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Abstract. Let Nn(X) denote the number of degree n number fields with discriminant
bounded by X. In this note, we improve the best known upper bounds on Nn(X), finding

that Nn(X) = O(Xc(logn)2) for an explicit constant c.

1. Introduction and statement of results

Let Nn(X) := #{K/Q : [K : Q] = n, |Disc(K)| ≤ X} be the number of degree n
extensions of Q with bounded absolute discriminant Disc(K). It follows from the Hermite–
Minkowski theorem that Nn(X) is finite, and in fact bounded by On(Xn). This was sub-
stantially improved by Schmidt [Sch95], who shows that Nn(X) � X(n+2)/4, by Ellenberg
and Venkatesh [EV06], who obtain an exponent that is O(exp(c

√
log n)) for some constant c,

and Couveignes [Cou19], who shows that Nn(X) � Xc(logn)3 for some unspecified constant
c.

Our main theorem improves on these results.

Theorem 1.1. There is a constant c > 0 such that Nn(X) �n X
c(logn)2 for every n ≥ 6.

Explicitly, we may take c = 1.564, and for every c′ > 1/(4(log 2)2) ≈ 0.52, there is some

N > 0 such that Nn(X)�n X
c′(logn)2 for every n ≥ N .

The proof of Theorem 1.1 follows the same general strategy employed by Ellenberg and
Venkatesh and by Couveignes; see Section 2 for a loose discussion of the differences.

In fact, Theorem 1.1 follows straightforwardly from a numerical computation and by com-
bining the Schmidt bound with the following theorem that is somewhat more flexible than
Theorem 1.1.

Theorem 1.2. Let n ≥ 2.
1) Let d be the least integer for which

(
d+2
2

)
≥ 2n+ 1. Then

(1.1) Nn(X)�n X
2d− d(d−1)(d+4)

6n � X
8
√
n

3 .

2) Let 3 ≤ r ≤ n and let d be such that
(
d+r−1
r−1

)
> rn. Then Nn(X)�n,r,d X

dr.

Optimizing the choice of d, the second case of Theorem 1.2 yields an exponent that is
O(r2n1/(r−1)) with an absolute implied constant. We note that, in applying Theorem 1.2 to
deduce Theorem 1.1, we will choose r to be a suitable multiple of log n.

This improves upon the Schmidt bound Nn(X)� X
n+2
4 for n ≥ 95. For n ≤ 5, asymptotic

formulas of the form Nn(X) ∼ cnX were proved by Davenport-Heilbronn [DH71], Cohen-
Diaz y Diaz-Olivier [CDyDO02], and Bhargava [Bha05, Bha10]; although our method still
applies in these cases, it yields a substantially weaker result. In general, for 6 ≤ n ≤ 94,
the Schmidt bound remains the best known, but improvements are available for fields with
restricted Galois structure due to work of Dummit [Dum18].
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2. Setup for the proof

We begin by recalling the central idea of Schmidt’s proof in language that will be of use to
us. Let K be a number field of degree n. The ring of integers OK is a lattice inside Minkowski
space K∞ := K ⊗ R ' Rn with covolume cK

√
Disc(K), where cK is a constant depending

only on the signature of K. Similarly, the set O0
K of integers in OK with trace 0 forms a

lattice inside the trace 0 subspace of K∞ with covolume c′K
√

Disc(K) for some c′K , and it

follows that there is some α ∈ O0
K all of whose embeddings are at most O(Disc(K)

1
2n−2 ). We

assume for convenience of exposition that Q(α) = K; if not, Schmidt proceeds by induction,
counting both the possible extensions F = Q(α)/Q and the possible K/F . The minimal
polynomial pα(x) of α is given by

pα(x) =
∏
σ

(x− σ(α)) = xn + a2(α)xn−2 + · · ·+ an(α),

where the coefficients ai are integers satisfying |ai(α)| � Disc(K)
i

2n−2 and the product runs
over the n embeddings σ : K ↪→ C. It follows that, ignoring the issue of subfields, the number
of degree n fields with discriminant at most X may be bounded by the number of integral

polynomials f(x) = xn + a2x
n−2 + · · · + an where each ai is bounded by O(X

i
2n−2 ). The

number of such polynomials is O(X
n+2
4 ), and this is Schmidt’s bound.

The key idea of Ellenberg and Venkatesh’s improvement, on which our work as well as
Couveignes’s is based, is that there are more invariants of small height attached to tuples
of integers inside O0

K . For example, suppose α and β are elements of O0
K whose maximum

embedding is bounded by some Y . Then α and β (and hence K) are determined by their
minimal polynomials, which in turn are determined by the traces Tr(αi) and Tr(βi) for
1 ≤ i ≤ n. These traces are integers of size O(Y i), and it follows that there are most

O(Y 2
∑n

i=2 i) = O(Y n2+n−2) possible pairs (α, β). It is possible to do much better by exploiting
mixed traces Tr(αiβj), however.

By regarding the n embeddings α(1), . . . , α(n) and β(1), . . . , β(n) of α and β as variables,
we might hope that once 2n of these mixed traces are specified, it is possible to recover
the values α(1), . . . , α(n), β(1), . . . , β(n), and hence the pair (α, β) and the field K. There are(
d+2
2

)
−1 mixed traces with i+j ≤ d, so in particular we might hope that the traces Tr(αiβj)

with i+ j ≤ d ≈ 2
√
n suffice to determine α and β. Since Tr(αiβj)� Y i+j, this would yield

that there are at most Y O(n3/2) such pairs.
In Lemma 3.1, we prove that the set of 2n traces Tr(αiβj) with smallest possible i + j

suffices to determine the pair for a “generic” choice of α and β. We show that every field
has such a choice of α and β with small height, and this leads to the first case of Theorem
1.2. This also provides the first insight into our improvement over the work of Ellenberg and
Venkatesh, who only prove in this context that a set of roughly 8n traces suffices.

Consider now an r-tuple α1, . . . , αr ∈ OK , with r ≥ 3. By a similar heuristic as above, we
might hope that once rn different traces Tr(αi11 . . . α

ir
r ) are specified, the tuple α1, . . . , αr is

determined. We show that this is the case in Lemma 3.3 for a set of rn traces with i1+· · ·+ir
nearly as small as possible. By contrast, Ellenberg and Venkatesh only show that a set of
roughly 22r−1n traces suffices. Couveignes’s work is morally similar but structurally a little
different; instead of working with mixed traces, he constructs a set of r polynomials, each
with about rn coefficients, that determines each number field. Thus, his approach relies on
taking roughly r2n invariants of a number field.
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By expressing the trace as a sum over embeddings, we may regard the mixed traces
Tr(αi11 . . . α

ir
r ) as being governed by polynomial maps from (An)r to A1. The key lemma we

use to determine the αi from these traces is then the following.

Lemma 2.1. For N ≥ 1, let f1, . . . , fN be polynomials from AN to A1. Suppose that the de-
terminant of the matrix ( ∂fi

∂xj
)1≤i,j≤N is not identically 0. Then there is a nonzero polynomial

P : AN → A1 such that whenever P (x0) 6= 0 for some x0 ∈ AN , the variety V := Vx0 cut out
by the equations f1(x) = f1(x0), . . . , fN(x) = fN(x0) consists of at most

∏
i(deg fi) points.

Proof. Let F : AN → AN be defined by F (x) = (f1(x), . . . , fN(x)), so that Vx0 = F−1(F (x0)).
F is dominant, since for example the image of a Euclidean neighborhood of any x for which
det
(
∂fi
∂xj

)
(x) 6= 0 is a neighborhood of F (x). By [Mum99, Chapter 1, §8, Theorem 3], there

is a Zariski open set U ⊆ im(F ) such that F−1(y) is of dimension zero for y ∈ U . Choosing
a polynomial Q vanishing on the complement of U , P = Q ◦ F is our desired polynomial.

Therefore, when P (x0) 6= 0, the variety V := Vx0 has dimension 0 and consists of a
finite number of points. The quantitative bound follows by using Bézout’s theorem [Har77,
Theorem I.7.7] to iteratively bound the number of affine components of the projectivization
of V

(
f1 − f1(x0), . . . , fm − fm(x0)

)
for each m ≤ N . �

3. The dimension of mixed trace varieties

In this section, we show that the varieties associated to fixed values of the “mixed traces”
introduced in the previous section typically have dimension 0. We do so over C. Thus, let
n ≥ 2 be an integer, corresponding to the degree of the extensions we wish to count, and let
r ≥ 2 be an integer corresponding to the number of elements of which we wish to take the
mixed trace. To an r-tuple a = (a1, . . . , ar) ∈ Zr≥0, we associate the function

Trn,a : (An)r → A1

given by

Trn,a(x1, . . . ,xr) :=
n∑
i=1

xa11,i . . . x
ar
r,i.

We let |a| = a1 + · · ·+ ar denote the total degree of Trn,a. Motivated by Lemma 2.1, let

DTrn,a :=
( ∂

∂xk,i
Trn,a

)
1≤k≤r
1≤i≤n

denote the (row) vector of partial derivatives of Trn,a (i.e. its gradient). Our goal, then,
is to find a set A of rn different vectors a with small combined total degree for which the
determinant of the matrix

(DTrn,a)a∈A

is not identically 0. We begin by considering the case r = 2, both to clarify ideas and because
we obtain an essentially optimal result in this case.

Lemma 3.1. Let n ≥ 1, and let An = (a1, · · · , a2n) consist of the first 2n elements of the
ordered set {(1, 0), (0, 1), (2, 0), (1, 1), (0, 2), . . . }, that is, the set of ordered pairs (i, j) ordered
first by total degree i+ j, then by j.

Then with notation as above, det(DTrn,a)a∈An 6= 0.
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Proof. Induction on n, with det(DTr1,a)a∈A1 = 1.
Every entry in the matrix D = (DTrn,a)a∈A is a monomial; the (k, n)-entry Dk,n equals

ak,1x
ak,1−1
1,n x

ak,2
2,n , and Dk,2n = ak,2x

ak,1
1,n x

ak,2−1
2,n . We write det(D) an alternating sum of products

of these monomials. For each k and `, the contribution of those terms involving either Dk,n

and D`,2n, or alternatively Dk,2n and D`,n, is

± det

[
ak,1x

ak,1−1
1,n x

ak,2
2,n ak,2x

ak,1
1,n x

ak,2−1
2,n

a`,1x
a`,1−1
1,n x

a`,2
2,n a`,2x

a`,1
1,n x

a`,2−1
2,n

]
· δk,`(3.1)

=± det

[
ak,1 ak,2
a`,1 a`,2

]
· xak,1+a`,1−11,n x

ak,2+a`,2−1
2,n · δk,`,(3.2)

where δk,` is the relevant (2n−2)× (2n−2) matrix minor, which doesn’t involve x1,n or x2,n.
By construction, if ak + a` = a2n−1 + a2n in Z2, then {k, `} = {2n − 1, 2n}. Since

the exponents of x1,n and x2,n in (3.2) are given by ak + a` − (1, 1), this implies that the
contribution (3.2) from (l, `) = (2n − 1, 2n) is not cancelled by any other contribution. It
therefore suffices to prove that this contribution is not zero.

But this is immediate: the 2 × 2 determinant in (3.2) is nonzero because consecutive
elements of An are never scalar multiples of one another, and δ2n−1,2n = det(DTrn−1,a)a∈An−1 .

�

Example. Let n = 3. Then A = {(1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0)}. The associated
matrix is

D =



1 1 1 0 0 0

0 0 0 1 1 1

2x1,1 2x1,2 2x1,3 0 0 0

x2,1 x2,2 x2,3 x1,1 x1,2 x1,3

0 0 0 2x2,1 2x2,2 2x2,3

3x21,1 3x21,2 3x21,3 0 0 0


.

The boxed entries comprise the 4 × 4 and 2 × 2 matrices in (3.2) for (k, `) = (2n − 1, 2n),
whose determinants are nonzero and multiply to a summand of det(D).

For larger r, we apply a theorem due to Alexander and Hirschowitz [AH95], that we state
in the following manner to be consistent with our notation. (See also [BO08].) This theorem
is also an important ingredient in Couveignes’s work.

Theorem 3.2 (Alexander–Hirschowitz). Let V denote the complex vector space of homoge-
neous degree d polynomials in r variables. Given n general points in Pr−1, let W ⊆ V denote
the subspace of polynomials whose first order partial derivatives all vanish at each of the n
points. Then W has the “expected” codimension in V , namely

codimW = min{dimV, rn},
except for the following cases:

• d = 2, 2 ≤ n ≤ r − 1;
• d = 3, r = 5, n = 7;
• d = 4, (r, n) ∈ {(3, 5), (4, 9), (5, 14)}.

With Theorem 3.2, we are able to find a good choice of the set A in general.
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Lemma 3.3. Let n ≥ 6, 3 ≤ r ≤ n, and suppose d is such that
(
d+r−1
r−1

)
> rn. Then there is

a set A of rn vectors a ∈ Zr≥0 of total degree d for which the determinant det(DTrn,a)a∈A 6= 0.

Proof. As in Theorem 3.2, let V denote the vector space of complex homogeneous polyno-
mials in r variables with degree d. Choose an arbitrary set of n general points in Pr−1, and
let W denote the subspace with vanishing first order partials at each. Under the hypotheses
of Lemma 3.3, W has codimension rn, since dimV =

(
d+r−1
r−1

)
and none of the exceptional

cases of Theorem 3.2 apply.
Let Md denote the set of monomials of degree d, which naturally forms a basis for V .

For each m ∈Md, form an rn-dimensional column vector vm by evaluating each of the first
order partials of m at the n general points. Let M denote the rn ×

(
d+r−1
r−1

)
matrix whose

columns are the vectors vm for m ∈Md. The subspace W may be identified with the kernel
of M , and since W has the expected codimension, it follows that M has full rank, namely
rank(M) = rn.

Choose an rn × rn minor M ′ of M of full rank. The columns of M ′ are indexed by
monomials of total degree d that may be identified with elements of Zr≥0. Let A consist
of those associated elements in Zr≥0. Then M ′ is the transpose of the matrix (DTrn,a)a∈A,
evaluated at our set of n points, and since det(M ′) 6= 0 we have det(DTrn,a)a∈A 6= 0 as
well. �

Remark. In Lemma 3.3 (and hence also Theorem 1.2) we may also allow
(
d+r−1
r−1

)
= rn,

provided that (d, r, n) is not (3, 5, 7) or (4, 5, 14).

4. Bounds on the number of number fields

Let K/Q be a number field of degree n. Then K may be embedded into Cn. Lemmas 3.1
and 3.3 produce, for any r ≥ 2, a set A ∈ Zr≥0 for which det(DTrn,a)a∈A 6= 0. By Lemma
2.1, there is a hypersurface outside of which the variety cut out by specifying the mixed
traces Trn,a for a ∈ A consists of a bounded number of points. The following lemma, due to
Ellenberg and Venkatesh [EV06, Lemma 2.4], will be used to show that there is an r-tuple of
integers in K, at least one of which cuts out K, of small height that avoids this hypersurface.

Lemma 4.1 (Ellenberg–Venkatesh). Let P : AN → A1 be a polynomial of degree d. Then
there are integers a1, . . . , aN with |ai| ≤ (d+ 1)/2 for which P (a1, . . . , aN) 6= 0.

Lastly, we shall make use of the following upper bound on the height of the largest
Minkowski minimum of a number field that follows from work of Bhargava, Shankar, Taniguchi,
Thorne, Tsimerman, Zhao [BST+].

Lemma 4.2. Given a number field K of degree n, there is an integral basis {β1, . . . , βn} of
its ring of integers for which |βi| �n Disc(K)1/n in each archimedean embedding.

Proof of Theorem 1.2. Consider first the case r ≥ 3 and let d be as in the statement of the
theorem. Then by Lemma 3.3, there is a set A of a ∈ Zr≥0 of size rn and degree d for
which det(DTrn,a)a∈A 6= 0. By Lemma 2.1, there is a polynomial P : (An)r → A1 such that
whenever P (x0) 6= 0, the variety

{x ∈ (An)r : Trn,a(x) = Trn,a(x0) for all a ∈ A}
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consists of Od,r,n(1) points. Given x ∈ (An)r, we also define Disc(1)(x) to denote its discrim-
inant in the first copy of An, i.e.

Disc(1)(x) :=
∏
i,j≤n
i 6=j

(x1,i − x1,j).

Now, let K be a number field of degree n and discriminant at most X. By fixing an
embedding K ↪→ Cn, we may regard an r-tuple of integers α1, . . . , αr ∈ OK as giving rise
to a point xα ∈ (An)r. Combining Lemmas 4.1 and 4.2, we find there are α1, . . . , αr ∈ OK
with each |αi| �n,d,r X

1/n in each archimedean embedding for which the associated point

xα satisfies both P (xα) 6= 0 and Disc(1)(xα) 6= 0. Since Disc(1)(xα) 6= 0, α1 cuts out a
degree n extension of Q, which must therefore be equal to K. It follows that any such K
is determined, up to On,r,d(1) choices, by the rn values Trn,a(xα) for a ∈ A. Each of these
quantities is an integer of size O(Xd/n), whence there are O(Xrd) choices in total, and hence
O(Xrd) number fields K.

The case r = 2 is similar, except appealing to Lemma 3.1 for the construction of the set A,
and noting that Trn,a(xα) is an integer of size O(X |a|/n). For the set A produced by Lemma
3.1, we find ∑

a∈A

|a| = 2nd− d(d− 1)(d+ 4)

6
,

where d is the least integer for which
(
d+2
2

)
≥ 2n+ 1. This yields the remaining case of the

theorem; for the second inequality in (1.1), take d = b2
√
nc. �

Proof of Theorem 1.1. We describe an asymptotically optimal choice of r and d as n → ∞
in the second part of Theorem 1.2. This will show that the exponent in Theorem 1.1 may
be taken to be (1/(4(log 2)2) + o(1))(log n)2 as n→∞.

Thus, let n be large. We choose d = α log n and r− 1 = β log n for constants α and β. So
doing, a computation with Stirling’s formula reveals

(4.1) log

(
d+ r − 1

r − 1

)
= ((α + β) log(α + β)− α logα− β log β) log n+O(log log n).

On the other hand, log(rn) = log n + O(log log n), so we find that asymptotically optimal
choices of α and β will satisfy

(α + β) log(α + β)− α logα− β log β = 1 +O

(
log log n

log n

)
.

This expression is symmetric in α and β, as is the exponent dr = αβ(log n)2 + O(log n)
produced by Theorem 1.2. As a Lagrange multipliers computation shows, the exponent is
minimized by choosing α = β = 1/2 log 2. This yields the second part of the theorem.

The first part of the theorem (with c = 1.564) follows for n < e12 by a numerical com-
putation, with n = 805 being the bottleneck. For n > e12 we choose d = r − 1 = dlog(n)e,
apply the bound

(
2d
d

)
≥ 4d

2
√
d
, and verify that

(
2d
d

)
≥ rn and dr < 1.564(log n)2 with this

choice. �
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5. Scope for improvement

We list here three possible directions in which our results may be improved.
First, for r ≥ 3, it would be desirable to incorporate mixed traces of total degree at

most d, as opposed to restricting attention to mixed traces of total degree exactly d as is
done in Lemma 3.3. An optimistic version of this improvement would imply the bound
Nn(X) � Xdr, say, whenever

(
d+r
r

)
≥ rn. This would substantially improve the efficiency

of the method for fixed r, as this exponent would be O(r2n1/r), as opposed to that obtained
from Theorem 1.2, which is O(r2n1/(r−1)). It would not, however, yield an improved version
of Theorem 1.1.

Second, it would be worthwhile to incorporate greater input from the geometry-of-numbers.
For r < n, there are linearly independent r-tuples of integers α1, . . . , αr ∈ OK for which

|αi| � Disc(K)
1

2(n−r+1) , which for r � log(n) is significantly smaller than the bound Disc(K)1/n

coming from Lemma 4.2. However, in applying Lemma 4.1, it is a priori necessary to work
with the full ring of integers, and not a small rank sublattice, in which case Lemma 4.2 is
essentially optimal. It would be interesting to exclude the possibility that the hypersurface
outside of which a mixed trace variety is a complete intersection contains these small rank
sublattices for varying K. This would lead to an improvement in the exponents in Theorems
1.1 and 1.2 essentially by a factor of 2. The authors hope to return to this question in future
work.

Lastly, unlike in the case of Schmidt’s work, which considers minimal polynomials, it is not
typically the case that algebraic points on a mixed trace variety cut out degree n extensions,
even when the variety is a complete intersection. That is, if integers ma are chosen for
each a ∈ A, as is done in the proof of Theorem 1.2, the points {x ∈ (An)r : Trn,a(x) =
ma for all a ∈ A} need not define a degree n field extension of the rationals. For example,
let n = 5 and r = 2, and consider the set A produced by Lemma 3.1. Choosing integers
ma ∈ [−10|a|, 10|a|] randomly in Magma and performing a Groebner basis computation, the
authors find that a “typical” choice of {ma : a ∈ A} gives rise to solutions that define a
degree 30 extension of the rationals that may be realized as a degree 5 extension of a sextic
field F/Q. Thus, integers corresponding to the mixed traces of elements in quintic fields
should be such that the polynomial typically defining this sextic field admits a rational root.
More generally, the authors speculate that mixed traces of r-tuples of integers in degree n
extensions lie on thin subsets of Zrn in the sense of Serre, and that an understanding of these
subsets could yield a substantial improvement to the resulting bounds on number fields.
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