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Abstract. In a 1916 paper, Ramanujan studied the additive convolution Sa,b(n) of sum-
of-divisors functions σa(n) and σb(n), and proved an asymptotic formula for it when a and
b are positive odd integers. He also conjectured that his asymptotic formula should hold for
all positive real a and b. Ramanujan’s conjecture was subsequently proved by Ingham, and
then by Halberstam with a power saving error term.

In this paper, we give a new proof of Ramanujan’s conjecture that obtains lower order
terms in the asymptotics for most ranges of the parameters. We also describe a connection
to a counting problem in geometric topology that was studied in the second author’s thesis
and which served as our initial motivation in studying this sum.

1. Introduction

For any integer a, let σa(n) denote the sum of the ath powers of the divisors of n, that is,

σa(n) =
∑
d|n

da.

While the particular value of σa(n) depends crucially on the divisibility properties of n, there
are nevertheless many beautiful identities dating back to a 1916 paper of Ramanujan [18]
relating additive convolutions of some of these functions to others. For positive integers a
and b, let

Sa,b(n) :=
n−1∑
k=1

σa(k)σb(n− k).

Perhaps the most well-known identity is

S3,3(n) =
1

120
σ7(n) +

1

120
σ3(n)

but Ramanujan establishes eight other exact identities of this type. He also establishes the
asymptotic identity

(1.1) Sa,b(n) =
Γ(a+ 1)Γ(b+ 1)

Γ(a+ b+ 2)

ζ(a+ 1)ζ(b+ 1)

ζ(a+ b+ 2)
σa+b+1(n)− 1

2
ζ(−a)σb(n) +O(n

2
3
(a+b+1))

for all positive odd integers b ≥ a > 1; there is an analogous formula with an additional lower
order term if either a or b is equal to 1. The error term in the above asymptotic is related to
the Fourier coefficients of holomorphic modular forms on SL2(Z), and today, Ramanujan’s
paper is most famous for being the origin of the celebrated Ramanujan conjectures on the
properties and size of these coefficients.

At the top of the second page of his paper, however, Ramanujan remarks, “It seems very
likely that (the main part of the asymptotic in (1.1)) is true for all positive (real) values
of a and b, but this I am at present unable to prove.” This less well known conjecture of
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Ramanujan was established in 1927 by Ingham [9], and then with a power saving error term
in 1957 by Halberstam [6]. Halberstam later [7] proved that if both parameters are small,
in that they satisfy a+ b < 1, then there is a secondary term given by a different expression
in this asymptotic formula. This formula does not, however, recover the secondary term in
Ramanujan’s formula (1.1), both owing to its different formulation and to the requirement
that a+ b < 1.

In this paper we give another proof of the asymptotic in (1.1), improving upon the result
by establishing lower-order terms in the asymptotic for many ranges of the parameters that
recover Ramanujan’s secondary term. We begin with the following theorem on what is
typically the largest of these lower order terms.

Theorem 1.1. If a and b are positive real numbers with b > a ≥ 1, then

Sa,b(n) =
Γ(a+ 1)Γ(b+ 1)

Γ(a+ b+ 2)

ζ(a+ 1)ζ(b+ 1)

ζ(a+ b+ 2)
σa+b+1(n) +

ζ(1− a)ζ(b+ 1)

(b+ 1)ζ(b− a+ 2)
naσb−a+1(n)

+O(nb) +O(n
a+b
2

+1+ε).

Notice that when a is an odd integer ≥ 3, the secondary term in Theorem 1.1, which
is O(nb+1), actually vanishes, so Theorem 1.1 is consistent with (1.1) (which requires both
parameters to be odd integers) but does not quite recover it. In fact, our proof shows that
there are typically many lower order terms in the asymptotic formula for Sa,b(n), of orders
O(nb+1−m) for non-negative integers 0 ≤ m < b−a

2
+ 7

4
. All of these terms but that of order

O(nb) vanish if the smaller parameter a is an odd integer, and it is in fact this term that
recovers Ramanujan’s secondary term.

Theorem 1.2. Let a and b be positive real numbers. If b− a > 3/2, then

Sa,b(n) =
Γ(a+ 1)Γ(b+ 1)

Γ(a+ b+ 2)

ζ(a+ 1)ζ(b+ 1)

ζ(a+ b+ 2)
σa+b+1(n)

+
ζ(1− a)ζ(b+ 1)

(b+ 1)ζ(b− a+ 2)
naσb−a+1(n) +

∑
0≤m< b−a

2
− 3

4

Res(−m) +Oa,b,ε(n
a+b
2

+ 3
4
+ε),

where Res(−m) is given explicitly by (4.7). It satisfies Res(−m) � nb−m in general, and if
a is an odd integer, then Res(0) = −1

2
ζ(−a)σb(n) and Res(−m) = 0 for each m ≥ 1.

In particular, when a ≥ 3 is an odd integer and b > a+ 3/2, Theorem 1.2 implies

Sa,b(n) =
Γ(a+ 1)Γ(b+ 1)

Γ(a+ b+ 2)

ζ(a+ 1)ζ(b+ 1)

ζ(a+ b+ 2)
σa+b+1(n)− 1

2
ζ(−a)σb(n) +Oa,b,ε(n

a+b
2

+ 3
4
+ε),

recovering Ramanujan’s formula (1.1) but without requiring b to be an odd integer. Thus,
Theorem 1.2 recovers and expands on the asymptotic formula for Sa,b(n) available from the
theory of modular forms. We note that when b is also an odd integer, it was conjectured

by Ramanujan and proved by Deligne that the error term is of the form Oa,b,ε(n
a+b
2

+ 1
2
+ε).

This improved error term is available only when b is an odd integer, however; we discuss
possible improvements to the error term when b is not an odd integer in the final section of
this paper.

The core of the paper is Section 4, where we state and prove a theorem subsuming The-
orems 1.1 and 1.2. We first present in Section 3 a simple elementary proof of Ramanujan’s
conjecture (with power saving error term) along similar lines as Halberstam [6].
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Also in this paper, in Section 2 we describe a problem in geometric topology which initially
motivated our interest in this problem. In brief, the additive convolution S1,2(n) appears
while counting primitive ramified degree n covers of the square torus (or in other words,
square-tiled surfaces with n squares) with two ramification points. These surfaces can be
classified according to their horizontal cylinder configurations. There are exactly four such
configurations, and knowing the asymptotic for S1,2(n), which already is difficult to find in
the literature, enables us to compute asymptotic proportions of two of these four horizontal
cylinder configurations.
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2. Motivation from Geometric Topology

Our initial interest in studying additive convolutions of the kind Sa,b arose from a counting
problem in geometric topology. In order to describe succinctly where the additive convolution
appears we begin with a brief exposition on translation surfaces and their moduli spaces.

2.1. Translation surfaces and their moduli spaces. A translation surface is a closed
orientable surface obtained from the union of finitely many Euclidean polygons {∆1, . . . ,∆n}
such that:

• the embedding of the polygons in R2 is fixed only up to translation;
• the boundary of every polygon is oriented counterclockwise; and
• for every 1 ≤ j ≤ n and for every oriented side sj of ∆j, there exist 1 ≤ ` ≤ n and an

oriented side s` of ∆` so that sj and s` are parallel, of equal length and of opposite
orientation. The sides sj and s` are glued together by a parallel translation.

A few key things follow from the definition.

• The total angle around a vertex is 2π(k + 1) for some non-negative integer k. When
k > 0, we call the point a cone point.
• We distinguish between two polygons one obtained from the other by a nontrivial

rotation. However, two polygons are “cut, parallel transport, and paste” equivalent.
For instance, consider Figure 1. Hence, translation surfaces come with a well defined
vertical direction.

Some basic examples of translation surfaces include an axis parallel square with opposite
sides identified to give a square torus and a regular octagon with opposite sides identified.
One can also take two regular n-gons with n odd and identify opposite corresponding sides
to form a translation surface. Consider Figure 2 for an example with n = 5. In general, the
polygons need not be regular.

Translation surfaces also admit an alternate definition via complex analysis. Viewing the
polygons as embedded in C, a translation surface has a complex structure with transition
functions given by translations. The globally defined 1-form dz on C then induces a globally
defined 1-form ω with zeroes exactly at the cone points. Hence, from the polygonal definition
of a translation surface we obtain a pair (X,ω) where X is a Riemann surface and ω is
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Figure 1. On the left, the two translation surfaces differ by a nontrivial
rotation, so are not considered equivalent. On the right, the two translation
surfaces are cut and paste equivalent. We omit the orientation on the edges
mentioned in the definition while representing the surfaces using polygons.

holomorphic 1-form. On the other hand, given such a pair (X,ω) one can also recover the
polygonal definition using a geodesic triangulation of X satisfying the appropriate properties
outlined in the polygonal definition. Therefore, a translation surface can also be thought of
as a pair (X,ω) of a Riemann surface X equipped with a holomorphic 1-form ω. See [14] for
a more precise formulation of the equivalence of these two definitions of translation surfaces.

Figure 2. A translation surface formed
by two pentagons whose opposite corre-
sponding sides are glued. This surface has
genus 2 and lives in the stratum H(1, 1).

The genus of a translation surface is given by
the classical Gauss-Bonnet theorem which relates
the Euler characteristic of a surface with the to-
tal curvature. Since translation surfaces are built
out of Euclidean polygons, they are flat every-
where except the cone points, and the Gauss-
Bonnet theorem takes on a simpler form. Hence,
a surface of genus g with m cone points of angles
2π(α1 + 1), . . . , 2π(αm + 1) satisfies the relation

2g − 2 =
m∑
i=1

αi.

The angle data around the cone points can be
recorded in a vector α = (α1, . . . , αm) where m is the number of cone points and 2π(αi + 1)
are the cone angles defined as above. The collection of translation surfaces sharing the same
angle data is called a stratum and is denoted H(α).

For any α that is an integer partition of an even number, H(α) can be given the structure
of a complex orbifold. The main idea is that given (X,ω) ∈ H(α1, . . . , αm), we can fix a basis
ρ1, . . . , ρ2g+m−1 for the first homology H1(X, {P1, . . . , Pm};Z) relative to the cone points. We
can then get a map

(2.1) H(α)→ C2g+m−1 given by (X,ω)→
(∫

ρ1

ω, . . . ,

∫
ρ2g+m−1

ω

)
These are called period coordinates for H(α). The period coordinates serve as local coordi-
nates via which it can be shown, as in [13, 22, 23], that the strata are complex orbifolds of
dimension 2g + m − 1 where g is the genus of the translation surface with cone point data
(α1, . . . , αm). Kontsevich and Zorich [10] classified the connected components of H(α) for
all α. In particular, any H(α) can have at most 3 connected components. Moreover, any
stratum admits an SL2(R) action — given a translation surface built out of polygons {∆i},
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its image under A ∈ SL2(R) is simply the translation surface {A ·∆i} where A acts on the
polygons linearly.

2.2. Volume in H(α). The period coordinates can also be used to define a volume form
on H(α). Consider the linear volume form on C2g+m−1, normalized so that the fundamental
domain of the integer lattice (Z + iZ)2g+m−1 has volume 1. The pullback of this volume
form under the period map gives what is popularly called the Masur-Veech volume form on
H(α). Furthermore, this induces a volume form on H1(α), the set of translation surfaces in
H(α) of area 1 (i.e. collections of surfaces with total Euclidean area of the polgyons 1). The
measure of H1(α) with respect to this induced volume form has been shown to be finite for
any α, independently by Masur [13] and Veech [22].

Twenty years after, Eskin and Okounkov [4] computed the volume of these strata, H1(α).
They counted a particular type of translation surfaces called square-tiled surfaces (STSs),
which are exactly those translation surfaces in which the polygons are axis parallel Euclidean
unit squares. Alternatively, they are exactly those translation surfaces (X,ω) such that their
image under the period map (2.1) is in (Z+ iZ)2g+m−1. In this manner, STSs have a lattice-
like structure in the space of translation surfaces and can be thought of as “integer points”
of strata. Topologically, STSs are also thought of as branched covers of the standard square-
torus with branching over exactly one point.

The idea of the volume computation is motivated by the following simple case. To compute
the surface area of a body in Rn, one can consider a large dilate of the body by R > 1, and
count the integer points inside. Asymptotically, the number of such integer points would be
c ·Rn since Rn is n-dimensional. The surface area of the body is then given by

d(c ·Rn)

dR

∣∣∣∣
R=1

= cn.

To compute the volume of H1(α), one applies the same technique. Applying a homothety
to the codimension 1 subsetH1(α) by n, we get the set of translation surfaces surfaces of area
n. The integer points within this dilated region in H(α) are STSs with at most n squares.
The asymptotics of this count then yields the volume of H1(α).

2.3. Connections to Number Theory. Using the volume computation heuristic described
above, Zorich [25] computed the volume of the first few strata by hands-on counting and
obtained

vol(H1(∅)) = 2 · ζ(2); vol(H1(2)) =
3

4
· ζ(4); vol(H1(1, 1)) =

1

3
· ζ(4)

In general, Eskin and Okounkov [4] showed that the volume of H1(α) is given by

vol(H1(α)) =
(|α|+ 1) limD→∞D

−|α|−1∑D
d=1 Cd(α)

dimH(α)
,

where |α| =
∑
αi, and the Cd are the coefficients of a certain generating function C(α) =∑∞

d=1 Cd(α)qd which they proved to be a quasimodular form, i.e, a polynomial in the Eisen-
stein series Gk(q) for k = 2, 4, 6. Consequently, they showed that

vol(H1(α))

π2g
∈ Q

for any stratum H(α) of genus g translation surfaces.



6 ROBERT J. LEMKE OLIVER, SUNROSE T. SHRESTHA, AND FRANK THORNE

Since Eskin and Okounkov’s volume computations, various counting problems have re-
ceived much attention in the study of STSs, including the enumeration of primitive square-
tiled surfaces, i.e. those STSs whose covering of the square torus does not factor through
another STS. In some ways this problem is analogous to counting primitive vectors in Zn.

In 2006, Hubert and Lelievre [8] and McMullen [15] proved that primitive n-square STSs
in H(2) partition into at most two orbits under the linear action of SL2(Z) (induced by the
linear action of SL2(R)). Subsequently, Lelievre and Royer [12] obtained orbit-wise counting
of primitive n-square STSs for odd n in H(2). In the computation, they obtained and used
closed forms of sums of the type

Sk1,1(n) =
∑

(a,b)∈N2

ka+b=n

σ1(a)σ1(b).

Note that S1
1,1 = S1,1 as defined above, the convolution of σ1 with itself. For k = 2, 4 and

n ≥ 1, they obtained

S2
1,1(n) =

1

12
σ3(n) +

1

3
σ3

(n
2

)
− 1

8
nσ1(n)− 1

4
nσ1

(n
2

)
+

1

24
σ1(n) +

1

24
σ1

(n
2

)
,

S4
1,1(n) =

1

48
σ3(n) +

1

16
σ3

(n
2

)
+

1

3
σ3

(n
4

)
− 1

16
nσ1(n)− 1

4
nσ1

(n
4

)
+

1

24
σ1(n) +

1

24
σ1

(n
4

)
.

They were able to express these sums as linear combinations of sums of powers of divisors
using the fact that the spaces of quasimodular forms on congruence subgroups such as
M4[Γ0(4)] and M2[Γ0(2)] are finite dimensional. Notably, however, since the generating
functions for σa for a even are odd weight Eisenstein series, the analysis of the convolution of
Sa,b for even a resists the theory of quasimodular forms, and hence we use alternate methods
to understand the asymptotics of such sums.

We now describe the specific problem in the enumeration of STSs that motivated us to
study Sa,b for even a.

Every STS can be viewed as a union of horizontal square-tiled cylinders glued together.
One way to analyze an STS in a given stratum is to categorize its horizontal cylinder de-
composition type, popularly termed cylinder diagram that describes how many horizontal
cylinders makes up the surface, and in what ways they are glued together.

In particular, STSs in H(1, 1) (translation surfaces of genus two with two cone points)
partition into exactly 4 cylinder diagrams. Figure 3 shows prototypical examples of surfaces
in the 4 cylinder diagrams named A, B, C and D in H(1, 1).

The counting problem in question is to enumerate, given a fixed n, the number of primitive
STSs in H(1, 1) in each of the four cylinder diagrams and find the individual asymptotic
densities of each them. For example, let the number of primitive n-square surfaces in H(1, 1)
with diagram D be D(n). The second author proved in [21] that

D(n) =
1

6
n(n− 1)J2(n)−

(
(µ · σ2) ∗ (S1,2)

)
(n),

where Jk(n) := nk
∏

p|n

(
1− 1

pk

)
is the Jordan totient function of order k, µ is the Möbius

function and ∗ is Dirichlet convolution. Using Theorem 3.1, the second author proved that

surfaces with diagram D have asymptotic density 1 − ζ(2)ζ(3)
2ζ(5)

≈ 0.047. For similar formulae

and asymptotic densities concerning the other diagrams A, B and C, see [21, Theorem 1.1].
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k

`
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Figure 3. Examples of STSs in the four cylinder diagrams of H(1, 1), here
named A, B, C, D. In each surface, collections of edges with the same la-
bel are glued via translation. For instance, in A, the 3 edges labeled p are
glued to the 3 edges labeled p via translation to form a horizontal cylinder.
Hence, diagram A is characterized by having exactly one (maximal) horizon-
tal cylinder. Similarly, diagram D consists of STSs in H(1, 1) with exactly
three horizontal cylinders while diagram B and C consist of those with two
horizontal cylinders but different gluing pattern. Adding squares to vary the
parameters p, q, r, j, k, l,m gives surfaces with different number of squares in
each of these cylinder diagrams.

An analogous problem for the other genus two stratum H(2) was solved by Zmiaikou [24].
Complete results for strata of genus 3 and above are not known although the density of
one cylinder surfaces (although not necessarily primitive) has been computed by Delecroix-
Goujard-Zograf-Zorich [2].

3. Proof of Theorem 3.1

For the reader’s convenience, we begin with a short proof of Ramanujan’s conjecture, along
similar lines to Halberstam [6]:

Theorem 3.1. For any positive real numbers a and b, as n→∞ there holds

(3.1) Sa,b(n) ∼ Γ(a+ 1)Γ(b+ 1)

Γ(a+ b+ 2)

ζ(a+ 1)ζ(b+ 1)

ζ(a+ b+ 2)
σa+b+1(n).

As with [6] we will obtain a power saving error term. The theorem also holds if a and
b are complex numbers with positive real part, in which case replace a and b by their real
parts everywhere in the error terms and inequalities.

We begin with two lemmas.

Lemma 3.2. For any integer n and residue class k (modm), we have

(3.2)
n−1∑
j=1

j≡k (modm)

ja(n− j)b =
na+b+1

m

Γ(a+ 1)Γ(b+ 1)

Γ(a+ b+ 2)
+Oa,b

(
na+b

)
.

Proof. (Sketch) As in [6], we rewrite the sum in (3.2) as na+b
∑r−1

j=0 f (α0 + jα), where f(t) :=

ta(1 − t)b, for some α0 and r satisfying 0 ≤ α0 < α and |r − α−1| < 1. After a change of
variables, we recognize this as a Riemann sum approximation to the integral defining the
beta function, yielding the result. �
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Lemma 3.3. We have, as a formal identity of Dirichlet series,

∞∑
n=1

∞∑
m=1

(m,n)=1

n−rm−s =
ζ(r)ζ(s)

ζ(r + s)
.

Proof. This follows by rewriting the left side as

∞∑
d=1

µ(d)
∞∑
u=1

∞∑
v=1

(du)−r(dv)−s =
∞∑
d=1

µ(d)d−r−s
∞∑
u=1

∞∑
v=1

u−rv−s.

�

Proof of Theorem 3.1. We rewrite Sa,b(n) in the form

(3.3) Sa,b(n) =
n−1∑
k=1

σa(k)σb(n− k) =
n−1∑
d=1

d−a
n−1∑
e=1

e−b
n−1∑
k=1
d|k

e|n−k

ka(n− k)b.

If (d, e) - n then the inner sum vanishes. Otherwise, the divisibility conditions are equivalent

to demanding that k ≡ k0

(
mod de

(d,e)

)
for some k0, and by Lemma 3.2 the inner sum equals

na+b+1

(
de

(d, e)

)−1
Γ(a+ 1)Γ(b+ 1)

Γ(a+ b+ 2)
+O

(
na+b

)
,

so that

(3.4) Sa,b(n) =
Γ(a+ 1)Γ(b+ 1)

Γ(a+ b+ 2)
na+b+1

n−1∑
d,e=1
(d,e)|n

d−ae−b
(

(d, e)

de
+O(n−1)

)
.

Assuming for now that a, b > 1, the error term of O(n−1) above contributes an error
bounded by

(3.5) � na+b
n−1∑
d,e=1

d−ae−b � na+b.
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The sum in the main term of (3.4) is equal to

∑
w|n

w−a−b−1
n/w−1∑
i,j=1
(i,j)=1

i−a−1j−b−1

=
∑
w|n

w−a−b−1

 ∞∑
i,j=1
(i,j)=1

i−a−1j−b−1 +O

((n
w

)−min(a,b)
)

=
∑
w|n

w−a−b−1
∞∑

i,j=1
(i,j)=1

i−a−1j−b−1 +O(n−min(a,b)).

By Lemma 3.3 the sum over i and j above is ζ(a + 1)ζ(b + 1)/ζ(a + b + 2), while the sum
over w may be identified as n−a−b−1σa+b+1(n). Assembling this in (3.4), we obtain Theorem
1.1 with an error of O(na+b) in the case that a, b > 1.

If a ≤ 1 and b ≥ 1, then in (3.5) the error term is � na+b+1−a(log n)2, the logarithmic
factors being relevant only if a = 1 or b = 1.

If instead a, b < 1, take the sum in (3.5) only through d ≤ D and e ≤ E, making an error
� na+bD1−aE1−b. Rewriting (3.3) in the form

(3.6)
n−1∑
k=1

O(na+b)

∑
d|k

d−a

∑
e|n−k

e−b

 ,

the contribution from d > D is O(na+b+1+εD−a), and the contribution from e > E is similarly
O(na+b+1+εE−b). We therefore make a total error

� na+b+1+ε max(n−1D1−aE1−b, D−a, E−b).

Equating the parameters by choosing D = n
b

b+a−ab and E = n
a

b+a−ab , we obtain an error term

� na+b+1+ε− ab
b+a−ab .

This yields Theorem 3.1 in the remaining cases. �

4. Main theorem and proof

Again, for notational simplicity we assume that b and a are both real; if not, replace b and
a with Re(b) and Re(a) in all inequalities and error estimates. We also assume without loss
of generality that b ≥ a (i.e., that Re(b) ≥ Re(a) if these quantities are complex).

To motivate our strategy, in place of
∑n−1

k=1 σa(k)σb(n − k), consider the problem of es-

timating the simpler sum
∑n−1

k=1 σa(k)(n − k)b. The factor (n − k)b appears to complicate
matters, but via the theory of Riesz means and Mellin transforms it may be interpreted as
a smoothing factor that helps in evaluating of the sum.

In particular, we have the following familiar formula.
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Lemma 4.1. We have, for any Dirichlet series
∑

k a(k)k−s and any complex number b with
Re(b) > 0, the formula

(4.1)
1

Γ(b+ 1)

n∑
k=1

a(k)(n− k)b =
1

2πi

∫ (∑
a(k)k−s

) Γ(s)

Γ(s+ b+ 1)
ns+bds,

where the contour is over any vertical line where the Dirichlet series converges uniformly
and absolutely.

Proof. Switching the order of integration and summation, this reduces to the formula

1

2πi

∫
Γ(s)

Γ(s+ b+ 1)
tsds =

{
0 if 0 < t < 1,

Γ(b+ 1)−1 · (1− t−1)b if t > 1,

for which see [5, 17.43.22]. (It may be proved by shifting the contour infinitely far to the
right or left as appropriate, and evaluating the sum of residues in the latter case.) �

Our goal will be to first manipulate our sum into something resembling (4.1), where the
Dirichlet series

∑
a(k)k−s can be expressed in terms of zeta functions and therefore enjoys

analytic continuation to C. As is familiar in various analytic number theory contexts, this
will then allow us to shift the integral in (4.1) to the left.

Now, we have

Sa,b(n) =
n−1∑
k=1

σa(k)σb(n− k) =
n−1∑
k=1

σa(k)

∑
d|n−k

(
n− k
d

)b
=
∑
d≥1

d−b
n−1∑
k=1
d|n−k

σa(k)(n− k)b

= Γ(b+ 1)
∑
d≥1

d−b
1

2πi

∫
(a+2)

∑
k

d|n−k

σa(k)k−s

 Γ(s)

Γ(s+ b+ 1)
nb+sds,(4.2)

where the integral is taken over the vertical line with Re(s) = a+ 2.

For any real x > 0, let ζ(s, x) be the Hurwitz zeta function, defined for Re(s) > 1 by the
Dirichlet series

ζ(s, x) :=
∞∑
n=0

1

(n+ x)s
.
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We note that∑
k≡n (mod d)

σa(k)

ks
=

∑
k1k2≡n (mod d)

ka1
(k1k2)s

=
∑

1≤e1,e2≤d
e1e2≡n (mod d)

(∑
m1≥0

1

(m1d+ e1)s−a

)(∑
m2≥0

1

(m2d+ e2)s

)

=
1

d2s−a

∑
1≤e1,e2≤d

e1e2≡n (mod d)

ζ(s− a, e1/d)ζ(s, e2/d).

Thus, we conclude that
(4.3)

Sa,b(n) = Γ(b+1)
∑
d≥1

da−b
∑

1≤e1,e2≤d
e1e2≡n (mod d)

1

2πi

∫
(a+2)

ζ(s−a, e1/d)ζ(s, e2/d)
Γ(s)

Γ(s+ b+ 1)
nb+sd−2s ds.

The main goal of this section is to prove the following theorem, essentially a restatement
of Theorems 1.1 and 1.2.

Theorem 4.2. Let a and b be positive real numbers.
1. If b− a > 3/2, then

Sa,b(n) =
Γ(a+ 1)Γ(b+ 1)

Γ(a+ b+ 2)

ζ(a+ 1)ζ(b+ 1)

ζ(a+ b+ 2)
σa+b+1(n)

+
ζ(1− a)ζ(b+ 1)

(b+ 1)ζ(b− a+ 2)
naσb−a+1(n) +

∑
0≤m< b−a

2
− 3

4

Res(−m) +Oε(n
a+b
2

+ 3
4
+ε),

where Res(−m) denotes the residue of the integrand of (4.3) at s = −m, and is given
explicitly by (4.7). It satisfies Res(−m)� nb−m in general, and if a is an odd integer, then
Res(0) = −1

2
ζ(−a)σb(n) and Res(−m) = 0 for each m ≥ 1.

2. If max{a, 2− a} < b ≤ a+ 3
2
, then

Sa,b(n) =
Γ(a+ 1)Γ(b+ 1)

Γ(a+ b+ 2)

ζ(a+ 1)ζ(b+ 1)

ζ(a+ b+ 2)
σa+b+1(n)

+
ζ(1− a)ζ(b+ 1)

(b+ 1)ζ(b− a+ 2)
naσb−a+1(n) +O(n

a+b
2

+1+ε).

After recalling some analytic facts about the Hurwitz zeta function, we begin by ana-
lyzing the poles and residues of the integrand. This constitutes an analysis of the main
terms provided in Theorem 4.2. We then bound the error terms in Theorem 4.2 by means
of the functional equation for Hurwitz zeta functions. This has the net effect of replacing
the summation of Hurwitz zeta functions by a Dirichlet series whose coefficients are cer-
tain Kloosterman sums. This also implicitly gives another evaluation of the residual terms
Res(−m).

Finally, we note that we can obtain the secondary term in a simpler fashion, with no
Kloosterman sums, when a > 1 and b > a+ 2. We explain this in Section 4.4.
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4.1. Properties of the Hurwitz zeta function. The following lemma recalls some basic
properties of the Hurwitz zeta function. For proofs, see [1].

Lemma 4.3. For any real x > 0, the Hurwitz zeta function ζ(s, x) :=
∑∞

n=0(n+x)−s satisfies
the following:

• (Analytic continuation) ζ(s, x) has analytic continuation to all of C, with a simple
pole at s = 1 with residue 1, and holomorphic elsewhere.
• (Functional equation) ζ(s, x) satisfies a functional equation, which for x = e/d ratio-

nal can be written

(4.4) ζ(1− s, e/d) =
Γ(s)

(2π)s

(
eπis/2

∑
k≥1

e−2πike/d

ks
+ e−πis/2

∑
k≥1

e2πike/d

ks

)
.

• (Evaluation at negative integers) For integer values k ≥ 0, there is the special value

(4.5) ζ(−k, x) =
−1

k + 1
Bk+1(x),

where Bk+1(x) denotes the degree k + 1 Bernoulli polynomial.

To estimate the values of ζ(s, x) inside the critical strip, we will use the approximate
functional equation, as proved in the following form by Miyagawa [16].

Lemma 4.4. Assume s = σ + it for some 0 < σ < 1. Set T =
√

2π(|t|+ 1). Then for any
real x > 0,

ζ(s, x) =∑
0≤k≤T

1

(k + x)s
+

Γ(1− s)
(2π)1−s

[
e
πi(1−s)

2

∑
k≤T

e(−kx)

k1−s
+ e

−πi(1−s)
2

∑
k≤T

e(kx)

k1−s

]
+O(t−

σ
2 ) +O(t

σ−1
2 ).

We also note the following consequence of Stirling’s formula.

Lemma 4.5. For any b, we have

Γ(s)

Γ(1 + b+ s)
�b (1 + |t|)−b−1.

4.2. Analysis of poles and residues. We now proceed with our analysis of the integral
(4.3). For each e1, e2, the integrand has right-most pole at s = a+ 1, coming from the factor
of ζ(s− a, e1/d), which has a simple pole with residue 1. The sum of the residues is

Γ(a+ 1)Γ(b+ 1)

Γ(a+ b+ 2)

∑
d≥1

na+b+1

da+b+2

∑
1≤e1,e2≤d

e1e2≡n (mod d)

ζ(a+ 1, e2/d)

=
Γ(a+ 1)Γ(b+ 1)

Γ(a+ b+ 2)

∑
d≥1

na+b+1

db+1

∑
k≥1

#{e1 (mod d) : ke1 ≡ n (mod d)}
ka+1

.

We then note that

#{e1 (mod d) : ke1 ≡ n (mod d)} =

{
(k, d), if (k, d) | (d, n)

0, otherwise.
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Thus, write f := (k, d), and observe that we may assume f | n. So doing, and replacing d
and k by fd and fk, respectively, our expression for the residue at s = a+ 1 becomes

Γ(a+ 1)Γ(b+ 1)

Γ(a+ b+ 2)

∑
f |n

na+b+1

fa+b+1

∑
d,k

(d,k)=1

1

db+1ka+1
=

Γ(a+ 1)Γ(b+ 1)

Γ(a+ b+ 2)

ζ(a+ 1)ζ(b+ 1)

ζ(a+ b+ 2)
σa+b+1(n),

by Lemma 3.3.
Before turning to the residue of the pole at s = 1, we note one consequence of the above

argument. In particular, for any fixed n and b, in the identity proved above,

(4.6)
∑
d≥1

na+b+1

da+b+2

∑
1≤e1,e2≤d

e1e2≡n (mod d)

ζ(a+ 1, e2/d) =
ζ(a+ 1)ζ(b+ 1)

ζ(a+ b+ 2)
σa+b+1(n),

both sides define analytic functions of a for Re(a) > −b, a 6= 0. Thus, this expression must
hold for −b < Re(a) < 0, even though neither ζ(a + 1, x) nor ζ(a + 1) is defined via a
convergent Dirichet series in this region. This will be useful in evaluating the residue at
s = 1, which we now turn to.

Using (4.3) again, the pole at s = 1 is seen to be

Γ(b+ 1)

Γ(b+ 2)

∑
d≥1

nb+1

db−a+2

∑
1≤e1,e2≤d

e1e2≡n (mod d)

ζ(1− a, e1/d) =
na

b+ 1

∑
d≥1

nb−a+1

db−a+2

∑
1≤e1,e2≤d

e1e2≡n (mod d)

ζ(1− a, e1/d).

Since we have assumed a < b, it follows that −a > −b, so by the identity (4.6), this evaluates
to

na

b+ 1

ζ(1− a)ζ(b+ 1)

ζ(b− a+ 2)
σb−a+1(n).

Finally, we evaluate the residue at s = −m, m ≥ 0, arising from the gamma function.
We do so in general, but we only provide a clean simplification of the term when a is an
odd integer. The residues for other values of a do not seem to have a natural multiplicative
structure, for example, so we consider the case that a is odd to be the most interesting.

Using (4.3), the residue at s = −m is

(4.7) (−1)mnb−m
(
b

m

)∑
d≥1

da−b+2m
∑

1≤e1,e2≤d
e1e2≡n (mod d)

ζ(−m− a, e1/d)ζ(−m, e2/d).

When a is an integer, by the special value formula (4.5) the inner summation over e1, e2
in (4.7) becomes

1

(m+ 1)(m+ a+ 1)

∑
1≤e1,e2≤d

e1e2≡n (mod d)

Bm+1(e2/d)Bm+a+1(e1/d).

For fixed d, the substitution (e1, e2) 7→ (d − e1, d − e2) defines an involution on the set of
pairs (e1, e2) with e1, e2 6= d. Since Bk+1(1− x) = (−1)k+1Bk+1(x), if a is odd, it follows for
such e1, e2 that

Bm+1

(d− e2
d

)
Bm+a+1

(d− e1
d

)
= −Bm+1

(e2
d

)
Bm+a+1

(e1
d

)
.
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Consequently, when a is odd, the sum over e1, e2 with e1, e2 6= d cancels, and it remains to
consider only those pairs where one of e1 and e2 equals d. Given that e1 and e2 are restricted
to satisfy the congruence e1e2 ≡ n (mod d), such pairs arise only when d | n. In this case,
the summation over e1 and e2 in (4.7) collapses to

d∑
e1=1

ζ(−m− a, e1/d)ζ(−m) +
d∑

e2=1

ζ(−m, e2/d)ζ(−m− a)− ζ(−m− a)ζ(−m)

= d−m−aζ(−m− a)ζ(−m) + d−mζ(−m)ζ(−m− a)− ζ(−m)ζ(−m− a).

If m ≥ 1, then, since a is odd, every term above is 0, and consequently the residue (4.7) is 0
as well. On the other hand, if m = 0, then the above expression simplifies to d−aζ(0)ζ(−a) =

−d−a

2
ζ(−a). We then find for m = 0 that (4.7) evaluates to

−ζ(−a)

2

∑
d|n

nb

db
= −ζ(−a)

2
σb(n).

4.3. Error analysis via Kloosterman sums. Applying the functional equation (4.4) for
both ζ(1− s− a, e1/d) and ζ(1− s, e2/d), we will be led to consider exponential sums of the
form

Sn(m, k; d) :=
∑

e1,e2 (mod d)
e1e2≡n (mod d)

e
(me1 + ke2

d

)
,

where we write e(x) := e2πix for any real x. By relating these to classical Kloosterman sums
we obtain the following strong bound.

Lemma 4.6. With notation as above, we have

Sn(m, k; d)�ε d
1/2+ε(d, k)1/2(d,m)1/2

for any ε > 0.

Proof. Recall that the classical Kloosterman sums are defined by

K(a, b; q) := S1(a, b; q) =
∑

xy≡1 (mod q)

e

(
ax+ by

q

)
.

We begin by proving the identity

Sn(m, k; d) =
∑

f |(d,n,k)

f K(m, kn/f 2; d/f),

For e1 as in the sum defining Sn(m, k; d), let f = (e1, d), and note that there are no terms
with f - (d, n). Write e1 = e′1f , where (e′1, d/f) = 1. Let e′2 be such that e′1e

′
2 ≡ 1 (mod d/f),

so that the allowed values of e2 (mod d) are given by e2 = e′2n/f + jd/f for 0 ≤ j ≤ f − 1.
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Thus, we find

Sn(m, k; d) =
∑
f |(d,n)

∑
e′1e
′
2≡1 (mod d

f )

e

(
me′1f + kne′2/f

d

) f−1∑
j=0

e

(
jk

f

)

=
∑

f |(d,n,k)

f
∑

e′1e
′
2≡1 (mod d

f )

e

(
me′1 + kne′2/f

2

d/f

)

=
∑

f |(d,n,k)

f K(m, kn/f 2; d/f),

as claimed.
Now apply the Weil bound |K(a, b; q)| ≤ τ(q)q1/2gcd(a, b, q)1/2 to conclude

|Sn(m, k; d)| ≤
∑

f |(d,n,k)

d1/2f 1/2τ
(d
f

)
gcd
(
m,

kn

f 2
,
d

f

)1/2
�ε d

1/2+ε(d, k)1/2(d,m)1/2,

as desired. �

We first assume that b > a+3/2. We will shift the contour in (4.3) to the line Re(s) = 1−δ
for some δ > 1. Using Stirling’s formula, along the line Re(s) = 1−δ for δ > 1, the integrand
in (4.3) is

�a,b,δ (1 + |t|)a−b+2δ−2
∑
d≥1

nb+1−δ

db−a+2−2δ

∑
k,m≥1

|Sn(m, k; d)|+ |Sn(m,−k; d)|
mδkδ+a

.

The integral (4.3) thus converges absolutely on the line Re(s) = 1−δ provided that δ < b−a+1
2

.
This is compatible with the assumption that δ > 1 by the assumption b > a+ 3/2.

Using Lemma 4.6, the integral in (4.3), evaluated on the line Re(s) = 1− δ, is

�a,b,δ,ε

∑
d≥1

nb+1−δ

db−a+
3
2
−2δ−ε

,

by the assumption that δ > 1. Since b > a + 3
2
, we take δ = b−a

2
+ 1

4
− ε and conclude the

integral is

�a,b,ε n
a+b
2

+ 3
4
+ε
∑
d≥1

1

d1+ε
�a,b,ε n

a+b
2

+ 3
4
+ε.

Together with the analysis of the poles, this yields the first part of Theorem 4.2.
Now, assume that b > max{a, 2 − a}. Our goal in this case is to show that the contour

in (4.3) may be shifted to the line Re(s) = σ for some 0 < σ < 1. This is equivalent to
obtaining sufficient cancellation in the series

(4.8)
∑
d≥1

da−b−2s
∑

1≤e1,e2≤d
e1e2≡n (mod d)

ζ(s− a, e1/d)ζ(s, e2/d)

on the line Re(s) = σ. We shall find it convenient to assume that σ < a so that ζ(s−a, e1/d)
is related to an absolutely convergent Dirichlet series via the functional equation (4.4). For
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ζ(s, e2/d), we do not have this luxury, so we instead invoke the approximate functional
equation of Lemma 4.4.

In principle, in applying the functional equation for ζ(s − a, e1/d) and the approximate
functional equation for ζ(s, e2/d), we are forced to consider six summations, corresponding
to pairing each of the two terms in (4.4) with the three terms in Lemma 4.4. However, the
two summations in (4.4) have the same shape as each other, as do the second and third
summations in Lemma 4.4. Consequently, it essentially suffices to consider only two types of
summation, corresponding to pairing the first term from Lemma 4.4 with a term from (4.4)
or pairing one of the latter two terms from Lemma 4.4 with a term from (4.4).

In the first of these two cases, where the first term of Lemma 4.4 for ζ(s, e2/d) is paired
with one of the terms in (4.4) for ζ(s− a, e1/s), we are led to consider series of the form

∑
d

1

db−a+2s

∑
1≤e1,e2≤d

e1e2≡n (mod d)

∑
0≤k≤T

∑
m≥1

e
(
me1
d

)
(k + e2/d)sm1+a−s(4.9)

=
∑
d

1

db−a+s

∑
k≤d(T+1)

∑
m≥1

1

ksm1+a−s

∑
e1k≡n (mod d)

e
(me1

d

)
,

where, as in Lemma 4.4, we have set T =
√

2π(1 + |t|). The exponential sum in (4.9) is
0 unless (d, k) | (n, d,m), in which case it is of absolute value (d, k). Thus, since we have
assumed Re(s) = σ < a, (4.9) is bounded by

∑
d≥1

1

db−a+σ

∑
k≤d(T+1)

∑
m≥1

(d, k)

kσm1+a−σ �
∑
d≥1

1

db−a+σ

∑
f |d

f 1−σ
(
Td

f

)1−σ

(4.10)

� T 1−σ
∑
d≥1

1

db−a+2σ−1−ε

� T 1−σ

� (1 + |t|)
1−σ
2 ,

provided that σ > 1 − b−a
2
. Since we have assumed b > 2 − a, there is some σ < a for

which this holds. Using Stirling’s formula, the additional factors in (4.4) as applied to
ζ(s−a, e1/d) coming from the gamma function and exponentials may be bounded by O((1+

|t|)a−σ+ 1
2 ). Altogether, the contribution to (4.8) from the first term in the approximate

functional equation for ζ(s, e2/d) is seen to be O((1 + |t|)a− 3σ
2
+1).

We now consider the second type of summation, arising from the second and third terms
in the approximate functional equation. In particular, we are led to estimate

∑
d

1

db−a+2s

∑
m≥1

∑
k≤T

1

k1−sma+1−s

∑
1≤e1,e2≤d

e1e2≡n (mod d)

e

(
±me1 ± ke2

d

)
(4.11)

=
∑
d

1

db−a+2s

∑
m≥1

∑
k≤T

Sn(±m,±k; d)

k1−sma+1−s .
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We appeal to Lemma 4.6 to conclude that (4.11) is bounded by∑
d≥1

1

db−a+2σ

∑
m≥1

∑
k≤T

d1/2+ε(m, d)1/2(k, d)1/2

k1−σma+1−σ �
∑
d≥1

1

db−a+2σ−1/2−ε

∑
f |d

fσ−
1
2

(
T

f

)σ
(4.12)

� T σ
∑
d≥1

1

db−a+2σ−1/2−ε

� T σ

� (1 + |t|)
σ
2 .

Once again, the additional factors in (4.4) are of size O((1+ |t|)a−σ+ 1
2 , while those in Lemma

4.4 are seen to be O((1 + |t|) 1
2
−σ). We thus find that terms arising from the second and

third summations in Lemma 4.4 contribute an amount that is O((1 + |t|)a− 3σ
2
+1) to (4.8),

matching the contribution from those terms arising from the first summation in Lemma 4.4.
The error terms in Lemma 4.4 contribute a smaller amount, and we conclude that on the
line Re(s) = σ,

(4.13)
∑
d≥1

da−b−2s
∑

1≤e1,e2≤d
e1e2≡n (mod d)

ζ(s− a, e1/d)ζ(s, e2/d)� (1 + |t|)a−
3σ
2
+1,

provided that 1− b−a
2
< σ < a.

Thus, estimating the quotient of gamma factors by Lemma 4.5, the integrand in (4.3) is

Oa,b,σ(nb+σ(1 + |t|)a−b− 3σ
2 ). The integral therefore converges absolutely on the line Re(s) =

1− b−a
2

+ ε for any ε > 0. This yields the second part of the theorem when max{a, 2− a} <
b ≤ a+ 3/2.

4.4. A simpler version of the error analysis. We present an alternative treatment of
the error that avoids the complications of the last section, obtaining a weaker error term of
o(nb+1) for some ranges of the parameters. In particular, we assume that a > 1 and b > a+2.

Shift the contour in (4.3) to Re(s) = 1 − ε for small ε > 0. We have ζ(s − a, e1/d) �
(1 + |t|)a− 1

2
+ε by the functional equation and Stirling’s formula; we have ζ(s, e2/d) � (1 +

|t|)ε ·
(
e2
d

)−1
by the convexity bound, with the term

(
e2
d

)−1
arising from the first term (e2/d)−s

of ζ(s, e2/d); and we again use Lemma 4.5 to estimate the quotient of gamma functions.
We conclude that the integrand is

�
∑
d≥1

nb+1−ε

db−a−1−2ε
(1 + |t|)a−b−

3
2
+2ε.

This yields an error term of O(nb+1−ε) provided that the sum over d and the integral over t
converge. These conditions are satisfied for some ε > 0 if b− a > 2.

5. Possible improvements

As made clear in the discussion surrounding Lemma 4.6, the error term in Theorem 1.2 is
controlled by sums of Kloosterman sums K(r, s; q), where q denotes the modulus. The Weil
bound implies that K(r, s; q)� q1/2+ε, and this is a key ingredient in the proof. However, it
is expected that much greater cancellation holds on average. We expect that if the estimate
K(r, s; q) � qθ+ε holds on average for some 0 ≤ θ ≤ 1/2, then the error term in Theorem
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1.2 may be improved to O(n
a+b
2

+ 1+θ
2

+ε). Assuming a conjecture of Selberg [19], the value
θ = 0 is likely admissible, and this would yield a Ramanujan–Deligne quality error term in
Theorem 1.2. Using work of Deshouillers and Iwaniec [3] on sums of Kloosterman sums,
we speculate it may be possible to improve the error in Theorem 1.2, perhaps to the level

O(n
a+b
2

+ 7
12

+ε). Alternatively, Shparlinski suggested to us that his work with Zhang [20] on
cancellation amongst Kloosterman sums to prime moduli could be readily generalized to the
composite case without difficulty, again leading to possible improvements. We leave these
questions for future work.

Finally, as P. Humphries pointed out to us, these questions can also be addressed via
the spectral theory of automorphic forms. We refer to Kuznetsov [11] and Motohashi [17]
for some related results along these lines, including a treatment by Motohashi of the case
a = b = 0. Humphries suggested to us that these techniques may be able to address complex
a and b in greater generality, and again we leave this question for future work.
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