= 0
}
.

Recall that

mG,N
k (Q) = max

K1∈FGk (Q)
#{K2 ∈ FGk (Q) : K1 ∩K2 6= KN

1 ∩KN
2 }.

We will prove the following zero density estimate.

Theorem 6.1. Let 0 ≤ σ ≤ 1, Q ≥ 1, T ≥ 2, and ε > 0. There exists a constant CG > 0,
depending at most on G, such that∑

K∈FGk (Q)

NK/KN (σ, T )�|G|,[k:Q],ε m
G,N
k (Q)(QT |G|[k:Q])(8+ε)|G|(1−σ)(logQT )CG[k:Q].

6.1. Tensor products of certain Artin representations. For future convenience, given K ∈
FGk , let ψK denote the character of G given by ψK := RegG − IndGN1N , where RegG denotes the
character of the regular representation of G. Thus,

L(s, ψK) = ζK(s)/ζKN (s)

for any K ∈ FGk .

Lemma 6.2. Let G1 and G2 be finite groups. Suppose that ψ1 and ψ2 are characters of G1 and
G2, respectively, that are positive rational linear combinations of characters induced from non-trivial
one-dimensional representations of cyclic subgroups of G1 and G2.

Then the character ψ1ψ2 of the direct product G1 ×G2 is a positive rational linear combination
of characters induced from non-trivial one-dimensional representations of subgroups of G1 ×G2.

Proof. If χ1 and χ2 are non-trivial characters of subgroups H1 ⊆ G1 and H2 ⊆ G2, then χ1χ2 is
a character of H1 ×H2, and (IndG1

H1
χ1)(IndG2

H2
χ2) = IndG1×G2

H1×H2
χ1χ2, where the equality is taken as

characters of G1 ×G2. The result follows. �

Lemma 6.3. Let K1 and K2 be distinct normal extensions of k with Galois group G. If K1∩K2 =
KN

1 ∩KN
2 then the Artin L-function

L(s, ψK1 ⊗ ψK2)

is entire, qψK1
⊗ψK2

divides D
[K2:k]
K1/k

D
[K1:k]
K2/k

, and Nk/QqψK1
⊗ψK2

divides D
[K2:k]
K1

D
[K1:k]
K2

D
−[K1:k][K2:k]
k .

Proof. Let F = K1 ∩ K2. By assumption, both KN
1 and KN

2 contain F , and we may regard the
quotients ζK1(s)/ζKN

1
(s) and ζK2(s)/ζKN

2
(s) as L-functions over F , say

ζK1(s)

ζKN
1

(s)
=: L(s, ψK1/F ) and

ζK2(s)

ζKN
2

(s)
=: L(s, ψK2/F ).

By Lemma 5.1, the characters ψK1/F and ψK2/F are non-negative linear combinations of characters
induced from nontrivial one-dimensional representations. Moreover, we have Gal(K1K2/F ) '
Gal(K1/F ) × Gal(K2/F ), so it follows from Lemma 6.2 that the same holds for the character
ψK1/FψK2/F . In particular, the L-function

(6.1) L(s, ψK1/F ⊗ ψK2/F ) =
ζK1K2(s)ζKN

1 KN
2

(s)

ζK1KN
2

(s)ζKN
1 K2

(s)
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is entire. Next, if we set GF = Gal(K1K2/F ) and Gk = Gal(K1K2/k), then the characters ψK1

and ψK2 of Gk are induced by the characters ψK1/F and ψK2/F of GF . It follows that

ψK1ψK2 =
(

IndGkGFψK1/F

)(
IndGkGFψK2/F

)
= IndGkGF

(
ψK1/F · ResGkGF IndGkGFψK2/F

)
=

∑
σ∈Gk/GF

IndGkGFψK1/Fψ
σ
K2/F

,

where ψσK2/F
is the character conjugate to ψK2/F via σ. However, since K2/k is Galois and the

character ψK2/F is valued in Z, ψσK2/F
= ψK2/F for every σ ∈ Gk/GF . Thus, we conclude that

ψK1ψK2 = [F : k]IndGkGFψK1/FψK2/F and L(s, ψK1 ⊗ ψK2) = L(s, ψK1/F ⊗ ψK2/F )[F :k]. This shows
that it is entire.

To bound the conductor, we rewrite

L(s, ψK1/F ⊗ ψK2/F ) =
ζK1K2(s)/ζK1KN

2
(s)

ζKN
1 K2

(s)/ζKN
1 KN

2
(s)

.

Both the numerator and denominator are entire, by the Aramata–Brauer theorem. Since ψK1/FψK2/F

is a character of GF , it follows that the conductor of L(s, ψK1/F⊗ψK2/F ) divides that of the numera-
tor, which in turn divides DK1K2/F , the relative discriminant of the compositum K1K2/F . We have

DK1K2/F | D
[K2:F ]
K1/F

D
[K1:F ]
K2/F

, so the result follows by the conductor-discriminant formula and taking

norms to k. Additionally taking norms to Q gives the result on the absolute discriminants. �

6.2. Dirichlet series for completely multiplicative functions. Given an n-dimensional Artin
L-function L(s, ρ) over k and a parameter z depending at most on n, we introduce the completely
multiplicative Artin L-function

(6.2) Lz(s, ρ) :=
∏

Np>z

(1− λρ(p)Np−s)−1 =
∑
n

aρ(n)

Nns
,

where z > 0 is a parameter that we will choose to depend at most on n. By construction, aρ(n) is
completely multiplicative and satisfies aρ(p) = λρ(p) for Np > z while aρ(p) = 0 for Np ≤ z.

Lemma 6.4. Let ρ be an n-dimensional Artin representation over k whose L-function L(s, ρ) is
entire, and let Lz(s, ρ) be as in (6.2). If z is sufficiently large with respect to n, then there exists
an Euler product

Hz(s, ρ) =
∏
p

Hp(s, ρ)

such that if Re(s) > 1
2 , then:

(1) Hz(s, ρ) converges uniformly and absolutely,
(2) Lz(s, ρ) = Hz(s, ρ)L(s, ρ),
(3) Hz(s, ρ) is non-vanishing, and
(4) there exists a constant B = B(n) > 0 such that Hz(s, ρ)�n (Re(s)− 1

2)−Bn.

Proof. The claimed identity for Lz(s, ρ) holds for Re(s) > 1 once we define

Hp(s, ρ) =

{
Lp(s,ρ)−1

1−λρ(p)Np−s if Np > z,

Lp(s, ρ)−1 otherwise.

Because L(s, ρ) is assumed to be an entire Artin L-function and z depends at most on n, it follows
that ∏

Np≤z
|Hp(s, ρ)| �n 1
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for Re(s) > 1
2 . Since each αj,ρ(p) has modulus at most 1, it follows that if Np ≤ z, then Hp(s, ρ)

has no zero in the region Re(s) > 1
2 .

When Np > z, a tedious calculation similar to that in the proof of [19, Proposition 2] shows that
there exists a degree n− 2 polynomial f whose coefficients depend only on the αj,ρ(p) such that

Hp(s, ρ) = 1 +
Np−2sf(Np−s)

1− λρ(p)Np−s
.

If z ≥ 4n2, then for Np > z and Re(s) > 1
2 , we have |1 − λρ(p)Np−s| ≥ 1

2 . Since each αj,ρ(p) has

modulus at most one, it follows that |f(Np−s)| �n 1 when Re(s) > 1
2 . Therefore,

Hp(s, ρ) = 1 +On(Np−2Re(s)).

If z is sufficiently large with respect to n, then we ensure that Hp(s, ρ) 6= 0 for Re(s) > 1
2 .

Furthermore, in this region, there exists a constant A(n) > 0 depending at most on n such that

|Hp(s, ρ)| ≤ (1 + Np−2Re(s))A(n).

The desired result now follows from the bound∏
Np>z

|Hp(s, ρ)| �n ζ(2Re(s))A(n), Re(s) >
1

2
.

�

Let K1,K2 ∈ FGk , and let N be a normal subgroup of G. We write

(6.3) Lp(s, ψK) =
d∏
j=1

(
1−

αj,ψK (p)

Nps

)−1
=: 1 +

∞∑
j=1

λψK (pj)

Npjs
,

where

d := |G| − |G|/|N |.
We define λψK (n) by

L(s, ψK) =
∏
p

Lp(s, ψK) =:
∑
n

λψK (n)

Nns
.

In particular, λψK (n) is a multiplicative function.

Suppose that K1 ∩ K2 = KN
1 ∩ KN

2 . Since ψK1 ⊗ ψK2 is an Artin representation, there exist
complex numbers αj1,j2,K1×K2(p) with modulus at most 1 such that

Lp(s, ψK1 ⊗ ψK2) =

d∏
j1=1

d∏
j2=1

(
1−

αj1,j2,K1×K2(p)

Nps

)−1
=: 1 +

∞∑
j=1

λψK1
⊗ψK2

(pj)

Npjs
.

It follows from our proof of Lemma 6.3 that if p - DK1/kDK2/k, then

(6.4) {αj1,j2,K1×K2(p) : 1 ≤ j1, j2 ≤ d} = {αj1,K1(p)αj2,K2(p) : 1 ≤ j1, j2 ≤ d}.
As with L(s, ψK), we write

(6.5) L(s, ψK1 ⊗ ψK2) =
∏
p

Lp(s, ψK1 ⊗ ψK2) =:
∑
n

λψK1
⊗ψK2

(n)

Nns
.

Parallel with Lemma 6.4, we provide a convenient factorization of L(s, ψK1⊗ψK2) whenK1∩K2 =
KN

1 ∩KN
2 . We define

(6.6) LRSz (s, ψK1 ⊗ ψK2) :=
∑
n

aψK1
(n)aψK2

(n)

Nns
.
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Recall that the definitions of the completely multiplicative functions aψKj (n) depend on the choice

of z in Lemma 6.4, which we assume is sufficiently large and depending at most on d.

Lemma 6.5. Suppose that K1∩K2 = KN
1 ∩KN

2 . Let z in Lemma 6.4 be sufficiently large (depending
at most on d). There exists an Euler product

HRS
z (s, ψK1 ⊗ ψK2) =

∏
p

HRS
p (s, ψK1 ⊗ ψK2)

such that if Re(s) > 1
2 , then:

(1) HRS
z (s, ψK1 ⊗ ψK2) converges uniformly and absolutely,

(2) LRSz (s, ψK1 ⊗ ψK2) = HRS
z (s, ψK1 ⊗ ψK2)L(s, ψK1 ⊗ ψK2), and

(3) there exists a constant B′d > 0, depending at most on d, such that

|HRS
z (s, ψK1 ⊗ ψK2)| �d (DK1DK2)ε/2(Re(s)− 1

2)−B
′
d .

Proof. This is similar to Lemma 6.4. Observe by complete multiplicativity that

LRSz (s, ψK1 ⊗ ψK2) =
∏

Np>z

(1− λψK1
(p)λψK2

(p)Np−s)−1.

We thus compute

HRS
p (s, ψK1 ⊗ ψK2) =


Lp(s, ψK1 ⊗ ψK2)−1

1− λψK1
(p)λψK2

(p)Np−s
if Np > z,

Lp(s, ψK1 ⊗ ψK2)−1 otherwise.

Because K1 ∩K2 = KN
1 ∩KN

2 by hypothesis, L(s, ψK1 ⊗ ψK2) is an entire Artin L-function. Since
z depends at most on d, it follows that∏

Np≤z
|HRS

p (s, ψK1 ⊗ ψK2)| �d 1, Re(s) >
1

2
.

We proceed as in [19, Proposition 2] using Lemma 6.3. For all ε > 0, we have∣∣∣ ∏
Np>z

p ramified

HRS
p (s, ψK1 ⊗ ψK2)

∣∣∣�d,ε (DK1DK2)ε/2, Re(s) >
1

2
.

For the other Euler factors, there exists a degree d2 − 2 polynomial f whose coefficients depend
only on the αj1,j2,ψK1

⊗ψK2
(p) such that

HRS
p (s, ψK1 ⊗ ψK2) = 1 +

Np−2sf(Np−s)

1− λρ(p)Np−s
.

If z ≥ 4n4, then |1 − λρ(p)Np−s| ≥ 1
2 for Np > z and Re(s) > 1

2 . Since αj1,j2,ψK1
⊗ψK2

(p) has

modulus at most one, it follows that |f(Np−s)| �d 1 when Re(s) > 1
2 . Therefore,

HRS
p (s, ψK1 ⊗ ψK2) = 1 +Od(Np−2Re(s)), Re(s) >

1

2
.

Thus, there exists a constant B′d > 0 depending at most on d such that

|HRS
p (s, ψK1 ⊗ ψK2)| ≤ (1 + Np−2Re(s))B

′
d .

The desired result now follows from the bound∏
Np>z

|HRS
p (s, ψK1 ⊗ ψK2)| ≤ ζ(2Re(s))B

′
d .

for Re(s) > 1
2 . �
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6.3. Partial sums. Let φ(t) be a smooth test function supported in a compact subset of [−2, 2],
and suppose that φ(t) = 1 for t ∈ [0, 1] and φ(t) ∈ [0, 1) otherwise. The Laplace transform of φ is

(6.7) φ̂(s) =

∫
R
φ(y)esydy.

By construction, φ̂(s) is an entire function of s, and upon integrating by parts, we find for any
integer m ≥ 0 that

(6.8) φ̂(s)�φ,m e2|Re(s)||s|−m.

Let T ≥ 1. By Fourier inversion, for any x > 0 and any c ∈ R, we have the identity

φ(T log x) =
1

2πiT

∫ c+i∞

c−i∞
φ̂(s/T )x−sds.

Lemma 6.6. Let T, x ≥ 1 and ε > 0. If DK1 , DK2 ≤ Q, then∣∣∣∑
n

aψK1
(n)aψK2

(n)φ
(
T log

Nn

x

)∣∣∣
�|G|,[k:Q],φ,ε

{√
x(log x)B

′
dQ|G|/2+εT d

2[k:Q] if K1 ∩K2 = KN
1 ∩KN

2 ,
1
T x(log x)d

2[k:Q]−1 +
√
xT d

2[k:Q] if K1 ∩K2 6= KN
1 ∩KN

2 .

Proof. Let τm(n) be the n-th Dirichlet coefficient of ζ(s)m. By the definition of aψK (n) and the
fact that |αj,ψK (p)| ≤ 1, the sum we want to estimate is bounded in modulus by∑

n

τd2[k:Q](n)φ
(
T log

n

x

)
=

1

2πiT

∫ 3+i∞

3−i∞
ζ(s)d

2[k:Q]φ̂(s/T )xsds

=
1

T
Res
s=1

ζ(s)d
2[k:Q]φ̂(s/T )xs +

1

2πiT

∫ 1
2

+i∞

1
2
−i∞

ζ(s)d
2[k:Q]φ̂(s/T )xsds

=
x

T
Pd2[k:Q](log x) +Od,[k:Q](

√
xT d

2[k:Q]).

Here, Pd2[k:Q] is a polynomial of degree d2[k : Q] − 1 whose coefficients depend the Laurent series

expansion of ζ(s) centered at s = 1 and φ(j)(1/T ) for 0 ≤ j ≤ d2[k : Q]− 1. Since T ≥ 1, it follows

from (6.8) that Pd2[k:Q](log x)�d,[k:Q] (log x)d
2[k:Q]−1. This result holds for all K1,K2 ∈ FGk (Q); in

particular, the result when K1 ∩K2 6= KN
1 ∩KN

2 follows.
Now, assume that K1 ∩ K2 = KN

1 ∩ KN
2 . Note that in view of the preceding analysis, our

proposed bound is trivial if x ≤ Q|G|/2+εT d
2[k:Q]. Thus, we may assume that x > Q|G|/2+εT d

2[k:Q].
By (6.6) and Lemma 6.5, the sum we want to estimate equals∣∣∣ 1

2πiT

∫ 1/2+ 1
log x

+i∞

1/2+ 1
log x
−i∞

HRS
z (s, ψK1 ⊗ ψK2)L(s, ψK1 ⊗ ψK2)φ̂(s/T )xsds

∣∣∣.
Thus, by Lemma 4.1 and (6.8), the integral is

�d,[k:Q],φ

√
x

T
(log x)B

′
dQ

|G|
2

+ε

∫ ∞
−∞

(2 + |t|)
d2[k:Q]

4

∣∣∣φ̂( 1

T

(1

2
+

1

log x
+ it

))∣∣∣dt
�d,[k:Q],φ

√
x

T
(log x)B

′
dQ

|G|
2

+ε

∫ ∞
−∞

(2 + |t|)
d2[k:Q]

4 min
{

1,
T d

2[k:Q]+2

(2 + |t|)d2[k:Q]+2

}
dt,

which is bounded as claimed. �
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6.4. A large sieve inequality for Artin representations. We use the results from the preceding
subsections to prove a large sieve inequality for the coefficients aψK (n) of Lz(s, ψK). We then apply
our large sieve to bound the mean value of a certain Dirichlet polynomial which naturally arises in
Montgomery’s method of detecting zeros of L-functions [39].

Recall that FGk is a set of distinct number fields K which are Galois extensions of k, each with

Galois group isomorphic to a fixed group G, FGk (Q) = {K ∈ F : DK ≤ Q}, and

mG,N
k (Q) := max

K1∈FGk (Q)
#{K2 ∈ FGk (Q) : K1 ∩K2 6= KN

1 ∩KN
2 }.

Let b : Ok → C and β : FGk (Q)→ C be functions with `2 norms ‖b‖2 and ‖β‖2 defined by

‖b‖22 =
∑

x<Nn≤xe1/T
|b(n)|2, ‖β‖22 =

∑
K∈FGk (Q)

|β(K)|2.

Theorem 6.7. Let Q,T, x ≥ 1 and ε > 0. Define

C(Q,T, x) := sup
b

‖b‖2 6=0

∑
K∈FGk (Q)

∣∣∣ ∑
Nn∈(x,xe1/T ]

aψK (n)b(n)
∣∣∣2/ ∑

Nn∈(x,xe1/T ]

|b(n)|2

There exists a constant B′′G > 0, depending at most on |G|, such that

C(Q,T, x)�|G|,[k:Q] (log x)B
′′
G[k:Q]

(
mG,N
k (Q)

x

T
+
√
xQ|G|+εT |G|

2[k:Q]
)
.

Proof. By the duality principle of finite-dimensional Hilbert spaces, C(Q,T, x) equals the supremum
over all functions β : FGk (Q)→ C such that ‖β‖2 = 1 of

(6.9)
∑

Nn∈(x,xe1/T ]

∣∣∣ ∑
K∈FGk (Q)

aψK (n)β(K)
∣∣∣2.

Fix a smooth function φ supported on a compact subset of [−2, 2], such that φ(T log t
x) is a pointwise

upper bound for the indicator function of the interval (x, xe1/T ]. Then (6.9) is

(6.10) ≤
∑
n

∣∣∣ ∑
K∈FGk (Q)

aψK (n)β(K)
∣∣∣2φ(T log

Nn

x

)
.

Expanding the square and swapping the order of summation, we find that (6.10) equals∑
K1,K2∈FGk (Q)

β(K1)β(K2)
∑
n

aψK1
(n)aψK2

(n)φ
(
T log

Nn

x

)
Since ψK is real-valued, we have aψK (n) ∈ R. Since |β(K1)β(K2)| ≤ 1

2(|β(K1)|2 + |β(K2)|2) by the
inequality of arithmetic and geometric means and ‖β‖2 = 1, the above display is

≤ max
K1∈FGk (Q)

∑
K2∈FGk (Q)

∣∣∣∑
n

aψK1
(n)aψK2

(n)φ
(
T log

Nn

x

)∣∣∣.
By Lemma 6.6, the definition of mG,N

k (Q), and the fact that d ≤ |G| − 1, there exists a constant
B′′G > 0 (depending at most on |G|) such that

�|G|,[k:Q],φ,ε (log x)B
′′
G[k:Q]

(
mG,N
k (Q)

x

T
φ̂(1/T ) +

√
xQ|G|/2+εT |G|

2[k:Q]#FGk (Q)
)
.

Once we fix φ, we have that φ̂(1/T )� 1 by (6.7). Since Schmidt [46] proved that

#FGk (Q)�|G|,[k:Q] (Q/Dk)
(|G|+2)/4

and |G| ≥ 2, the theorem follows. �
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Let µk(n) be the n-th Dirichlet coefficient of ζk(s)
−1. Then µk(n) = 0 unless n is squarefree, in

which case µk(n) = (−1)#{p|n}.

Corollary 6.8. Let Q,T ≥ 1. There exists a constant B′′′G > 0, depending at most on |G|, such

that if X := Q2(|G|+ε)T 2|G|2[k:Q] and log Y �|G|,[k:Q] logX, then∑
K∈FGk (Q)

∫ T

−T

∣∣∣ ∑
X<Nn≤Xlog Y

aψK (n)µk(n)

Nn
1+ 1

log Y
+iv

∣∣∣2dv �|G|,[k:Q],ε m
G,N
k (Q)(logX)B

′′′
G [k:Q],

∑
K∈FGk (Q)

∫ T

−T

∣∣∣ ∑
Nn≤X

aψK (n)µk(n)

Nn
1
2

+ 1
log Y

+iv

∣∣∣2dv �|G|,[k:Q],ε m
G,N
k (Q)X(logX)B

′′′
G [k:Q].

Proof. We prove the first bound; the second is proved identically. A formal generalization of
a result of Gallagher [27, Theorem 1] to number fields tells us that if c(n) is a complex-valued
function supported on the integral ideals of F such that

∑
n |c(n)| <∞, then∫ T

−T

∣∣∣∑
n

c(n)Nn−it
∣∣∣2dt� T 2

∫ ∞
0

∣∣∣ ∑
Nn∈(x,xe1/T ]

c(n)
∣∣∣2dx
x
.

Let X = Q2|G|T 2|G|2[k:Q], log Y �|G|,[k:Q] logX, and

b(n) =

{
µk(n)Nn

−1− 1
log Y if Nn ∈ [X,X log Y ],

0 otherwise.

If c(n) = aψK (n)b(n), then

(6.11)
∑

K∈FG
k (Q)

∫ T

−T

∣∣∣ ∑
Nn∈(X,Xlog Y ]

aψK
(n)µk(n)

Nn1+
1

log Y +iv

∣∣∣2dv � T 2

∫ ∞
0

∑
K∈FG

k (Q)

∣∣∣ ∑
Nn∈(x,xe1/T ]

aψK
(n)b(n)

∣∣∣2 dx
x
.

We apply Theorem 6.7 and bound the above display by

�|G|,[k:Q],ε m
G,N
k (Q)

∑
n

|b(n)|2Nn
(

(log Nn)B
′′
G[k:Q] +

X

Nn1/2

)
.

Since log Y � logX, Lemma 2.4 of [56] implies that (6.11) is bounded by mG,N
k (Q) times

(logX)B
′′
G[k:Q]

∑
Nn∈[X,Xlog Y ]

1

Nn
�|G|,[k:Q] (logX)B

′′
G[k:Q]+1 Res

s=1
ζk(s).

The residue is �[k:Q] (logDk)
[k:Q]−1 [35, Theorem 1], and the result follows. �

6.5. Proof of Theorem 6.1. Let K ∈ FGk (Q). The bound

#{β + iγ : β ≥ 0, |γ − t| ≤ 1, L(β + iγ, ψK) = 0} �|G|,[k:Q] logQ+ log(|t|+ 2)

holds for all t ∈ R by proceeding as in [30, Proposition 5.7]. Given σ ∈ (1
2 , 1), we decompose the

rectangle [σ, 1]× [−T, T ] into disjoint boxes of the shape [σ, 1]× [u, u+ 2(logX)2], where X is as in
Corollary 6.8. Each of these boxes contains �|G|,[k:Q] (logQT )3 zeros. Writing ηψK for the number
of smaller boxes which contain at least one zero of L(s, ψK), then

NK/KN (σ, T )�|G|,[k:Q] (logQT )3ηψK .

Since L(s, ψK) is entire, it follows from Lemma 6.4 if γ ∈ R and β > 1
2 , then β + iγ is a zero of

L(s, ψK) if and only if it is a zero of Lz(s, ψK). Thus, we will detect the zeros of Lz(s, ψK). Since
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the coefficients aψK (n) are completely multiplicative, the n-th Dirichlet coefficient of Lz(s, ψK)−1

is aψK (n)µk(n). With X as in Corollary 6.8, we define

Y := X
2

3−2σ , MX(s, ψK) :=
∑

Nn≤X

aψK (n)µk(n)

Nns
.

A straightforward computation shows that if β + iγ is a nontrivial zero of L(s, ψK) with β ≥ σ ≥
1
2 + (log Y )−1, then

e−1/Y =
1

2πi

∫ 1−β+ 1
log Y

+i∞

1−β+ 1
log Y

−i∞
(1− Lz(β + iγ + w,ψK)MX(β + iγ + w,ψK))Γ(w)Y wdw

+
1

2πi

∫ 1
2
−β+ 1

log Y
+i∞

1
2
−β+ 1

log Y
−i∞

Lz(β + iγ + w,ψK)MX(β + iγ + w,ψK)Γ(w)Y wdw.

If such a zero exists, then at least one of the two integrals above must be large since e−1/Y =
1 +O(Y −1). As in Montgomery’s method [39] for Dirichlet characters, one uses Stirling’s formula
to show that

ηψK �|G|,[k:Q] Y
2(1−σ)(log Y )2

∫ T

−T
|1− Lz(1 + 1

log Y + iv, ψK)MX(1 + 1
log Y + iv, ψK)|2dv

+ Y
1
2
−σ
∫ T

−T
|Lz(1

2 + 1
log Y + iv, ψK)MX(1

2 + 1
log Y + iv, ψK)|dv

�|G|,[k:Q] Y
2(1−σ)(log Y )2

∫ T

−T
|1− Lz(1 + 1

log Y + iv, ψK)MX(1 + 1
log Y + iv, ψK)|2dv

+ Y
1
2
−σ
∫ T

−T
|Lz(1

2 + 1
log Y + iv, ψK)|2dv + Y

1
2
−σ
∫ T

−T
|MX(1

2 + 1
log Y + iv, ψK)|2dv.

The second bound follows from the inequality of arithmetic and geometric means.
Lemmas 4.1 and 6.4 imply that∫ T

−T
|Lz(1

2 + 1
log Y + iv, ψK)|2dv �|G|,[k:Q] Q

1/2T 1+d[k:Q]/2(log Y )2Ad .

Furthermore, by Lemmas 4.1 and 6.4 again, if we temporarily write L = Lz(1 + 1
log Y + iv, ψK) and

MX = MX(1 + 1
log Y + iv, ψK), then we have

|1− LMX |2 = |L|2|L−1 −MX |2

≤ |L|2(|L−1 −MXlog Y |+ |MXlog Y −MX |)2

�|G|,[k:Q] (logQT )d[k:Q](|L−1 −MXlog Y |2 + |MXlog Y −MX |2).

A straightforward partial summation shows that |L−1 −MXlog Y |2 �|G|,[k:Q] 1, and thus

NK/KN (σ, T )�|G|,[k:Q]

(
Y

1
2
−σ
[
Q1/2T 1+|G|[k:Q]/2(logQT )2Ad +

∫ T

−T

∣∣∣ ∑
Nn≤X

aψK (n)µk(n)

Nn
1
2

+ 1
log Y

+iv

∣∣∣2dv]
+ Y 2(1−σ)(logQT )|G|[k:Q]+2

[
1 +

∫ T

−T

∣∣∣ ∑
X<Nn≤Xlog Y

aψK (n)µk(n)

Nn
1+ 1

log Y
+iv

∣∣∣2])(logQT )3.

Finally, we sum over K ∈ FGk (Q) and apply Corollary 6.8. By the Schmidt bound #FGk (Q)�|G|,[k:Q]

Q(|G|+2)/4 and our choices of X and Y , we find that there exists a constant CG > 0, depending at
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most on G, such that∑
K∈FGk (Q)

NK/KN (σ, T )�[k:Q],|G|,ε m
G,N
k (Q)(logQT )CG[k:Q](Y

1
2
−σX + Y 2(1−σ)).

which is bounded as desired when σ > 1
2 . For σ < 1

2 , our results are trivial in view of the generalized
Riemann–von Mangoldt asymptotic for the count of all zeros up to height T (see [30, Theorem 5.8]).

7. Proofs of Theorems 3.1 and 3.7

We begin by recalling the zero-free region of Lagarias and Odlyzko [33, Section 8]: ζK(s) does
not vanish in the region

(7.1) Re(s) ≥ 1− c8

log(DK(|Im(s)|+ 3)[K:Q])
,

apart from the possibility of a single real simple zero. Since ζK(s)/ζKN (s) is entire, it follows that
ζK(s)/ζKN (s) 6= 0 in the region (7.1), apart from the possibility of a single real simple zero.

We will use Theorem 6.1 to prove Theorem 3.1, showing that for all K ∈ FGk (Q) apart from a
small exceptional subset, the ratio of Dedekind zeta functions ζK(s)/ζKN (s) has a much stronger
zero-free region than (7.1). In particular, since we may assume that CG ≥ 6 in Theorem 6.1, we
may choose ε = 1

3 −
5

3CG[k:Q] in Theorem 6.1, which leads to

(7.2)
∑

K∈FGk (Q)

NK/KN (σ, T )�|G|,[k:Q] m
G,N
k (Q)(QT |G|[k:Q])

( 25
3
− 5

3CG[k:Q]
)|G|(1−σ)

(logQT )CG[k:Q].

Proof of Theorem 3.1. Let 0 < ε < 1, and define δ := ε/(20|G|). For each integer 2 ≤ j ≤
Qε/(6CG[k:Q]) + 1, we iteratively apply (7.2) with

T = Tj = ej − 3, σ = σj := 1− 2δ logQ

logQ+ |G|[k : Q] log(Tj + 3)
,

discarding O|G|,[k:Q],ε(m
G,N
k (Q)Q

2( 25
3
− 5

3CG[k:Q]
)δ|G|+ ε

6 ) exceptions at most Q
ε

6CG[k:Q] times. This dyad-

ically builds a zero-free region for all except O|G|,[k:Q],ε(m
G,N
k (Q)Qε) of the fields K ∈ FGk (Q). Thus,

for all except O|G|,[k:Q],ε(m
G,N
k (Q)Qε) fields K ∈ FGk (Q), the ratio ζK(s)/ζKN (s) is holomorphic and

non-vanishing in the region

Re(s) ≥ 1− 2δ logQ

logQ+ |G|[k : Q] log(|Im(s)|+ 3)
, |Im(s)| ≤ exp(Qε/(6CG[k:Q])).

Since DK ≤ Q, we may replace the above region with the more restrictive region

(7.3) Re(s) ≥ 1− 2δ logDK

logDK + |G|[k : Q] log(|Im(s)|+ 3)
, |Im(s)| ≤ exp(D

ε/(6CG[k:Q])
K ).

For |Im(s)| > exp(D
ε/(6CG[k:Q])
K ), we have the zero-free region (7.1). The theorem follows once we

combine (7.3) with (7.1). �

Proposition 7.1. Let K/k be a Galois extension of number fields. Assume χ is a character of
G = Gal(K/k) which is the induction of a non-trivial 1-dimensional cyclic character of a subgroup
of G. Let 0 < ε < 1, and let the region ΩK(ε) be given by (3.5). If DK is sufficiently large with
respect to [k : Q], |G|, and ε, and L(s, χ) does not vanish in the region ΩK(ε), then there exists an
effectively computable constant c1 = c1(|G|, [k : Q], ε) > 0 such that∣∣∣ ∑

Np≤x
χ(p)

∣∣∣�|G|,[k:Q],ε x exp(−c1

√
log x), x ≥ (logDK)81|G|/ε.
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Proof of Theorem 3.7 assuming Proposition 7.1. Since we have proved Theorems 3.1 and 3.3, it
suffices for us to prove (3.10) using Proposition 7.1. Suppose that ζK(s)/ζKN (s) is non-vanishing
in the region ΩK(ε) and that ρ is an irreducible Artin representation of K/k whose kernel does not
contain N . Assuming Conjecture 3.2, there exist rational constants cχ(ρ) such that

L(s, ρ) =
∏
H⊆G

∏
χ∈Irr(H)
dimχ=1

kerχ 6⊇H∩N

L(s, IndGHχ)cχ(ρ),

the inner summation running over 1-dimensional characters of subgroups H whose kernel does not
contain H ∩N . Note that cχ(ρ)�G 1 for each χ. Taking logarithmic derivatives, it follows for all
x ≥ 3 that

(7.4)
∑

Nn≤x
χρ(n)Λk(n) =

∑
H⊆G

∑
χ∈Irr(H)
dimχ=1

kerχ 6⊇H∩N

cχ(ρ)
∑

Nn≤x
(IndGHχ)(n)Λk(n),

where Λk(p
j) = log Np and Λk(n) = 0 otherwise. For each χ in the righthand sum, Lemma 5.5 im-

plies that L(s, IndGHχ) is non-vanishing in ΩK(ε). The desired result now follows by Proposition 7.1,
partial summation, and (7.4). �

To prove Proposition 7.1, we use the following smooth function to count prime ideals p with
Np ≤ x.

Lemma 7.2. For all x ≥ 3 and ∆ ∈ (0, 1/4), there exists a continuous real-variable function
f(t) = fx,∆(t) such that:

(1) 0 ≤ f(t) ≤ 1 for all t ∈ R, and f(t) ≡ 1 for 1
2 ≤ t ≤ 1.

(2) The support of f is contained in the interval [1
2 −

∆
log x , 1 + ∆

log x ].

(3) Its Laplace transform F (z) =
∫
R f(t)e−ztdt is entire and is given by

F (z) = e
−(1+ ∆

log x
)z ·
(1− e( 1

2
+ ∆

log x
)z

−z

)(1− e
∆z

2 log x

− ∆z
2 log x

)2
.

(4) Let s = σ + it, σ > 0, and t ∈ R. Then

|F (−s log x)| ≤ eσ∆xσ min
{

1,
1 + x−σ/2

|s| log x

( 4

∆|s|

)2}
.

Moreover, 1/2 < F (0) < 3/4 and

(7.5) F (− log x) =
x

log x
+O

(∆x+ x1/2

log x

)
.

(5) Let s = −1
2 + it with t ∈ R. Then

|F (−s log x)| ≤ 5x−1/4

log x

( 4

∆

)2
(1/4 + t2)−1.

Proof. This lemma and its proof can be found by taking ` = 2 in [53, Lemma 2.2]. �

Our next lemma uses the weight function constructed in Lemma 7.2 to establish a preliminary
form of the prime number theorem for L(s, χ). Define δ = ε/(20|G|). For convenience, we rewrite
the zero-free region (3.5) as

ΩK(ε) := {s ∈ C : Re(s) ≥ 1− ωK(|Im(s)|+ 3)},
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where for t ≥ 3 we define

(7.6) ωK(t) = ωK(t; ε) =

{
2δ logDK

logDK+[k:Q] log t if log 3 ≤ t ≤ Dε/(6CG[k:Q])
K ,

c8
logDK+|G|[k:Q] log t if log t > D

ε/(6CG[k:Q])
K

Lemma 7.3. Recall the notation and hypotheses of Proposition 7.1. Let ωK(t) = ωK(t; ε) be as in
(7.6), and define

ηK(x) = inf
t≥3

(ωK(t) log x+ log t).

If L(s, χ) does not vanish in the region ΩK(ε), then∣∣∣ ∑
Np≤x

χ(p)
∣∣∣�[K:Q]

x

log x
e−ηK(x)/8 log(eDK) +

x3/4

log x
, x ≥ max{3, (logDK)4}.

Proof. To start, we record a basic observation that will be often used:

(7.7) [K : Q]� logDK ≤ x1/4.

The first bound is Minkowski’s inequality; the second bound holds by assumption.
Select the weight function f( · ) = fx,∆( · ) from Lemma 7.2 for any x ≥ 3 and with

∆ = x−1/4 + min{1
8 , 8e

−ηK(x)/4}.
A calculation identical to that in [53, Lemma 2.3] shows that∑

Nn≤x
Λk(n)χ(n) =

∑
n

Λk(n)χ(n)f
( log Nn

log x

)
+O[K:Q](

√
x+ ∆x).

Since χ is the induction of a non-trivial 1-dimensional character, L(s, χ) is a Hecke L-function and
hence entire. Thus, by Mellin inversion, we have∑

Nn≤x
Λk(n)χ(n)

=
log x

2πi

∫ 2+i∞

2−i∞
−L

′

L
(s, χ)F (−s log x)ds+O[K:Q](

√
x+ ∆x)

= log x
∑
ρ

F (−ρ log x) +
log x

2πi

∫ − 1
2

+i∞

− 1
2
−i∞

−L
′

L
(s, χ)F (−s log x)ds+O[K:Q](

√
x+ ∆x),

where ρ ranges over the nontrivial zeros of L(s, χ). The standard bound

−L
′

L
(s, χ)�[K:Q] log(DK(|Im(s)|+ 3)), Re(s) = −1

2

and the lower bound ∆ ≥ x−1/4 imply via Lemma 7.2(5) that∑
n

Λk(n)χ(n) = log x
∑
ρ

F (−ρ log x) +O[K:Q](
√
x+ ∆x).

By Lemma 7.2(4), we have

log x
∑
|ρ|≤1/4

F (−ρ log x)� log x
∑
|ρ|≤1/4

x1/4 �[K:Q] x
1/4(log x) logDK �[K:Q]

√
x log x

by (7.7). For the zeros ρ = β + iγ of L(s, χ) with |ρ| ≥ 1/4, observe that our assumed zero-free
region for L(s, χ) implies that

x−(1−β)

(|γ|+ 3)
= e−((1−β) log x+log(|γ|+3)) ≤ e−ηK(x).
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by definition of ηK . Hence Lemma 7.2(4) and our choice of ∆ yields the estimate

(log x)|F (−ρ log x)| � xβ

(|γ|+ 3)
· ∆−2

(|γ|+ 3)2
� xe−ηK(x) · e

ηK(x)/2

(|γ|+ 3)2

for |ρ| ≥ 1/4. Thus, summing over all zeros ρ of L(s, χ), it follows that

log x
∑
ρ

|F (−ρ log x)| �[K:Q] xe
−ηK(x)/2

∑
ρ

1

(|γ|+ 3)2
+
√
x log x.

Since L(s, χ) is a Hecke L-function with C(χ) �[K:Q] DK , it follows by standard estimates for it
zeros [53, Lemma 2.5] and (7.7) that the above expression is

�[K:Q] xe
−ηK(x)/2

∞∑
T=1

∑
T−1≤|Im(ρ)|≤T

logDK + log(T + 3)

T 2
+
√
x log x

�[K:Q] xe
−ηK(x)/2 log(eDK) +

√
x log x.

By our choice of ∆ and (7.7), this implies that

(7.8)
∣∣∣ ∑

Nn≤x
Λk(n)χ(n)

∣∣∣�[K:Q] xe
−ηK(x)/4 log(eDK) + x3/4.

The contribution from the prime powers and ramified primes is O(
√
x + log(eDK)), so by partial

summation [53, Lemma 2.1 and Equation 5.3], it follows that∣∣∣ ∑
Np≤x

χ(p)
∣∣∣�[K:Q]

x

log x
sup√
x≤y≤x

(e−ηK(y)/4) log(eDK) +
x3/4

log x
+ log(eDK).

From the definition of ηK , one can see that ηK(y) is an increasing function of y and also ηK(x1/2) ≥
1
2ηK(x). Hence, as logDK ≤ x1/4, we conclude the desired result. �

Lemma 7.4. Recall the notation and hypotheses of Proposition 7.1. There exist effectively com-
putable constants c1 = c1(|G|, [k : Q], ε) > 0 and c12 = c12(|G|, [k : Q], ε) > 0 such that if DK ≥ c12

is sufficiently large with respect to |G|, [k : Q], and ε, and x ≥ (logDK)81|G|/ε, then

log(eDK)

log x
e−ηK(x)/8 �|G|,[k:Q],ε exp(−c1

√
log x).

Proof. For notational compactness, we introduce ε0 = ε/(6CG[k : Q]). By the definition of ηK(x)
and (7.6), we have that

ηK(x) ≥ min
{

inf
0≤u≤Dε0K

( ε(logDK) log x

10|G|(logDK + [k : Q]u)
+ u
)
, inf
u≥Dε0K

( c8 log x

logDK + |G|[k : Q]u
+ u
)}
.

Define

φ1(u, x) :=
ε(logDK) log x

10|G|(logDK + [k : Q]u)
+ u, φ2(u, x) :=

c8 log x

logDK + |G|[k : Q]u
+ u.

Notice that the global infimum of φ1(u, x) over u ∈ (−(logDK)/[k : Q],∞) is at

u = u1 :=

√
ε logDK

10|G|[k : Q]
log x− logDK

[k : Q]
.

Thus, the value of u ∈ [0, Dε0
K ] at which φ1(u, x) attains its infimum lies in {0, u1, D

ε0
K } ∩ [0, Dε0

K ].

Observe that u1 ≥ 0 if and only if x ≥ D(10|G|)/(ε[k:Q])
K , in which case φ1(u1, x) ≤ φ1(Dε0

K , x) because



36 ROBERT J. LEMKE OLIVER, JESSE THORNER, AND ASIF ZAMAN

u1 is the global minimum. For this range of x, we compute

φ1(u1, x) =

√
2ε logDK

5|G|[k : Q]
log x− logDK

[k : Q]
≥

√
ε logDK

10|G|[k : Q]
log x.

We also compute that φ1(0, x) ≥ φ1(Dε0 , x) if and only if

x ≥ D
10|G|
ε[k:Q]

K e
10|G|Dε0

K
ε ,

a range in which we already established that u1 ≥ 0. Therefore, since φ1(0, x) = ε
10|G| log x, we

conclude that

inf
0≤u≤Dε0K

φ1(u, x) ≥ min
{ ε

10|G|
log x,

√
ε logDK

10|G|[k : Q]
log x

}
.

Next, notice that the global minimum of φ2(u, x) over u ∈ (−(logDK)/[k : Q],∞) is at

u2 =

√
c8 log x

|G|[k : Q]
− logDK

|G|[k : Q]
.

Thus, φ2(u, x) attains its infimum over u ≥ Dε0
K at u = max{Dε0

K , u2}. It follows from a straight-
forward calculation that

inf
u≥Dε0K

φ2(u, x) ≥

√
c8 log x

|G|[k : Q]
+Dε0

K .

We conclude from the analysis for u ≤ Dε0
K and u ≥ Dε0

K that if DK ≥ c12, then

log(eDK)

log x
e−ηK(x)/8

≤ log(eDK)

log x
exp

(
− 1

8
min

{ε log x

10|G|
,

√
ε logDK

10|G|[k : Q]
log x,

√
c8 log x

|G|[k : Q]
+Dε0

K

})
.

The desired result follows once we ensure that x ≥ (logDK)81|G|/ε. �

Proof of Proposition 7.1. This follows from Lemmas 7.3 and 7.4 with the same constant c1. �

8. Application to prime degree extensions

In this section, we show how our results apply to the family of prime degree p extensions of a
number field k. The normal closures K/k of such fields have Galois groups G that are transitive
subgroups of the symmetric group Sp. The properties of such groups are well understood. For
example, they must be primitive permutation groups, and are thus subject to many of the results
in Dixon and Mortimer [14]. More than this, such groups are classified ; see Lemma 8.2 below.
However, as the properties of such groups are of vital importance to many of our applications, we
begin by providing a succinct but complete proof of the classical fact that such groups always have
a unique minimal normal subgroup, and that the fixed field KN of this normal subgroup is linearly
disjoint from the degree p extension that we started with.

Lemma 8.1. If G ⊆ Sp is a transitive subgroup, then G has a unique minimal nontrivial normal
subgroup N . Also, if H ⊆ G is the stabilizer of a point, then [H : H ∩N ] = [G : N ].

Proof. Since G is a transitive group of prime degree, it is primitive. Consequently, any nontrivial
normal subgroup acts transitively, and thus has an element of order p. If G had two minimal normal
subgroups, say N1 and N2, then N1 and N2 commute, since any commutator lies in the intersection
N1∩N2, which is trivial since N1 and N2 are minimal. It follows that G would then have a subgroup
isomorphic to N1 × N2, which has order divisible by p2. Since the order of G divides p!, which
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is not divisible by p2, this cannot happen, so G must have a unique minimal normal subgroup,
N . Finally, since N is nontrivial, it acts transitively, so by the orbit-stabilizer theorem, we find
[N : H ∩ N ] = p = [G : H]. We conclude that [H : H ∩ N ] = [G : H ∩ N ]/p = [G : N ], as
desired. �

Let PSL(n, q) and PΓL(n, q) denote the projective special linear and projective semilinear groups
of rank n over the finite field Fq, respectively, and write M11 and M23 for the Mathieu groups of
rank 11 and rank 23. The transitive subgroups of Sp and their unique minimal normal nontrivial
subgroups are classified as follows.

Lemma 8.2. Let p be a prime, let G ⊆ Sp be transitive, and let N EG denote its unique minimal
normal subgroup. Then G, N , and p satisfy one of the following:

(a) N = Z/pZ, G ' Z/pZ oH for some H ⊆ Aut(Z/pZ);
(b) N = G = Ap or N = Ap and G = Sp;
(c) p = 11, N = G = PSL(2, 11) or N = G = M11;
(d) p = 23, N = G = M23; or
(e) there is some integer n ≥ 2 and prime power q for which N = PSL(n, q), N ⊆ G ⊆

PΓL(n, q), and p = (qn − 1)/(q − 1).

Proof. This follows from the classification of finite simple groups. See [26, Corollary 4.2]. �

As a consequence of Lemma 8.2, we obtain the following.

Lemma 8.3. Let p be a prime, let G be a transitive subgroup of Sp, and let N E G be its unique
minimal normal subgroup. Then either G is solvable or the index of N in G is a prime power. In
particular, Hypothesis T(G,N) holds.

Proof. In the first case of Lemma 8.2, the group G is monomial since every irreducible representation
is either 1-dimensional or induced from the normal subgroup Z/pZ. For cases (b)-(d), the index of
N is either 1 or 2.

For case (e), write q = `m for some prime ` and integer m ≥ 1. Then p = (`mn − 1)/(`m − 1),
an expression that may be factored in terms of cyclotomic polynomials. An elementary argument
then shows that for (`mn − 1)/(`m − 1) to be prime, n must be prime and m must be a power of
n. Next, since (qn − 1)/(q − 1) is a prime, it must be the case that gcd(n, q − 1) = 1. It follows
that PSL(n, q) and PGL(n, q) coincide, and thus the quotient PΓL(n, q)/PSL(n, q) is isomorphic
to Gal(Fq/F`) ' Z/mZ. Since m is a power of the prime n, we conclude that N must have prime
power index in G. �

We next prove Corollary 3.8.

Proof of Corollary 3.8. Let G ⊆ Sp be transitive. It follows by Lemma 8.1 that G admits a unique
minimal nontrivial subgroupN . Appealing to Theorem 3.1, we find that for all except O|G|,[k:Q,ε(Q

ε)

fields K ∈ FGk (Q) that ζK(s)/ζKN (s) is non-vanishing in the region ΩK(ε). For all K outside the
exceptional set, by Lemma 8.3 and Theorem 3.3, it follows that L(s, ρ) is holomorphic and non-
vanishing in ΩK(ε) for each nontrivial irreducible Artin representation of K/k whose kernel does
not contain N . (Such representations are in fact precisely the faithful representations of G, since
N is minimal, but we do not need this.)

Let now F/k be a degree p extension whose normal closure is K. Lemma 8.1 implies that
F ∩KN = k, since F corresponds to one of the conjugate stabilizer subgroups of G. This implies
that ζF (s)/ζk(s) may be decomposed as a product of irreducible Artin L-functions whose kernels
do not contain N , since for example ζKN (s) may be decomposed exactly as the product over the
unfaithful representations of G. Thus, ζF (s)/ζk(s) is holomorphic and non-vanishing in ΩK(ε).



38 ROBERT J. LEMKE OLIVER, JESSE THORNER, AND ASIF ZAMAN

We prove the corollary for the family F p
k by considering each of the finitely many transitive

subgroups G ⊆ Sp in turn. For the family Fn,Sn
k with n ≥ 2, it follows as above from Theorem 3.1

by taking G = Sn and N to be the unique minimal nontrivial normal subgroup of G. �

9. An effective Chebotarev density theorem for fibers

In this section, we prove Theorem 3.10.

Proof of Theorem 3.10. We begin by outlining our strategy in broad terms since the ultimate proof
will be almost immediate once set up. Let K/k be a normal extension with Galois group G. For
any x, let ΠK(x) be the class function on G defined by

ΠK(x) =
∑
C

1

|C|
πC(x;K/k)1C ,

where the summation runs over the conjugacy classes C of G and 1C denotes the indicator function
of the class C. Because it is a class function, ΠK(x) may be decomposed in terms of the irreducible
characters of G, namely

(9.1) ΠK(x) =
∑

ρ∈Irr(G)

〈ΠK(x), χρ〉χρ,

where Irr(G) denotes the set of irreducible complex representations of G. Since 〈ΠK(x),1G〉 is the
average value of ΠK(x) across G, we find

〈ΠK(x),1G〉 =
1

|G|
πurk (x),

where πurk (x) denotes the number of primes of k with bounded norm that are unramified in K/k. In
particular, the usual Chebotarev density theorem follows if 〈ΠK(x), χρ〉 is small for each nontrivial
irreducible ρ, since then the difference between ΠK(x) and 〈ΠK(x),1G〉1G would be small by (9.1).

More generally, let N E G be a normal subgroup. Then we may regard the analogous class
function ΠKN (x) of G/N as a class function on G, and we find

ProjRC(G/N)ΠK(x) =
1

|N |
ΠKN (x),

where ProjRC(G/N)ΠK(x) denotes the orthogonal projection of ΠK(x) onto RC(G/N), the space of

class functions on G/N . Theorem 3.10 is true if and only if ΠK(x) is “close” to 1
|N |ΠKN (x). Since

RC(G/N) is spanned by the irreducible characters that factor through G/N , we find

ΠK(x)− ProjRC(G/N)ΠK(x) =
∑

ρ∈Irr(G)
N 6⊆ker ρ

〈ΠK(x), χρ〉χρ.

Thus, to prove Theorem 3.10, our goal is to show that 〈ΠK(x), χρ〉 is small for each ρ whose kernel
does not contain N . In fact, we find

〈ΠK(x), χρ〉 = 〈ΠK(x), χ̄ρ〉 =
1

|G|
∑

Np≤x
χρ(p).

Thus, Theorem 3.9 may be used directly to control the inner product 〈ΠK(x), χρ〉. Theorem 3.10
follows. �

10. Applications to class groups

In this section, we prove Theorem 2.4 on the `-torsion subgroups of class groups, and we prove
Theorem 2.1 on the extremal order of class numbers.
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10.1. Bounds on `-torsion subgroups. We begin by recalling the key lemma of [25].

Lemma 10.1 (Ellenberg–Venkatesh). Suppose that F/k is a degree d extension of number fields,

and let ` ≥ 2. Suppose that P1, . . . ,PM are prime ideals of F with norm at most D
1/(2`(d−1))−δ
F for

some δ > 0 and that are not extensions of prime ideals from any proper subfield of F/k. Then

|Cl(F )[`]| �k,`,ε D
1/2+ε
F /M.

Proof of Theorem 2.4. Let n ≥ 2 be an integer, Q ≥ 1, and F ∈ Fn,Sn
k (Q). For a number field L,

let πL(x) be the prime ideal counting function for L. Apart from at most On,[k:Q],ε(Q
ε) such fields

F , it follows from (3.11) in Corollary 3.8 that if x ≥ (logDF )81(n!)2/ε, we have

πF (x) = πk(x) +
∑

Nk/Qp≤x
χρF (p) = πk(x) +On,[k:Q],ε(x exp(−c9

√
log x)).

The contribution from the prime ideals of F of degree larger than two is�n
√
x, so this is absorbed

by the error term. Since there exist effectively computable constants c13 = c13(k) > 0 and c14 =
c14(k) > 0 such that πk(x) ≥ c13x/ log x for all x ≥ c14, it follows that for all fixed δ > 0, there
exists an effectively computable constant c15 = c15(n, k, δ, ε) > 0 such that there are at least

c15D
1/(2`(n−1))−δ
F / logDF degree one prime ideals with norm at most D

1/(2`(n−1))−δ
F . The result

then follows from Lemma 10.1, since degree 1 primes are necessarily not the extension of a prime
ideal in a proper subfield of F . For a prime p, the same conclusion holds for all except Op,[k:Q],ε(Q

ε)

fields F ∈ F p
k (Q) by appealing to (3.12) in Corollary 3.8. �

10.2. The extremal order of class numbers. We turn now to the proof of Theorem 2.1. Thus,
let r1 and r2 be non-negative integers with n := r1 + 2r2 at least 2. We wish to construct degree
n Sn-extensions F/Q of signature (r1, r2) with large class number. Our approach is inspired by
the conditional work of Duke [17] in the totally real case, r2 = 0. In particular, Duke considered
a slight modification of a family of polynomials first considered by Ankeny, Brauer, and Chowla
[3] for which there is an explicit full-rank subgroup of the units of the resulting fields. Building on
this, let a1, . . . , ar1 and br1+1, . . . , br1+r2 , cr1+1, . . . , cr1+r2 be integers with each b2j − 4cj < 0 such
that the polynomial

(10.1) g(x) =

r1∏
i=1

(x− ai)
r1+r2∏
j=r1+1

(x2 + bjx+ cj)

has only simple roots, the derivative g′(x) also only has simple roots β1, . . . , βn−1, and g(βi) 6= g(βj)
for i 6= j. That such integers exist follows, for example, by noting that these conditions are generic
for real coefficients, that they may therefore be satisfied for rational coefficients by continuity, and
then for integral coefficients by rescaling. Now, consider a polynomial f(t, x) over Q(t) defined by

(10.2) f(t, x) := tng(x/t)− t =

r1∏
i=1

(x− ait)
r1+r2∏
j=r1+1

(x2 + bjtx+ cjt
2)− t.

The key properties of the polynomial f(t, x) we shall need are the following.

Lemma 10.2. Let g(x) and f(t, x) be as defined above. Then:

(i) The polynomial f(t, x) is irreducible and has Galois group Sn over Q(t).
(ii) When τ ∈ Z is squarefree and sufficiently large, the polynomial f(τ, x) is irreducible and the

field F = Q(x)/f(τ, x) has signature (r1, r2), is totally ramified at primes p | τ , and has reg-

ulator satisfying RegF �n (logDF )r1+r2−1 if Gal(F̃ /Q) ' Sn and RegF �n (logDF )r1+r2−1

in general.
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Proof. We provide a complete proof since our family is slightly more general than his, but all of
the essential ideas are due to Duke [17].

When τ 6= ±1 is squarefree, the polynomial f(τ, x) is Eisenstein and thus irreducible. Thus,
f(t, x) must be irreducible over Q(t). To compute its Galois group, we follow Duke [17] and note
that the splitting field of f(t, x) over Q(t) is the same as that of tnf(1/t, x/t) = g(x) − tn−1. By
the monodromy computation of [17, Lemma 1], it follows that the Galois group is generated by
transpositions and is thus equal to Sn.

For (ii), the claim about irreducibility and ramification follows from the previous observation
that f(τ, x) is Eisenstein. For the claim about the signature of F , we note that as τ → ∞, the
roots of f(τ, xτ) approach those of g(x), which was constructed to have signature (r1, r2). The
polynomial g(x) has simple roots, and as complex roots come in conjugate pairs, it follows that for
sufficiently large τ , f(τ, x), and therefore F , must have signature (r1, r2) as well. It also follows
that to each root of g(x) we may associate an embedding of F . Explicitly, if we write F = Q(ξ)
with ξ an arbitrary root of f(τ, x), then for j ≤ r1, we associate the embedding σj : F → R given
by assigning ξ the value of the root approximating τaj , and for r1 + 1 ≤ j ≤ r1 + r2, we associate
the embedding σj : F → C such that σj(ξ)/τ approximates a root of x2 + bjx+ cj . For each σj , let
γj denote the associated root of g(x). Additionally, to each σj , we attach the usual absolute value
| · |j : F → R≥0 given by |α|j = |σj(α)| if σj is real and |α|j = |σj(α)|2 if σj is complex.

We now construct units ε1, . . . , εr1+r2 in F as follows. For i ≤ r1, define εi = τ(ξ − aiτ)−n, and
for r1 + 1 ≤ i ≤ r1 + r2, define εi = τ2(ξ2 + biτξ + ciτ

2)−n. Then

r1+r2∏
i=1

εi = τn(f(τ, ξ) + τ)−n = 1.

We also find that, in the ring OF /(τ), we have

(ξ − aiτ)n = ξn = f(τ, ξ) = 0

and, using this, that (ξ2 + biτξ + ciτ
2)n ≡ 0 (mod τ2). It follows that each ε−1

i is integral and a

unit, so each εi ∈ O×F . We next find if i ≤ r1 and j 6= i that as τ →∞, then

|εi|j ∼

{
τ1−n|γj − γi|−n, if j ≤ r1

τ2−2n|γj − γi|−2n, if r1 + 1 ≤ j ≤ r1 + r2,

while if r1 + 1 ≤ i ≤ r1 + r2 and j 6= i, then

|εi|j ∼

{
τ2−2n|(γj − γi)(γj − γ̄i)|−n, if j ≤ r1,

τ4−4n|(γj − γi)(γj − γ̄i)|−2n, if r1 + 1 ≤ j ≤ r1 + r2.

It then follows, using either the product formula or the relation ε1 . . . εr1+r2 = 1, that

|σi(εi)| ∼


τ (n−1)2

∣∣∣Res
(
x− ai,

g(x)

x− ai

)∣∣∣n, if i ≤ r1,

τ2(n−1)(n−2)
∣∣∣Res

(
x2 + bix+ ci,

g(x)

x2 + bix+ ci

)∣∣∣n, if r1 + 1 ≤ i ≤ r1 + r2,

where Res(·, ·) denotes the polynomial resultant. It follows that for τ sufficiently large, the (r1 +
r2)× (r1 + r2) matrix  log |ε1|1 . . . log |ε1|r1+r2

...
...

log |εr1+r2 |1 . . . log |εr1+r2 |r1+r2


has positive diagonal entries, negative off-diagonal entries, and rows that sum to 0. It then follows
by a lemma of Minkowski [38] that any principal (r1 + r2 − 1) × (r1 + r2 − 1) minor has positive
determinant. Thus, any r1 +r2−1 of the units ε1, . . . , εr1+r2 are multiplicatively independent, thus
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forming a full-rank subgroup of O×F , and it follows from the above that RegF �n (log τ)r1+r2−1 �n

(logDF )r1+r2−1, the latter inequality holding because F is totally ramified at each prime dividing
τ . The corresponding asymptotic lower bound follows from work of Remak [45] (see also [49]). �

By comparison with the cited work of Remak [45], Lemma 10.2 constructs fields whose regulators
are essentially as small as possible. To show that such fields often have class number as large as
possible, we will show that the residue of the associated Dedekind zeta function Ress=1ζF (s) can
be as large as conjecturally possible. The key is to show that in many cases this residue may be
approximated by a short Euler product. We will do so in more generality. Recall that the family
FGk is the set of normal extensions K/k with Galois group isomorphic to G. We show for the Artin

representations ρ of K ∈ FGk considered in Theorem 3.7 that the value L(1, ρ) may be approximated
by a short Euler product.

Proposition 10.3. Suppose for some K ∈ FGk , with DK sufficiently large with respect to |G|,
[k : Q], and ε, that ζK(s)/ζKN (s) is non-vanishing in the region ΩK(ε) for some normal subgroup
N E G for which Hypothesis T(G,N) holds. Let ε > 0. For any Artin L-function L(s, ρ) that does

not factor through KN , there holds for any x ≥ (logDK)81|G|/ε,

L(1, ρ) =
(

1 +O|G|,[k:Q],ε

(
exp(−c1

√
log x)

)) ∏
Np≤x

Lp(1, ρ),

where Lp(s, ρ) denotes the Euler factor of L(s, ρ) at the prime p. In particular, if A > 0, then

L(1, ρ) �|G|,[k:Q],A,ε

∏
Np≤(logDK)A

Lp(1, ρ).

Proof. Write

logL(s, ρ) =:
∑
n

Aρ(n)

Nns
,

where Aρ(n) is supported on prime powers and Aρ(p) = χρ(p).
We first claim that this series converges at s = 1. Indeed, by (3.10) in Theorem 3.7 and partial

summation, we have ∑
Np≥x

χρ(p)

Np
�|G|,[k:Q],ε exp(−c1

√
log x)

for any x ≥ (logDK)81|G|/ε, and we trivially bound the contribution from prime powers by∑
Npj≥x
j≥2

Aρ(p
j)

Npj
�[K:k]

∑
Npj≥x
j≥2

1

jNpj
�[K:Q] x

−1/2.

Thus, the series defining logL(s, ρ) converges at s = 1. It follows that it converges uniformly in
sectors to the right of s = 1, and that it converges to logL(1, ρ), where L(1, ρ) is defined via the
standard Dirichlet series. Moreover, the above argument also shows that

logL(1, ρ) =
∑

Np≤x
logLp(1, ρ) +O(exp(−c1

√
log x)).

The first claim follows upon exponentiating. For the second claim, we apply Mertens’s theorem to
trivially bound the contribution from the range (logDK)A ≤ Np ≤ (logDK)81|G|/ε. �

We next show for families of fields obtained by specializing extensions of Q(t) that it is possible
to choose the values of Lp(1, ρ) at small primes to be as large as possible. See also [17, Proposition
3] and [48].
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Lemma 10.4. Let f(t, x) ∈ Q[x, t] be irreducible over Q(t). There exists a constant c16 = c16(f) >
0 such that for every prime p > c16, there exists tp ∈ Z such that the polynomial f(tp, x) (mod p)
splits completely.

Proof. As the polynomial f(t, x) is irreducible over Q(t), it defines a separable extension of Q(t).
The normal closure of this extension must also be separable, and is hence cut out by an irreducible
polynomial g(t, x). As g(t, x) is irreducible, the curve g(t, x) ≡ 0 (mod p) over Fp is non-singular
for all but finitely many primes p. Moreover, the Weil bound implies that there is a point (tp, xp)
on this curve for every sufficiently large p. As g(t, x) defines a normal extension of Q(t), it follows
that g(tp, x) splits completely modulo p, and hence that f(tp, x) splits completely as well. �

We are now ready to prove Theorem 2.1. We do so in the following slightly stronger form. For
any possible signature (r1, r2), we set n = r1 + 2r2 and let

F r1,r2
Q (Q) := {F ∈ Fn,Sn

Q (Q) : sgn(F ) = (r1, r2)},

where F̃ /Q denotes the normal closure of F/Q.

Theorem 10.5. Let r1, r2 ≥ 0 be integers with n = r1 + 2r2 ≥ 2. Let 0 < ε < 1/(n!(n2 − n)) and
let 0 < η < 1/(n2 − n). There exists a constant cn,η,ε > 0 such that if Q is sufficiently large in

terms of n, η, and ε, then for at least cn,η,εQ
1

n2−n
−η

fields F ∈ F r1,r2
Q (Q), we have

|Cl(F )| �n,ε
D

1/2
F (log logDF )n−1

(logDF )r1+r2−1

and ζ
F̃

(s)/ζ
F̃N

(s) is non-vanishing in Ω
F̃

(ε), where N is the unique minimal nontrivial normal
subgroup of Sn.

Proof. Let (r1, r2) be a possible signature and consider the polynomial f(t, x) defined by (10.2).
Let T be sufficiently large in terms of n. By Lemma 10.4, there is a constant c such that for every
prime p between c and (log T )1/2, there is a congruence class tp (mod p) for which f(tp, x) splits
completely (mod p). Define a congruence class a (mod M) by

M =
∏

c≤p≤(log T )1/2

p, a ≡ tp (mod p) for all c ≤ p ≤ (log T )1/2.

Note that M = exp(O(
√

log T )) by the prime number theorem.
Consider squarefree τ ≤ T for which τ ≡ a (mod M). A quantitative version of the Hilbert irre-

ducibility theorem due to Cohen [11] shows that for at most O(T 1/2 log T ) values τ the polynomial
f(τ, x) does not cut out an Sn-extension of Q. Additionally, by Lemma 10.2, if f(τ, x) cuts out a

field F , then necessarily τ |DF . Since DF = On(Tn
2−n), it follows for any η > 0 that altogether

there are �n,η T
1−η distinct degree n Sn-extensions with signature (r1, r2) produced in this way.

Let F/Q be such an extension and let F̃ denote its normal closure over Q. Since D
F̃
≤ Dn!

F �n

Tn!(n2−n), it follows from Theorem 3.1 that for any ε < 1/(n!(n2 − n)) all but On,ε(T
εn!(n2−n)) of

the fields F are such that ζ
F̃

(s)/ζ
F̃N

(s) is non-vanishing in the region Ω
F̃

(ε). For any such F , we
find by Proposition 10.3 that

Ress=1ζF (s) �n,ε
∏

p≤(log T )1/2

Lp(1, ρF ) �n,ε (log log T )n−1 �n,ε (log logDF )n−1

by our choice of the congruence class a (mod M). Using the estimate for the regulator provided
by Lemma 10.2, we conclude by the analytic class number formula that

|Cl(F )| �n,ε
D

1/2
F (log logDF )n−1

(logDF )r1+r2−1
.
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The result follows once we choose Q = cTn
2−n for a suitable constant c depending on n. �

While the family of polynomials (10.2) provides a self-contained exposition, it is possible to
obtain the conclusion of Theorem 10.5 for a larger set of fields by using different families while
simultaneously imposing certain other constraints. For example, by working instead with a family
of polynomials considered by Bilu and Luca [5], we obtain the following result for the family Fn,0

Q .

Theorem 10.6. Let n ≥ 2 and `, `0 ≥ 2 be integers. Let 0 < ε < 1/(2`n!(n − 1)) and 0 < η <
1/(2`0(n− 1)). There are positive constants c17 and c18 (depending at most on n, `, `0, ε, and η)

such that if Q ≥ c17, then at least c18Q
1

2`(n−1)
−η

fields F ∈ Fn,0
Q (Q) have the following properties:

(i) ζ
F̃

(s)/ζ
F̃N

(s) 6= 0 in Ω
F̃

(ε), where N is the unique minimal normal subgroup of Sn;

(ii) |Cl(F )| �n,`,ε D
1/2
F (log logDF )n−1/(logDF )n−1;

(iii) Cl(F ) contains an element of exact order `; and

(iv) |Cl(F )[`0]| �n,`,`0,ε,η D
1
2
− 1

2`0(n−1)
+η

F .

Proof. Bilu and Luca consider the family of polynomials

f`(t, x) = (x− a1) . . . (x− an−1)
(
x− (−1)n−1 t` − 1

a1 . . . an−1

)
− 1,

and show for any ` that there exist integers a1, . . . , an−1 such that all but On,`(T
1/2 log T ) integers

|t| ≤ T subject to a fixed congruence condition cut out an extension F ∈ Fn,0(cT 2n−2) with a point
of order ` in the associated class group, and that any given field arises for at most n(n− 1)(n− 2)
values t. Additionally, they also show for such values of t that the regulator RegF of the associated
field F satisfies RegF �n (logDF )n−1. Appealing to Theorem 3.1, Proposition 10.3, and Lemma
10.4 as in the proof of Theorem 10.5, along with Theorem 2.4 for (iv), the result follows. �

11. Applications to subconvexity and periodic torus orbits

11.1. Subconvexity. We begin with an bound for L(1
2 +it, ρ) depending only on C(ρ, t) (see (4.3))

and the number Nρ(σ, T ) of zeros β + iγ of L(s, ρ) such that β ≥ σ and |γ| ≤ T .

Lemma 11.1. Let ρ be an n-dimensional Artin representation defined over a field k. Suppose that
L(s, ρ) has a pole of order 0 ≤ r ≤ n at s = 1 and that (s− 1)rL(s, ρ) is entire. If 0 ≤ ∆ < 1

2 and
t ∈ R, then

log |L(1
2 + it, ρ)| ≤

(1

4
− ∆

109

)
log(C(ρ)(|t|+ 1)n[k:Q])

+
∆

107
#{β + iγ : β ≥ 1−∆, |γ − t| ≤ 6, L(β + iγ, ρ) = 0}+On,[k:Q](1)

≤
(1

4
− ∆

109

)
log(C(ρ)(|t|+ 1)n[k:Q]) +

∆

107
Nρ(1−∆, |t|+ 6) +On,[k:Q](1).

Proof. Viewing L(s, ρ) as a degree n[k : Q] L-function over Q, our hypotheses imply that L(s, ρ) is
an L-function in the class S(n[k : Q]) defined by Soundararajan and Thorner in [50, Section 1]. As
such, it follows from [50, Theorem 1.1] that

log |L(1
2 , ρ)| ≤

(1

4
− ∆

109

)
logC(ρ) +

∆

107
Nρ(1−∆, 6) + 2 log |L(3

2 , ρ)|+O((n[k : Q])2),

where C(ρ) is defined in (4.3). Following an observation of Heath-Brown in [28], we have for any
t ∈ R the bound

log |L(1
2 + it, ρ)| ≤

(1

4
− ∆

109

)
logC(ρ, t) + 2 log |L(3

2 + it, ρ)|+O((n[k : Q])2)

+
∆

107
#{β + iγ : β ≥ 1−∆, |γ − t| ≤ 6, L(β + iγ, ρ) = 0},
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where C(ρ, t) is defined in (4.3). Since |αj,ρ(p)| ≤ 1 uniformly, we have that

2 log |L(3
2 + it, ρ)|+O((n[k : Q])2)�n,[k:Q] 1.

Moreover, we have the crude bound #{β + iγ : β ≥ 1 − ∆, |γ − t| ≤ 6, L(β + iγ, ρ) = 0} ≤
Nρ(1−∆, |t|+ 6). The result now follows from (4.4). �

Proof of Theorem 2.2. We will prove the result for F ∈ F p
k (Q), where p is prime. For integers

n ≥ 2, the corresponding proof for F ∈ Fn,Sn
k (Q) is essentially identical. In what follows, let

G ⊆ Sp be a transitive subgroup, and let N EG be its unique minimal nontrivial normal subgroup.
Let 0 < ε < 1, and let δ = ε/(20|G|). Let K ∈ FGk with DK sufficiently large with respect

to |G|, [k : Q], and ε. By Lemma 5.2, the Artin L-function ζK(s)/ζKN (s) is holomorphic and the
corresponding Artin representation ψK has dimension d = |G|−|G/N |. Assume that ζK(s)/ζKN (s)
is non-vanishing in the region ΩK(ε). When DK is sufficiently large with respect to |G|, [k : Q],
and ε, the region ΩK(ε) contains the rectangle

[1− δ, 1]× [−D1/(|G|[k:Q])
K − 6, D

1/(|G|[k:Q])
K + 6].

It follows thatNK/KN (1−δ,D1/(|G|[k:Q])
K +6) = 0. As the analytic conductor satisfies C(ψK)�|G|,[k:Q]

DK , Lemma 11.1 implies that if |t| ≤ D1/(|G|[k:Q])
K , then

log
∣∣∣ ζK(1

2 + it)

ζKN (1
2 + it)

∣∣∣ ≤ (1

4
− δ

109

)
log
( DK

DKN

(1 + |t|)d[k:Q]
)

+O|G|,[k:Q](1).

For |t| > D
1/(|G|[k:Q])
K , we appeal to the fact that neither ζK(s) nor ζKN (s) vanishes on the line

Re(s) = 1. The same must hold for ζK(s)/ζKN (s). We may therefore apply Lemma 11.1 with

∆ = 0 so that if |t| > D
1/(|G|[k:Q])
K , then

log
∣∣∣ ζK(1

2 + it)

ζKN (1
2 + it)

∣∣∣ ≤ 1

4
log
( DK

DKN

(1 + |t|)d[k:Q]
)

+O|G|,[k:Q](1)

≤
(1

4
− δ

109

)
log

DK

DKN

+ d[k : Q]
(1

4
+

δ

109

)
log(1 + |t|) +O|G|,[k:Q](1).

Combining bounds for both ranges and noting d ≤ |G| − 1, we conclude for all t ∈ R that∣∣∣ ζK(1
2 + it)

ζKN (1
2 + it)

∣∣∣�|G|,[k:Q]

( DK

DKN

) 1
4
− ε

2·1010|G| (1 + |t|)(
|G|
4

+1)[k:Q].

By Lemma 11.1 with ∆ = 0, we have |ζKN (1
2 +it)| �|G|,[k:Q] D

1/4

KN (1+|t|)|G/N |[k:Q]/4. If ζKN (1
2 +it) =

0, then so does ζK(1
2 + it), so we may assume that ζKN (1

2 + it) 6= 0. Since N is nontrivial and

DKN ≤ D1/|N |
K , we conclude that

|ζK(1
2 + it)| �|G|,[k:Q] D

1
4
− ε

2·1010|G|
K D

ε
2·1010|G|
KN (1 + |t|)2|G|[k:Q] �|G|,[k:Q] D

1
4
− ε

4·1010|G|
K (1 + |t|)2|G|[k:Q].

The desired result now follows.
Let F ∈ F p

k (Q) be a subfield of K/k, in which case F ∩ KN = k. We have the factorization

(s−1)ζF (s) = ( ζF (s)
ζk(s) )((s−1)ζk(s)). The function (s−1)ζk(s) is entire, and the ratio ζF (s)/ζk(s) is

holomorphic in the region ΩK(ε) by Corollary 3.8. Consequently, the righthand side is a product
of two functions which are holomorphic in ΩK(ε), and we have the bound

#{β + iγ : β ≥ 1− δ, |γ − t| ≤ 6, ζF (β + iγ) = 0}
≤ #{β + iγ : β ≥ 1− δ, |γ − t| ≤ 6, ζF (β + iγ)/ζk(β + iγ) = 0}
+ #{β + iγ : β ≥ 1− δ, |γ − t| ≤ 6, ζk(β + iγ) = 0}.
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By Lemma 11.1 with ∆ = δ, we deduce that if |t| ≤ D1/(|G|[k:Q])
K , then

log |ζF (1
2 + it)| ≤

(1

4
− δ

109

)
log(DF (1 + |t|)[F :Q])

+
δ

107
#{β + iγ : β ≥ 1− δ, |γ − t| ≤ 6, ζF (β + iγ) = 0}+O[F :Q](1)

≤
(1

4
− δ

109

)
log(DF (1 + |t|)[F :Q])

+
δ

107
#{β + iγ : β ≥ 1− δ, |γ − t| ≤ 6, ζk(β + iγ) = 0}+O[F :Q](1).

By [30, Proposition 5.7], we find that

10−7δ#{β + iγ : β ≥ 1− δ, |γ − t| ≤ 6, ζk(β + iγ) = 0} � |G|−1ε log(Dk(1 + |t|)[k:Q]),

hence

|ζF (1
2 + it)| �|G|,[k:Q] D

O( ε
|G| )

k D
1
4
− ε

2·1010|G|
F (1 + |t|)O(1+

ε[k:Q]
|G| )

.

This proves the desired result for ζF (1
2 + it) when |t| ≤ D1/[k:Q]

K . By arguing as we did for ζK(1
2 + it)

when |t| > D
1/[k:Q]
K using the convexity bound (which follows from Lemma 11.1 with ∆ = 0), we

arrive at the desired result for all t. �

11.2. Equidistribution of periodic torus orbits. As indicated in [22, Section 1.6.3], the equidis-
tribution statement of Theorem 2.3 follows once a suitable subconvexity bound is known. We
elaborate slightly on their general setup, with notation consistent with this paper rather than [22],
before specializing to the case of interest to us.

Thus, let k be a number field and let S be a finite set of places of k containing all archimedean
places and such that the finite primes in S generate the class group of k. Let kS :=

∏
v∈S kv

and let Ok,S denote the S-integers of k, i.e. the elements of k that are integral away from primes
in S. To show that torus orbits inside PGLp(Ok,S)\PGLp(kS) associated to orders O in degree
p extensions F/k become equidistributed, Einsiedler, Lindenstrauss, Michel, and Venkatesh prove
two key lemmas, namely [22, Lemmas 13.3 and 13.4], both relying on a subconvexity hypothesis
stated formally as [22, Equation (71)]. This subconvexity hypothesis is that for any Hecke character
χ of k ramified only at primes in S, there are constants A and δ > 0 depending at most on k and
p such that for any t,

(11.1) L(1
2 + it, IndGkGF 1⊗ χ)�[F :Q] (qχ · (1 + |t|))AD

1
4
−δ

F ,

where qχ is the conductor of the L-function L(s, χ) and IndGkGF 1 denotes the induction of the trivial
character of the absolute Galois group GF to the absolute Galois group Gk of k. In other words,

the L-function L(s, IndGkGF 1⊗χ) is the twist of the Dedekind zeta function of F by the character χ.
This general statement appears to be outside the scope of our methods, but in the special case

that k = Q and S consists only of the infinite place, (11.1) reduces to requiring

(11.2) ζF (1
2 + it)�[F :Q] (1 + |t|)AD

1
4
−δ

F .

This is provided by Theorem 2.2 and Lemma 8.1 by the assumptions of Theorem 2.3. Thus, for
orders O inside fields for which (11.2) holds, both Lemmas 13.3 and 13.4 of [22] hold. Lemma
13.4 is used to control the “escape of mass” of the measure µO associated to O, and in particular
it follows that any weak-* limit of the measures µO for orders considered in Theorem 2.3 must
be a probability measure. Lemma 13.3 is used to show that any weak-* limit is such that almost
every ergodic component has positive entropy with respect to the action of a regular element in
Hp. (See also [21, Theorem 1.9] for a weaker but more general statement.) By a measure rigidity
theorem of Einsiedler, Katok, and Lindenstrauss [20] (also restated as [22, Theorem 2.5]), any
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ergodic Hp-invariant measure on PGLp(Z)\PGLp(R) with positive entropy must be Haar measure.
Thus, any weak-* limit of the µO has almost every ergodic component given by Haar measure on
PGLp(Z)\PGLp(R), and equidistribution follows.

12. Heuristics for the intersection multiplicity

While our work is strongest for groups G that have a unique minimal normal subgroup, our
results may apply in other situations as well, provided that there is sufficient control over the

intersection multiplicity mG,N
k (Q). We therefore find it worthwhile to record a conjecture for how

mG,N
k (Q) should grow; by taking N = G, this will also describe how the intersection multiplicity

mG
k (Q) that was relevant in the previous works [44, 52] (either implicitly or explicitly) should grow.

We work in somewhat more generality.
Fix a transitive and faithful permutation representation π : G → Sn with n ≥ 2. Given a

field K ∈ FGk , such permutation representations correspond to subextensions of K whose normal
closure over k is K by taking the fixed field of a stabilizer subgroup. Let Kπ denote the associated
subextension, so for example Kπ = K when π is the regular representation. Define

FG,πk (Q) := {K ∈ FGk : DKπ ≤ Q}.
Malle’s conjecture [36] predicts that

(12.1) Q
1

aπ(G) �k,G #FG,πk (Q)�k,G,ε Q
1

aπ(G)
+ε
,

where aπ(G) := min{n−#Orbπ(g) : g 6= id} and Orbπ(g) denotes the set of orbits of the action of
π(g) on the set {1, . . . , n}.

Now, for a normal subgroup N EG, generalizing (3.4), define

mG,N,π
k (Q) := max

K1∈FG,πk (Q)
|{K2 ∈ FG,πk (Q) : K1 ∩K2 6= KN

1 ∩KN
2 }|,

Thus, mG,N,π
k (Q) measures how often two fields K1,K2 ∈ FG,πk (Q) have an intersection outside their

associated subfields fixed by N . In order for such an intersection to occur, there must exist normal
subgroups N1, N2EG not containing N , possibly equal to each other, for which KN1

1 = KN2
2 . Thus,

mG,N,π
k (Q) will be bounded above by∑

N ′EG
N 6⊆N ′

max
F

#{K ∈ FG,πk (Q) : KN ′ = F},

where the summation runs over the normal subgroups N ′EG not containing N and the maximum
runs over all extensions F/k inside the fixed choice of k̄. Notice that if p is a tamely ramified prime

in K/k, then p is unramified in KN ′ precisely when the inertia subgroup at p is contained in N ′.
Motivated by the heuristic reasoning behind Malle’s conjecture, set

aπ(G,N ′) := min{n−#Orbπ(g) : g ∈ N ′, g 6= id}.

If F = KN ′ for some K ∈ FG,πk (Q), we then expect

Q
1

aπ(G,N′) �F,G #{K ∈ FG,πk (Q) : KN ′ = F} �F,G,ε Q
1

aπ(G,N′) +ε
.

Consequently, define

mπ(G,N) := max
N ′EG
N 6⊆N ′

aπ(G,N ′)−1

if there is at least one nontrivial such N ′, and define mπ(G,N) = 0 if there is no such N ′ (as is the
case if either N is the unique minimal normal subgroup of G, or if N = G and G is simple). We
then conjecture:
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Conjecture 12.1. With notation as above, as Q→∞,

Qmπ(G,N) �k,G mG,N,π
k (Q)�k,G,ε Q

mπ(G,N)+ε.

A few remarks are in order. First, taking π to be the (right) regular reprenentation of G, so that

mG,N,π
k (Q) = mG,N

k (Q), the orbits of π(g) are exactly the (left) cosets of the cyclic subgroup 〈g〉.
There are |G|/|〈g〉| such orbits, and it follows that

mreg(G,N) = min
N ′EG
N 6⊆N ′

max
16=g∈N ′

|〈g〉|
|G|(|〈g〉| − 1)

.

Thus, for mG,N
k (Q) defined in (3.4), Conjecture 12.1 implies

(12.2) mG,N
k (Q)�k,G Q

mreg(G,N).

Specializing further by taking N = G, this implies

(12.3) mG
k (Q)�k,G Q

m(G), where m(G) = min
NEG

1 6=N 6=G

max
16=g∈N

|〈g〉|
|G|(|〈g〉| − 1)

.

Second, we now consider when we should expect mG
k (Q) to be �k,G,ε Q

−ε#FGk (Q) for every

ε > 0, or more generally when mG,N,π
k (Q) �k,G,ε Q

−ε#FG,πk (Q). Comparing Conjecture 12.1
with Malle’s conjecture (12.1), it is apparent we should expect this to hold whenever there is
a normal subgroup N ′ not containing N for which aπ(G,N) = aπ(G). Focusing again on the
regular representation, this will occur whenever there is a non-identity element of minimal order
in G contained in such an N ′, and when N = G, whenever there is an element of minimal order
contained in any nontrivial proper normal subgroup. This situation arises, for example, if G = Sn
for some n ≥ 4, as An contains elements of order 2, and this leads to our aforementioned speculation
that mSn

k (Q)�k,n,ε Q
−ε#FSnk (Q) for every ε > 0.

Though it does not follow directly from the above conjectures, we also remark that there are
groups G for which one should even expect mG

k (Q) �k,G #FGk (Q). In particular, this is what one
should expect if every non-identity element of minimal order in G is contained in the same proper
normal subgroup; this is ensured, for example, if G is not a p-group and the Sylow p-subgroup of
G is normal for the smallest prime divisor p of |G|.

Lastly, we comment on the role of the ramification restrictions imposed by Pierce, Turnage-
Butterbaugh, and Wood. As described above, for certain groups G, they fix conjugacy invariant
subsets RG ⊆ G and ask that all tamely ramified primes have inertia subgroups in RG. An
analogous story to the above holds, but with the key quantity aπ(G,N ′) replaced by

aπ(G,N ; RG) := min{n−#Orbπ(g) : g ∈ N ′ ∩RG, g 6= id}.

For the groups they consider (Sn for n ≥ 3, the alternating group A4, the dihedral group Dp, and
the the cyclic group Cn for any n), the set RG is chosen specifically so that the intersection N ′∩RG

is empty for every proper normal subgroup N ′EG. Thus, with the analogous definition, one should
expect mG

k (Q,RG) �k,G,ε Q
ε for every ε > 0. We note, however, that apart from G = Cp, none

of these groups are simple, so (12.3) implies that we should nonetheless expect for the full family

without restrictions on inertia that mG
k (Q)�k,G Q

m(G), where m(G) > 0.
As touched upon earlier, a key advantage of our work is that all of the non-abelian groups G

considered in [44] have a unique minimal normal subgroup N , and thus unconditionally we have

mG,N
k (Q) = 1 independently of any of the conjectural analysis above. This is the case for many

other groups as well.
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