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Abstract. Let A be an abelian variety over a number field F and let p be a prime. Cohen-Lenstra-
Delaunay-style heuristics predict that the Tate-Shafarevich group X(As) should contain an element
of order p for a positive proportion of quadratic twists As of A. We give a general method to prove
instances of this conjecture by exploiting independent isogenies of A. For each prime p, there is
a large class of elliptic curves for which our method shows that a positive proportion of quadratic
twists have nontrivial p-torsion in their Tate-Shafarevich groups. In particular, when the modular
curve X0(3p) has infinitely many F -rational points the method applies to “most” elliptic curves
E having a cyclic 3p-isogeny. It also applies in certain cases when X0(3p) has only finitely many
rational points. For example, we find an elliptic curve over Q for which a positive proportion of
quadratic twists have an element of order 5 in their Tate-Shafarevich groups.

The method applies to abelian varieties of arbitrary dimension, at least in principle. As a proof
of concept, we give, for each prime p ≡ 1 (mod 9), examples of CM abelian threefolds with a
positive proportion of quadratic twists having elements of order p in their Tate-Shafarevich groups.

1. Introduction

Let A be an abelian variety over a number field F and let n be a positive integer. The n-Selmer
group Seln(A) sits in the short exact sequence

0→ A(F )/nA(F )→ Seln(A)→X(A)[n]→ 0

between the weak Mordell-Weil group and the n-torsion of the Tate-Shafarevich group X(A).
For the definitions of these groups, see [25, §X]. Thus, the presence of n-torsion in X(A) is the
obstruction to computing the rank of the group of rational points A(F ) via n-descent.
One is immediately led to ask how often the group X(A)[n] is nontrivial as A varies. Consider,

for example, the quadratic twist family As for s ∈ F ∗/F ∗2, obtained by twisting A by the different
quadratic characters of Gal(F/F ). There is a natural notion of height for s ∈ F ∗/F ∗2 (see [3]); when
F = Q, the height is the absolute value of the unique squarefree integer in the class. For quadratic
twist families, one conjectures that there is often such an obstruction coming from X(As)[n].

Conjecture 1.1. If A is an abelian variety over a number field F and n ≥ 2 is an integer, then
X(As) has an element of order n for a positive proportion of s ∈ F ∗/F ∗2, when ordered by height.

A more precise conjecture when A is an elliptic curve has been formulated by Delaunay [7], but
to date, there is no example of any abelian variety for which even the weaker Conjecture 1.1 is
known to hold for any n that is not a power of two. When n = 2, the only examples of A for which
Conjecture 1.1 has been established either require A to be an elliptic curve over Q with full rational
two-torsion or for A to admit such a curve as an isogeny factor [9, 26, 28], with Smith’s work [26]
largely confirming the full 2-power case of Delaunay’s conjecture for such curves. Away from 2,
little is known. If n = 3, 5, or 7 and the elliptic curve E/Q has a rational n-torsion point, then
X(Es)[n] 6= 0 for infinitely many twists [1], but this result falls far short of obtaining a positive
proportion. It is also known that the 3- and 5-parts of X can be arbitrarily large for curves over
Q [5, 10], and that the p-part can be arbitrarily large for curves over some number field depending
on p [16].
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The purpose of the paper at hand is to establish several cases of Conjecture 1.1 when n is not a
power of two and for abelian varieties other than elliptic curves over Q. Our first theorem proves
the existence of elliptic curves for which Conjecture 1.1 holds with n = 3.

Theorem 1.2. Suppose E → E′ is a cyclic 9-isogeny of elliptic curves over Q. Then either a
positive proportion of the twists Es have rank 0 and |X(Es)[3]| ≥ 9, or a positive proportion of the
twists E′s have rank 0 and |X(E′s)[3]| ≥ 9.

While we enjoy the clean statement of Theorem 1.2, the method typically applies to both E and
E′. This is made clear by the quantitative version, Theorem 4.1 below. In fact, one consequence
of Theorem 4.1 is that for any fixed number field F and r ≥ 1, almost all elliptic curves E with a
cyclic 9-isogeny defined over F will have a positive proportion of twists Es with |X(Es)[3]| ≥ 9r.
For some of these curves, this positive proportion may in fact be taken to be a vast majority:

Theorem 1.3. Let F be a number field and let r ≥ 1. For any ε > 0, there are infinitely many
elliptic curves E/F , not isomorphic over F , for which a proportion at least 1 − ε of twists Es/F
have |X(Es)[3]| ≥ 9r.

The ideas leading to Theorem 1.2 also permit us to find elements of order 6 in Tate-Shafarevich
groups for a positive proportion of twists Es of E, provided that the elliptic curve E has an additional
bit of level structure. For convenience, we state this result only over Q, though a less uniform version
should hold over any number field.

Theorem 1.4. Suppose that E/Q has a cyclic 18-isogeny. Suppose also that E is not a twist of a
curve in the isogeny class of the curve y2 + xy + y = x3 + 4x − 6 with Cremona label 14a1. Then
for a positive proportion of twists, X(Es) has an element of order 6.

The isogeny class 14a is the subject of Section 10. While our methods do not show that twists
of curves in this isogeny class have elements of order six in their Tate-Shafarevich groups, we are
nevertheless able to obtain strong applications regarding their Mordell-Weil ranks. For example,
we prove that at least 25% of their quadratic twists have rank 0, and, assuming finiteness of Tate-
Shafarevich groups, that at least 41.6% have rank 1.
For each prime p ≥ 5, we also provide examples of curves for which Conjecture 1.1 holds for n = p.

First, we make a definition. Let x ∈ X0(3p)(F ), and let (E,C) be the corresponding elliptic curve
over F with Γ0(3p)-level structure. Suppose q - 3p is a prime ideal in the ring of integers OF such
that x reduces to a cusp on X0(3p)(OF /q). Then the special fiber of the Néron model of E over
OF,q is an n-gon, and C intersects i of its components, for some i | 3p. We say that x has i-reduction
at q.1 With this definition in hand, we have:

Theorem 1.5. Let F be a number field of degree d and suppose that x = (E,C) ∈ X0(3p)(F ) is a
non-cuspidal point. For i | 3p, let ωi denote the number of primes q - 3p of i-reduction for x. Then
there exists an elliptic curve E/F with j(E) = j(x) such that for a positive proportion of s, we have

|X(Es/F )[p]| ≥ p2 min(ω1,ω3)−2d.

We present several corollaries to Theorem 1.5, the first of which shows that the set of curves for
which Theorem 1.5 produces a non-trivial result is not empty.

Corollary 1.6. Let p ≥ 5 be a prime and let E/Q be an elliptic curve. Let r ≥ 1 and suppose that
E has multiplicative reduction at ` - 3p for at least 4p+ 4 + r primes `. Also suppose that Gal(Q̄/Q)
acts transitively on the set of F`-lines in E[`], for each ` ∈ {3, p}. Then there exists a number field
F of degree at most 4p+ 4 over which |X(Es)[p]| ≥ p2r for a positive proportion of s ∈ F ∗/F ∗2.

1This is equivalent to saying that x reduces to the unique cusp of X0(3p) of ramification index i.
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The constants in Theorem 1.5 are generally not optimal, and using the ideas behind the proof, we
find the first example of an elliptic curve over Q for which a positive proportion of twists have an
element of order 5 in the associated Tate-Shafarevich group.

Corollary 1.7. Let E : y2 + xy + y = x3 + x2 − 13x− 219 be the elliptic curve with Cremona label
50b3. For at least 50% of positive squarefree s ≡ 1 (mod 8) that are coprime to 5, Es(Q) has rank
0 and |X(Es)[5]| ≥ 25. The same result holds for the elliptic curve with Cremona label 50b4.

Corollary 1.6 shows that for any r ≥ 1, there exist some number field over which some elliptic
curve E has |X(Es)[p]| ≥ p2r for a positive proportion of its twists. The final corollary we present
shows that, when p = 5 or 7, there exist number fields over which for any r ≥ 1 there are elliptic
curves E for which |X(Es)[p]| ≥ p2r for a positive proportion of the quadratic twists of E.

Corollary 1.8. Let p ∈ {5, 7} and let r ≥ 1 be an integer. Let F be a number field over which the
modular curve X0(3p) has infinitely many points over F . Then there are infinitely many elliptic
curves over F , not isomorphic over F̄ , such that |X(Es)[p]| ≥ p2r for a positive proportion of
s ∈ F ∗/F ∗2.

For example, X0(15) and X0(21) both have infinitely many points over the field Q(
√

10), so each
case of Corollary 1.8 applies. The curves produced by Corollary 1.8 are explicit, in the sense that
they can be generated easily in Magma [4]. Moreover, the proof suggests that when the points of
X0(3p)(F ) are ordered in a natural way, the conclusion of Corollary 1.8 holds for 100% of curves
over F with a degree 3p isogeny; see Remark 6.2.
As we explain at the end of this section, the proofs of the above results all make use of primes of

multiplicative reduction to force a certain Selmer group to be large. In particular, this method does
not apply to elliptic curves with (potentially) everywhere good reduction. The next result provides
examples of curves with (potentially) everywhere good reduction for which Conjecture 1.1 holds,
though as in Corollary 1.6, we must base-change to a larger number field to find them. This second
approach, which will also be elaborated on at the end of this section, works for any prime p ≥ 5:

Theorem 1.9. Let p ≥ 5 be a prime and E/Q an elliptic curve with potentially good and ordinary
reduction at both 3 and p. Assume that Gal(Q̄/Q) acts transitively on the set of F`-lines in E[`],
for ` ∈ {3, p}, and set K = Q(E[3p]). Let E′ be any elliptic curve over K that is p-isogenous to E.
Then for a positive proportion of s ∈ K∗/K∗2, we have

dimFp X(E′s)[p] ≥
d

2

(
1− 4

p+ 1

)
,

where [K : Q] = 2d.

We obtain even stronger results for certain curves with complex multiplication.

Theorem 1.10. Let E be an elliptic curve over a number field F , and assume that EndF (E) is the
quadratic order of discriminant Df2, with D a fundamental discriminant. Assume that f is odd,
that 3 is not inert in K = Q(

√
D), and that all primes dividing f split in K. Then at least half of

the twists Es have both rank 0 and |X(Es)[f ]| ≥ fd, where [F : Q] = 2d.

Finally, our methods apply equally well to higher-dimensional abelian varieties, though the com-
putations become more difficult and less explicit. We provide the following result concerning certain
abelian threefolds with CM by the ninth cyclotomic field K = Q(ζ9) as a proof of concept.

Theorem 1.11. Let J be the Jacobian of the Picard curve y3 = x4 − x. Let p ≡ 1 (mod 9) be a
prime, and let F be any number field containing K(J [p]). Then there is an abelian variety A/F
isogenous to J such that at least 50% of quadratic twists As have rank 0 and satisfy |X(As)[p]| ≥ p3d,
where [F : Q] = 2d.
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Theorem 1.11 has already inspired other results for high-dimensional A, and even over Q. For
example, the fourth author proved the n = 3 case of Conjecture 1.1 for certain quotients A of prime
level modular Jacobian J0(p). The explicit proportion of twists with X(As)[3] 6= 0 is shown to be
at least 1/8 for these A [24, Thm. 1.5d]. In forthcoming work, Bruin, Flynn, and Shnidman give an
explicit three-parameter family of abelian surfaces over Q for which Conjecture 1.1 holds.
We now sketch an outline of the method used to prove the above theorems. The proofs all follow

the same general strategy, namely, to exploit abelian varieties that have two independent isogenies.
To any isogeny φ : A→ A′ of abelian varieties, we attach a Selmer group Selφ(A), which sits in an
exact sequence

(1.1) 0→ A′(F )/φ(A(F ))→ Selφ(A)→X(A)[φ]→ 0.

In favorable circumstances, the φ-Selmer group provides some measure of control over the rank of
A(F ). However, when A has two independent isogenies φ1 and φ2, the control provided by the two
associated Selmer groups need not be the same. We exploit this imbalance to prove our theorems.
More specifically, in the next section, we define the global Selmer ratio c(φs) attached to the

quadratic twists φs of an isogeny φ, which has the property that

|Selφs(As)| ≥ c(φs)

for all but finitely many twists s. When φ has odd degree, c(φs) is determined by finitely many local
conditions. If moreover φ is not self-dual, then it is relatively easy to construct quadratic twists for
which Selφs(As) is large by making c(φs) large.2 On the other hand, when φ has degree 3 and A
has dimension one, recent work of the authors [3] shows that

Avgs∈Σ |Selφs(As)| = 1 + Avgs∈Σ c(φs)

for any Σ ⊆ F ∗/F ∗2 defined by finitely many local conditions. In particular, if c(φs) is small for
s ∈ Σ, then the Selmer group, and hence the rank, is small on average. Our approach is to use
the Selmer groups attached to such isogenies to control the rank, while simultaneously finding an
independent isogeny ψ whose associated Selmer group is large. The sequence (1.1) will then imply
that X(As) is often non-trivial.
As alluded to earlier, we have two different ways of constructing twists with large global Selmer

ratios c(φs), and hence large Selmer groups. The first is to consider twists with many primes of
split multiplicative reduction; see Sections 4–6. The other systematic way we have of making c(φs)
large is by exploiting the Galois action on the canonical subgroups of A[p]. This is our approach in
Sections 7–9. The analysis is easier when A has ordinary reduction at p and 3, as in Theorem 1.9.
In principle, this approach should work in cases of supersingular reduction as well.
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2. Global Selmer ratios and Selmer groups

Given an isogeny φ : A → A′ over a number field F , the local Selmer ratio cp(φ) at a (possibly
infinite) place p is defined to be

(2.1) cp(φ) :=
|A′(Fp)/φ(A(Fp))|
|A(Fp)[φ]|

.

We have cp(φ) = 1 for all but finitely many primes p (see Remark 2.5 below), so we may define the
global Selmer ratio c(φ) to be the product of the local Selmer ratios,

(2.2) c(φ) :=
∏
p≤∞

cp(φ).

The following proposition records the connection between the Selmer ratio c(φ) and the two Selmer
groups Selφ(A) and Selφ̂(Â′) coming from φ and the dual isogeny φ̂ : Â′ → Â.

Proposition 2.1. Let φ : A→ A′ be an isogeny of abelian varieties over a number field F . Then

c(φ) =
|Selφ(A)|
|Selφ̂(Â′)|

|A(F )[φ]|
|Â′(F )[φ̂]|

.

Proof. See Theorem VIII.7.9 in [19], for example. �

If φ has prime degree `, then c(φ) = `m for some m ∈ Z. Moreover, if A is an elliptic curve the
parity of m encodes information about the rank of the `-Selmer group:

Proposition 2.2. If φ : E → E′ is an isogeny of elliptic curves of prime degree ` and c(φ) = `m,
then

dimF` Sel`(E) ≡ m+ dimF` E(F )[`] (mod 2).

Proof. This can be deduced from results of Cassels [6]; for a proof see [2, Prop. 42]. �

For each s ∈ F×/F×2, the twist of φ is an isogeny φs : As → A′s between the quadratic twists.
There are associated local Selmer ratios cp(φs) for each place p of F and a global Selmer ratio c(φs).

Corollary 2.3. If φ has odd degree, then |Selφs(As)| ≥ c(φs) for all but finitely many s.

Proof. If φ has odd degree, then there finitely many classes s ∈ F×/F×2 with Es(F )[φs] 6= 0 and
finitely many classes s′ ∈ F×/F×2 with E′s′(F )[φ̂s′ ] 6= 0. By Proposition 2.1, we therefore have
c(φs) =

|Selφs (As)|
|Selφ̂s (A′

s)|
for all but finitely many s. �

If φ decomposes as the composition of isogenies φ2 ◦ φ1, then Lemma 7.2(b) in [18] shows that
cp(φ) = cp(φ1)cp(φ2) for every prime p. It therefore follows from (2.2) that c(φ) = c(φ1)c(φ2). As a
result, we may always reduce the computation of Selmer ratios to those of isogenies of prime degree,
in which case, the following result gives a way to compute the local Selmer ratio.

Proposition 2.4. Let φ : A→ A′ be an isogeny of prime degree `. If p is a finite prime, then

cp(φ) =
cp(A

′)

cp(A)
αφ,p

where cp(A) and cp(A′) are the Tamagawa numbers of A and A′ at p, and αφ,p equals vp(det φ̃), the
normalized valuation of the determinant of the induced map φ̃ : LieA → LieA′ on tangent spaces of
the Néron models at the identity. In particular, αφ,p = 1 if p - `. If p is an infinite place and ` is
odd, then

cp(φ) =

{
1/`, A[φ] ⊆ A(Fp)
1, A[φ] 6⊆ A(Fp).



6 MANJUL BHARGAVA, ZEV KLAGSBRUN, ROBERT J. LEMKE OLIVER, AND ARI SHNIDMAN

Proof. These statements can all be found in [22, §3]. �

Remark 2.5. If p - ` is a prime, then αφ,p = 1. As a result, we have cp(φ) =
cp(A′)
cp(A) . If A has

good reduction at p, we therefore have cp(φ) = 1. It follows that cp(φ) = 1 for all but finitely many
primes p, as noted at the beginning of this section.

Remark 2.6. When A is an elliptic curve, the factor αφ,p is simply the valuation of the linear term
in the power series giving the induced isogeny on formal groups (using minimal models). In general,
if dimA = g, then αφ,p is the valuation of the determinant of a g × g Jacobian matrix of partial
derivatives of the g power series in g variables which describe the induced isogeny on formal groups
attached to the Néron models, evaluated at 0.

Computing cp(φ) is a hard task in general, but there are clean formulas when the reduction type
is not too bad. For example, when A has a quadratic twist of good reduction, we have:

Lemma 2.7. Let φ : A → A′ be an isogeny of odd degree d. If p - d is a prime such that As has
good reduction at p for some s ∈ F ∗/F ∗2, then cp(φ) = 1. If p | d, then we have cp(A′) = cp(A).

Proof. This follows from Lemmas 4.6 and 4.7 in [8], using that d is odd. While the results in [8] are
only stated for elliptic curves, the proofs nonetheless hold verbatim for abelian varieties of arbitrary
dimension. �

There are also general formulas for cp(φ) in cases of potential ordinary reduction (good or bad).
For example, the following lemma completes the computation of cp(φ) when p divides deg φ, in
certain cases of good ordinary reduction.

Lemma 2.8. Let φ : A→ A′ be an isogeny of abelian varieties of dimension g over a number field
F . Assume deg φ = pg and kerφ ⊂ A[p], with p an odd prime. Let p be a prime of F above p and
assume A has good ordinary reduction at p. Then for all s ∈ F×/F×2, we have:
(a) If kerφ reduces modulo p to the kernel of absolute Frobenius, then cp(φs) = pg[Fp : Qp].
(b) If kerφ (modulo p) intersects trivially with the kernel of absolute Frobenius, then cp(φs) = 1.

Proof. We have cp(φs) = αφs,p by Lemma 2.7. Since A is ordinary, condition (a) is equivalent to
(kerφ)(F̄p) = 0, where Fp is the residue field at p, and condition (b) is equivalent to saying that
(kerφ)(F̄p) = (Z/pZ)g. Equivalently, (a) says that the points of kerφ lie in the formal group, while
(b) says that kerφ has trivial intersection with the formal group. Note that the latter conditions
make sense for φs and are stable under twisting. In case (b), we see that φs induces an isomorphism
of formal groups, hence Proposition 2.4 shows that αφs,p = 1. We deduce case (a) from case (b),
using the isogeny ψ : A/ kerφ → A such that ψ ◦ φ = [p]. Indeed, if φ satisfies condition (a), then
ψ satisfies condition (b) and

αφs,p = α[p],pα
−1
ψs,p

= α[p],p = pg[Fp : Qp]

as desired. Here we have used that [p] induces the multiplication-by-p map on the tangent space. �

Remark 2.9. If A = E is an elliptic curve, one of (a) or (b) holds for φ, but if g > 1 then kerφ
may have non-trivial proper intersection with the kernel of Frobenius.

In the cases of bad ordinary reduction (i.e. multiplicative reduction), and in the special case that
A is an elliptic curve, there is an explicit formula for cp(φ) using the j-invariants of A and A′.

Lemma 2.10. Let φ : E → E′ be an isogeny of elliptic curves with odd prime degree ` and suppose
that E has (potentially) multiplicative reduction at a prime p - `.
(i) If E has split multiplicative reduction at p, then cp(φ) = vp(j(E

′))/vp(j(E)).
(ii) If E does not have split multiplicative reduction at p, then cp(φ) = 1.
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Proof. This follows from Table 1 in [8]. �

As a consequence of Lemma 2.7, we deduce:

Corollary 2.11. Let φ : A → A′ be an isogeny of odd degree d, and let NA be the conductor of A.
For any s ∈ F ∗/F ∗2, the value of c(φs) depends only on the class of s ∈

∏
p|dNA∞ F

∗
p /F

∗2
p and in

particular is given by
c(φs) =

∏
p|dNA∞

cp(φs).

Proof. If p - dNA∞, then As and A′s have quadratic twists of good reduction at p. By Lemma 2.7,
we therefore have cp(φs) = 1 for all such primes. �

When φ is of odd prime degree `, Corollary 2.11 implies that the sets

Tm(φ) := {s ∈ F ∗/F ∗2 : c(φs) = `m},
for m ∈ Z, are defined by finitely many local conditions in the sense of [3]. In particular, they have
positive density within F ∗/F ∗2 when they are non-empty. Moreover, Corollary 2.3 shows that for
all but finitely many s ∈ Tm(φ), the following lower bound holds: |Selφ(As)| ≥ `m.
On the other hand, when ` = 3, the main results of [3] allow us to control the average size of

Selφ(As), for s ∈ Tm(φ), and to give an upper bound on its average rank (or, more precisely, on the
lim sup of the average rank, as the limit of the average rank is not known to exist):

Theorem 2.12. Let φ : A → A′ be an isogeny of degree 3 and for m ∈ Z, let Tm(φ) be defined as
above. For any non-empty subset Σ ⊆ Tm(φ) defined by finitely many local conditions, the average
size of Selφ(As) for s ∈ Σ is exactly 1 + 3m. If A is an elliptic curve, the average F3-rank of
Sel3(As), for s ∈ Σ, is at most |m|+ 3−|m|, and in particular, the average rank of As(F ) is at most
|m|+ 3−|m|.

Proof. This is a combination of Theorems 2.1 and 2.4 in [3]. �

When A = E is an elliptic curve, Theorem 2.12 shows that for a positive proportion of s ∈ Tm(φ)
the Mordell-Weil rank of Es is at most |m|. This is clear for m ≥ 1; for m = 0, use Proposition 2.2
as well. Pulling together the results of this section, we obtain the following key proposition.

Proposition 2.13. Let E be an elliptic curve over a number field F , and let ` be a prime. Let
φ : E → E′ and ψ : E → E′′ be isogenies over F of degrees 3 and `, respectively, and suppose
E[φ] ∩ E[ψ] = 0 if ` = 3. Let m and n be integers such that m > |n| and T−m(ψ) ∩ Tn(φ) 6= ∅.
Then a positive proportion of s ∈ T−m(ψ) ∩ Tn(φ) are such that E′′s (F ) has rank at most |n| and
|X(E′′s )[`]| ≥ `m−|n|. If n = 0, this proportion is at least 1

2 , and if |n| = 1, it is at least 5
6 .

Proof. As noted, for a positive proportion of s ∈ T−m(ψ) ∩ Tn(φ), the rank of Es(F ) is at most
|n|. The same holds for E′′s (F ), since rank is preserved by isogeny. Since c(ψ̂s) = c(ψs)

−1 = `m, we
also have |Sel`(E

′′)| ≥ |Selψ̂(E′′s )| ≥ c(ψ̂s) = `m for all but finitely many such s. It follows from the
`-descent short exact sequence that |X(E′′s )[`]| ≥ `m−|n|.
If n = 0, then the average F3-rank of Sel3(Es) is at most 1 and the parity of dimF3 Sel3(Es) is

even, for s ∈ T−m(ψ) ∩ Tn(φ). It follows immediately that at least 50% of s have Sel3(Es) = 0.
Similarly, if n = 1, the average of dimF3 Sel3(Es) is at most 4/3 and the parity is odd. It follows
immediately that at least 5/6 of twists Es have 3-Selmer rank equal to 1, and hence Mordell-Weil
rank at most 1. �

In the special case that ` = 3, the discrepancy between the two Selmer groups allows us to
strengthen the rank bounds provided by Theorem 2.12.
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Corollary 2.14. Let φ : E → E′ and ψ : E → E′′ be independent 3-isogenies. If Tm(φ) ∩ Tn(ψ) is
non-empty, then the average rank of Es(F ) for s ∈ Tm(φ) ∩ Tn(ψ) is at most

min(|m|, |n|) + 3−min(|m|,|n|).

If m = 0 or n = 0, at least 1/2 of s ∈ Tm(φ) ∩ Tn(ψ) are such that Es(F ) has rank 0. If either
|m| = 1 or |n| = 1, at least 5/6 of s ∈ Tm(φ) ∩ Tn(ψ) are such that Es(F ) has rank at most 1.

Proof. We apply Theorem 2.12 with whichever choice of φ and ψ yields a stronger bound. �

Remark 2.15. We give examples of elliptic curves for which Corollary 2.14 implies an improved
rank bound in Section 10.

3. Local Selmer ratios for curves with two independent 3-isogenies

Throughout this section, let F be a number field and E an elliptic curve with a pair of independent
3-isogenies φ1 : E → E′ and φ2 : E → E′′ over F . By the non-degeneracy of the Weil pairing, E is
a quadratic twist of a curve Es with Es[3] ' Z/3Z× µ3. This immediately implies:

Lemma 3.1. Suppose E has two independent 3-isogenies φ1 : E → E′ and φ2 : E → E′′. Then
(i) Some twist of E obtains full rational 3-torsion over F (ζ3).

(ii) The groups E[φ1] and E[φ2] are Cartier dual.

Part (i) of Lemma 3.1 has the following important corollary.

Lemma 3.2. If E has additive, potentially good reduction at a finite prime p - 3 of F , then E has
a twist Es with good reduction at p. In particular, cp(φi) = 1 for i = 1, 2.

Proof. By Lemma 3.1(i), E has some twist Es with full rational 3-torsion over the extension Fp(ζ3).
It therefore has good reduction over Fp(ζ3) [23, §2]. Since Fp(ζ3) is unramified over Fp, Es must
have good reduction over Fp. It then follows from Lemma 2.7 that cp(φi) = 1. �

The story when E has multiplicative or additive potential multiplicative reduction at p is relatively
straightforward as well. For this, we use the Hesse model.

Lemma 3.3. If E is an elliptic curve over F with E[3] ' Z/3Z×µ3, then there are u and v in K,
with v/u /∈ {0, 1, ζ3, ζ

2
3} such that E is isomorphic to

Eu,v : v(x3 + y3 + z3) = 3uxyz.

In this model, Eu,v(F )[3] is generated by (1 : −1 : 0) and (ζ3 : −ζ2
3 : 0). Moreover, if E′ and E′′ are

the quotients of E by the corresponding subgroups of order 3, we have

j(E′) =
27u3(9u3 − 8v3)3

v9(u− v)(u2 + uv + v2)
,

j(E) =
27u3(u+ 2v)3(u2 − 2uv + 4v2)3

v3(u− v)3(u2 + uv + v2)3
, and

j(E′′) =
3(u+ 2v)3(u3 + 78u2v + 84uv2 + 80v3)3

v(u− v)9(u2 + uv + v2)
.

Proof. The Hesse model is classical (see [21], e.g.), and the rest follows from a symbolic computation
in Magma [4]. �

Lemma 3.4. Suppose that E has (potential) multiplicative reduction at p, and write v(·) for the
p-valuation. Let j, j′, and j′′ denote the j-invariants of E, E′, and E′′, respectively. Then one of
the following holds:

(i) v(j) = 3v(j′) and 3v(j) = v(j′′),
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(ii) v(j) = 3v(j′) and v(j) = 3v(j′′), or
(iii) 3v(j) = v(j′) and v(j) = 3v(j′′).
Moreover, (ii) can only occur if µ3 ⊂ Fp.

Proof. That only the listed possibilities occur follows from examining the denominators of the
j-invariants of E, E′, and E′′ in the Hesse model. This examination also shows that the case
v(j) = 3v(j′) and v(j) = 3v(j′′) occurs if and only if v(t2 + t+ 1) 6= 0, which implies µ3 ⊂ Fp. �

For any 3-isogeny φ, define the global log-Selmer ratio t(φ) and the local log-Selmer ratio tp(φ),
by c(φ) = 3t(φ) and cp(φ) = 3tp(φ). Thus, t(φ) =

∑
p≤∞ tp(φ).

Lemma 3.5. If F = Q, then
(i) t(φ1) ≡ t(φ2) (mod 2) and

(ii) tp(φ1) 6≡ tp(φ2) (mod 2) for p ∈ {3,∞}.

Proof. By Proposition 2.2, both sides of Congruence (i) are equal to the parity of dimF3 Sel3(E)−
dimF3 E(Q)[3] and hence must be the same.
Lemma 2.7 and Proposition 2.4 show that tp(φ1) ≡ tp(φ2) (mod 2) for all primes p - 3 where

E has additive, potentially good reduction and Lemmas 2.10 and 3.4 show that tp(φ1) ≡ tp(φ2)
(mod 2) for all prime p - 3 where E has (potential) multiplicative reduction. Congruence (i) then
gives

(3.1) t3(φ1) + t∞(φ1) ≡ t3 + t∞(φ2) (mod 2).

However, by Proposition 2.4 combined with Lemma 3.1, we have t∞(φ1) 6≡ t∞(φ2) (mod 2).
Combining this with (3.1), we then get that t3(φ1) 6≡ t3(φ2) (mod 2). �

Let φ1,s : Es → E′s and φ2,s : Es → E′′s denote the isogenies on the twists induced by φ1 and φ2.

Lemma 3.6. Suppose F = Q. Then for each prime p 6= 3, there exists s ∈ Q∗p/Q∗2p such that
cp(φ1,s) = cp(φ2,s) = 1. There also exists some s ∈ Q×3 /Q

×2
3 for which there is an equality of sets

{c3(φ1,s), c3(φ2,s)} = {1, 3}.

Proof. First assume p 6= 3. There is a unique s ∈ Q×p /Q×2
p such that E[φ1,s](Qp) 6= 0, and similarly

for φ2. Thus, we can choose s so that both E[φ1,s] and E[φ2,s] have no Qp-points. Then by part
(ii) of Lemma 3.1, the groups E′′[φ̂2,s] and E′[φ̂1,s] also have no Qp-points. By (2.1), all four ratios
cp(φi,s) and cp(φ̂i,s) are therefore positive integers. Since

cp(φ1,s)cp(φ̂1,s) =
cp(E

′)

cp(E)

cp(E)

cp(E′)
= 1 = cp(φ2,s)cp(φ̂2,s),

we conclude that all four local Selmer ratios are equal to 1, as desired.
Since αφi,s,pαφ̂i,s,p = α[3],p = 3, we have

c3(φ1,s)c3(φ̂1,s) = 3 = c3(φ2,s)c3(φ̂2,s).

Choosing s ∈ Q×3 /(Q
×
3 )2 such that all four local Selmer ratios are positive integers, we deduce that

one of c3(φ1,s) and c3(φ̂1,s) is 1 and the other is 3. The same holds for c3(φ2,s) and c3(φ̂2,s). Since
c3(φ1,s) 6= c3(φ2,s) by part (ii) of Lemma 3.5, one of c3(φ1,s) and c3(φ2,s) is 1 and the other is 3. �

Over general number fields F , similar arguments give the following weak version of Lemma 3.6:
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Lemma 3.7. Let F be a number field of degree d. Then for each p - 3, there exists s ∈ F ∗/F ∗2
such that cp(φ1,s) = cp(φ2,s) = 1. There also exists s ∈ F ∗/F ∗2 such that∏

p|3

cp(φ1,s) ∈ {1, 3, . . . , 3d} and
∏
p|3

cp(φ2,s) ∈ {1, 3, . . . , 3d}.

Proof. The proof for p - 3 is exactly the same as before. For p | 3, we at least know that

cp(φ1,s)cp(φ̂1,s) = 3[Fp : Q3] = cp(φ2,s)cp(φ̂2,s),

and that all four ratios are positive integers for suitable choice of s. Since
∑

p|3[Fp : Q3] = d, the
claim follows. �

4. Curves with a 9-isogeny

Continue to let F be a number field. In this section, we prove Theorems 1.2 and 1.3. Let
φ : E′ → E′′ be a cyclic 9-isogeny of elliptic curves over F . Then φ factors as a composition of two
3-isogenies

E′
φ̂1−→ E

φ2−→ E′′

over F . The intermediate elliptic curve E has two independent 3-isogenies, φ1 and φ2, with φ̂1

being the dual isogeny of φ1. As E has two independent isogenies, it is subject to Proposition 2.13
and the results of Section 3.

4.1. Proof of Theorem 1.2. Assume F = Q. We may replace E′, E, and E′′ with their quadratic
twists, so we may assume that E[3] ' Z/3Z× µ. By Lemma 3.3, E is isomorphic to

Eu,v : v(x3 + y3 + z3) = 3uxyz,

for some coprime integers u and v, with v/u /∈ {0, 1}.
We first consider the case where there is some prime ` ≥ 5 dividing u2 + uv + v2. We claim that

there exists s ∈ Q×/Q×2 such that
(i) c`(φ1,s) = 1

3 = c`(φ2,s),
(ii) cp(φ1,s) = 1 = cp(φ2,s) for all p - 3`∞, and
(iii) One of c3(φi,s)c∞(φi,s), for i ∈ {1, 2}, equals 3 and the other equals 1

3 .
By weak approximation, it suffices to shows that each of these can be individually satisfied.

Indeed, (i) follows from Lemma 2.10, which connects the local Selmer ratio to the valuations of the
j-invariants, and Lemmas 3.3 and 3.4, which provide the valuation of j(E), j(E′), and j(E′′) for
the Hesse model (in particular, v`(j(E)) = 3v`(j(E

′)) = 3v`(j(E
′′)) since ` divides u2 + uv + v2);

(ii) follows from Lemma 3.6; and (iii) follows from combining Proposition 2.4 with Lemma 3.6.
It follows that at least one of the sets T−2(φ1) ∩ T0(φ2) and T0(φ1) ∩ T−2(φ2) is non-empty.

Theorem 1.2 now follows from Proposition 2.13.
We next consider the case where q := u2 + uv + v2 is not divisible by any prime ` > 3. Since

q is positive definite as a quadratic form in (u, v), we have q > 0 and since u and v are coprime,
q can’t be divisible by either 2 or 9, so it follows that q ∈ {1, 3}. Up to quadratic twist, these
cases correspond to E with Cremona labels 27a1 and 54a1. A computation in Magma [4] shows that
T−2(φ1) ∩ T0(φ2) is non-empty and Theorem 1.2 therefore follows from Proposition 2.13 as above.
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4.2. Quantitative version of Theorem 1.2 over number fields. Suppose now that F has
degree d over Q, with r1 real places and r2 pairs of complex places. Define sets P1, P2, and P3 by

P1 = {p : E has (pot.) mult. red. at p with v(j) = 3v(j′) and 3v(j) = v(j′′)}
P2 = {p : E has (pot.) mult. red. at p with v(j) = 3v(j′) and v(j) = 3v(j′′)}

and

P3 = {p : E has (pot.) mult. red. at p with 3v(j) = v(j′) and v(j) = 3v(j′′)}

Also set Pmult = P1∪P2∪P3. The following theorem gives general results about 3-torsion elements
in Tate-Shafarevich groups of quadratic twists for elliptic curves with a 9-isogeny over F .

Theorem 4.1. Let s0 ∈ F ∗/F ∗2 be any square class such that Es0 does not have split multiplicative
reduction at any p ∈ P3. Let ωsp

1 denote the number of p ∈ P1 at which Es0 has split multiplicative
reduction, and define ωsp

2 analogously. Then for a positive proportion of s ∈ s0F
∗2

dimF3X(E′s)[3] ≥ min(2ωsp
1 − 2r2, 2ω

sp
2 − d).

Proof. By Lemma 3.2, the only places that contribute to either of the Selmer ratios c(φ1) and
c(φ2) are infinite primes, places of (potentially) multiplicative reduction, and primes p | 3. For any
s ∈ F ∗/F ∗2, define t1 = ord3(c(φ1,s)) and t2 = ord3(c(φ2,s)), along with

t1,mult = ord3

∏
p∈Pmult

cp(φ1,s) and t2,mult = ord3

∏
p∈Pmult

cp(φ2,s).

From Lemma 2.10 and Lemma 3.4, it follows that for any s ∈ s0F
∗2

t1,mult = −ωsp
1 − ω

sp
2 and t2,mult = ωsp

1 − ω
sp
2 .

It remains to consider the contribution of places p | 3∞. By Proposition 2.4, we have∏
p|∞

cp(φ1,s) = 3−r1−r2 and
∏
p|∞

cp(φ2,s) = 3−r2 .

for the positive proportion of s ∈ s0F
∗2 such that E[φi,s](Kv) = Z/3Z for all complex places v and

E[φi,1](Kv) = Z/3Z and E[φi,2](Kv) = 0 for all real places.
Appealing to Lemma 3.7, we find for all such s, we have

t1 ∈ [−ωsp
1 − ω

sp
2 − d+ r2,−ωsp

1 − ω
sp
2 + r2]

and

t2 ∈ [ωsp
1 − ω

sp
2 − r2, ω

sp
1 − ω

sp
2 − r2 + d].

We now wish to appeal to Proposition 2.13 with m = −t1 and n = t2. Notice that if t1 is positive,
so that the choice m = −t1 is not admissible, then ωsp

1 + ωsp
2 ≤ r2. Thus, both ωsp

1 and ωsp
2 would

be bounded by r2, and the conclusion of the theorem woud be trivial. Thus, we may assume that
t1 is negative, and hence that m ≥ ωsp

1 + ωsp
2 − r2. If t2 is positive, then

m− |n| = −t1 − t2 ≥ 2ωsp
2 − d,

while if t2 is negative,

m− |n| = −t1 + t2 ≥ 2ωsp
1 − 2r2.

The claim now follows from Proposition 2.13. �
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4.3. Proof of Theorem 1.3. For this theorem, we wish to construct elliptic curves E/F for which
a vast majority of quadratic twists the group X(Es)[3] is large. We first loosely discuss the idea,
continuing with the notation of the proof of Theorem 4.1. In particular, to be consistent with this
notation, we will in fact prove the claim for the elliptic curve E′.
First, note that the explicit parametrization provided by Lemma 3.3 enables us to construct many

elliptic curves for which P3 is empty by taking v = 1. Thus, every s ∈ F ∗/F ∗2 is subject to Theorem
4.1, so if both P1 and P2 are large, then a positive proportion of twists will have large 3-torsion inX.
However, to ensure that this positive proportion is large, we need the rank bound coming from the
second isogeny φ2 to be very efficient. This bound is most efficient when |ord3c(φ2,s)| ≈ |ωsp

1 − ω
sp
2 |

is small. The elliptic curves we construct, therefore, will be chosen so that the sets P1 and P2 are
close in size. The following lemma guarantees that we are able to find such curves.
Lemma 4.2. Let F be a number field. There exists a constant r, depending only of F , such that
for any m ≥ 1 there are elliptic curves E with two independent 3-isogenies over F with P3 empty
and #P1,#P2 ∈ {m,m+ 1, . . . ,m+ r}.

Proof. Suppose first that F = Q and recall the curve Eu,v from Lemma 3.3. By taking v = 1 and
u ∈ Z, we may guarantee that P3 is trivial. In this case, we find that

P1 = {p : p | u− 1} and P2 = {p : p | u2 + u+ 1}.
Using a standard lower-bound sieve (e.g., the beta-sieve [11, Theorem 11.13] of dimension κ = 2),
it follows that there are infinitely many u such that neither u − 1 nor u2 + u + 1 is divisible by a
prime p ≤ |u|1/4.84. This implies, in particular, that u − 1 is divisible by at most 4 primes while
u2 +u+ 1 is divisible by at most 9 primes. The same conclusion holds for u satisfying any finite set
of congruence conditions, apart from any divisibility conditions imposed by these conditions (e.g.,
if u is required to be 1 (mod p), then there are infintely many u such that u − 1 is divisible by p
and at most four other primes). To prove the lemma when F = Q, we therefore impose congruence
conditions on u to guarantee that u− 1 and u2 + u+ 1 are divisible by at least m primes, and then
appeal to this lower-bound sieve. This is straightforward: let q1, . . . , qm−1 ≡ 1 (mod 3) be fixed
primes, set q = q1 . . . qm−1, and let α be such that α2 + α + 1 ≡ 0 (mod q). Let p1, . . . , pm−1 be
prime, distinct from the qi, and consider u = p1 . . . pm−1u1 where u1 ≡ α/(p1 . . . pm−1) (mod q).
This construction yields the lemma in the case F = Q with r = 8.
For general F , we again apply a lower-bound sieve, this time to points of bounded height in

Minkowski space. The sieve has exponent of distribution at least 1/d − ε for any ε > 0 and is of
dimension κ = 2 if µ3 6⊂ F and of dimension κ = 3 if µ3 ⊂ F . Analogous to the case F = Q, we
find there is some constant r such that for infinitely many u ∈ OF , neither u− 1 nor u2 + u+ 1 has
more than r prime factors; when κ = 2, we may take r = b9.68dc, and when κ = 3, we may take
r = 2b20d/3c. By imposing finitely many congruence conditions, the lemma follows. �

We are now ready to make explicit the proof of Theorem 1.3 outlined above.

Proof of Theorem 1.3. We will show that for a curve E constructed in Lemma 4.2, a proportion at
least 1 − O(m−1/8) of twists E′s have dimF3X(E′s)[3] ≥ m − 2m7/8. Upon taking m sufficiently
large, the claim will follow. Thus, let m be large and let E be a curve constructed as in Lemma 4.2.
For convenience, assume each p of multiplicative reduction has norm at least m.
With the notation of Theorem 4.1, by varying over s ∈ F ∗/F ∗2, we may think of ωsp

1 and ωsp
2 as

sums of independent Bernoulli random variables. In particular, at a given prime p of (potentially)
multiplicative reduction, the reduction of E′s is split for a proportion 1

2 −
1

2N(p)+2 of s ∈ F ∗/F ∗2.
Thus, we find the expected value of ωsp

1 to be

E[ωsp
1 ] =

∑
p∈P1

1

2
− 1

2N(p) + 2
= m/2 +O(1).
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A similar computation reveals its variance to be m/4 +O(1), with exactly the same results holding
for ωsp

2 . We therefore find ord3c(φ1,s) = −ωsp
1 −ω

sp
2 +O(1) to have expected value −m+O(1) with

variance m/2 +O(1). By Chebyshev’s inequality, it follows that a proportion at least 1−O(m−3/4)

of s are such that ord3c(φ1,s) ≤ −m+m7/8.
Similarly, as ord3c(φ2,s) = ωsp

1 −ω
sp
2 +O(1), we find that it has expected value O(1) with variance

m/2 + O(1). By Chebyshev’s inequality again, a proportion at least 1 − O(m−1/2) of twists have
|ord3c(φ2,s)| ≤ m3/4. For such twists, the average rank of Sel3(E′s) is at most m3/4 + 3−m

3/4 , so
that at least 1 − O(m−1/8) of these have rank at most m7/8. Pulling this together, we find that a
proportion at least 1−O(m−1/8) of twists E′s have dimF3 X(E′s)[3] ≥ m− 2m7/8. Upon taking m
sufficiently large, the result follows. �

5. Curves with an 18-isogeny

In this section we assume E′ is an elliptic curve over Q admitting a cyclic 18-isogeny. Then it
also possess a cyclic 9-isogeny φ : E′ → E′′, and as before we decompose φ as φ = φ2 ◦ φ̂1, where
φ1 : E → E′ and φ2 : E → E′′ are 3-isogenies.
Using the parametrization in [17], we may replace E′, E and E′′ with appropriate quadratic twists

such that E′ has an integral model of the form

(5.1) y2 −m3xy = x3 + (−2n6 + n3m3)x2 + (n12 − n9m3)x

with m,n relatively prime. Examining the Weierstrass c-invariants c4(E′) and c6(E′) of E′, we find
that the model (5.1) is minimal except possibly at p = 2. At p = 2, E′ will have multiplicative
reduction and the model (5.1) will be non-minimal if and only if m ≡ n (mod 2), in which case
v2(∆′) = v2(∆′min) + 12.
The corresponding model for E′′ is then given by

(5.2) y2 −m3xy = x3 + (−6m5n+ 6m4n2 − 23m3n3 − 12m2n4 − 24mn5 − 2n6)x2

− n(m− n)9(m2 +mn+ n2)x.

The model (5.2) will be minimal except possibly at 2 and 3. It will be non-minimal at 2 if and only
if m ≡ n (mod 2), in which case v2(∆′′) = v2(∆′′min) + 12. It will be non-minimal at 3 if and only
if m ≡ n (mod 3), in which case v3(∆′′) = v3(∆′′min) + 24 and E′ has additive reduction at 3.
These models allow us to easily understand the places where E has bad reduction.

Lemma 5.1. If E has additive, potentially good reduction at a prime p, then E has a twist Es with
good reduction at p.

Proof. For p 6= 3, this is Lemma 3.2. For p = 3, we observe that v3(c4(E′)) = v3(c6(E′)) = 0 if
m 6≡ n (mod 3) and v3(c4(E′)) = 2 and v3(c6(E′)) = 3 if m ≡ n (mod 3). Since E, and therefore
E′, is assumed to have bad reduction at 3, we therefore must be in the latter case. Twisting by 3,
we then obtain a curve of good reduction at 3. �

Lemma 5.2. If p ≥ 5 divides (n2 +nm+m2)(4n2−2nm+m2), then E has multiplicative reduction
at p with vp(j(E′)) = 3vp(j(E)) = vp(j(E

′′)).

Proof. We have ∆E′ = m9n18(n −m)2(2n + m)(n2 + nm + m2)2(4n2 − 2nm + m2) and c4(E′) =
(m3 + 2n3)(m9 + 6m6n3 − 12m3n6 + 8n9). A resultant computation then shows that any prime
p ≥ 5 dividing (n2 +nm+m2)(4n2−2nm+m2) can’t divide c4(E′), so E′ must have multiplicative
reduction at p. Further, since E′ has multiplicative reduction at p, we will have vp(j(E′)) =
−vp(∆E′) = −vp((n2 + nm + m2)2(4n2 − 2nm + m2)), where the latter equality follows from a
resultant computation between (n2 + nm+m2)(4n2 − 2nm+m2) and each of the other factors of
∆E′ .
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Since ∆E′′ = mn2(n−m)18(2n+m)9(n2 + nm+m2)2(4n2 − 2nm+m2), similar considerations
show that vp(j(E′′)) = −vp(∆E′′) = −vp((n2 + nm + m2)2(4n2 − 2nm + m2)). We therefore have
vp(j(E

′)) = vp(j(E
′′)), and the result follows from Lemma 3.4. �

Corollary 5.3. If E is a not a twist of a curve in the isogeny class 14a, then there exist distinct
primes `1, `2 ≥ 5 such that E has multiplicative reduction at `i with v`i(j(E

′)) = 3v`i(j(E)) =
v`i(j(E

′′)).

Proof. It is an elementary exercise to show that the only coprime pairs (n,m) for which there do
not exist distinct primes `1, `2 ≥ 5 dividing (n2 +nm+m2)(4n2−2nm+m2) are ±(1, 1), ±(1,−2),
±(1,−1), ±(1, 2), ±(2,−1), and ±(1, 4). The first two pairs correspond to singular curves and the
final four pairs correspond to curves in the isogeny class 14a or twists of such curves by −3, and
the result then follows from Lemma 5.2. �

Lemma 5.4. If p 6= 3 divides the denominator of ∆E′/∆E′′ = m8n16

(m−n)16(m+2n)8
, then E has (poten-

tial) multiplicative reduction at p with 9vp(j(E
′)) = 3vp(j(E)) = vp(j(E

′′)). The same holds for
p = 3 if it divides the denominator of ∆E′/∆E′′ to order greater than 24.

Proof. If p 6= 3 divides the denominator of ∆E′/∆E′′ , then E must have bad reduction at p. The
same holds for p = 3 if it divides the denominator of ∆E′/∆E′′ to order greater than 24. For
p ≥ 5, taking the resultant of each of (m− n) and (m+ 2n) with c4(E′) shows that E′ must have
multiplicative reduction at p. For p = 2, it suffices, as noted above, that E′ always has multiplicative
reduction at 2.
For p = 3, we will have p dividing the denominator of ∆E′/∆E′′ to order greater than 24 if and

only if m ≡ n (mod 9) or m ≡ −2n (mod 9). In each of these cases, we will have v3(∆E′′) ≥ 32
and v3(∆E′′

min
) ≥ 8. As a result, E′′ can’t have a twist of good reduction, since that would require

v3(∆E′′
min

) = 6. Applying Lemma 5.1, we find that E must have potentially multiplicative reduction.
Finally, we observe that by Lemma 3.4, for p 6= 3, we will have 9vp(j(E

′)) = 3vp(j(E)) = vp(j(E
′′))

if and only if vp(∆E′) < vp(∆E′′) and for p = 3, we will have 9vp(j(E
′)) = 3vp(j(E)) = vp(j(E

′′)) if
and only if vp(∆E′) < vp(∆E′′)− 24, since the valuation of p in the denominator of the j-invariant
will be the same as the valuation of the p in the minimal discriminant. �

Corollary 5.5. If E is not a twist of a curve in the isogeny class 14a, then there exists a prime `3
such that E has (potential) multiplicative reduction at `3 with 9v`i(j(E

′)) = 3v`i(j(E)) = v`i(j(E
′′)).

Proof. By Lemma 5.4, it suffices to show that the denominator of ∆E′/∆E′′ = m8n16

(m−n)16(m+2n)8
is

not equal to ±1 or ±324. Elementary arguments show that this is the case for (n,m) 6= ± (−2, 1),
±(1, 4), which correspond to curves in the isogeny class 14a or twists of such curves by −3. �

As a consequence of these results, we obtain the following:

Proposition 5.6. If E is not a quadratic twist of a curve in the isogeny class 14a, then T−3(φ1)∩
T−1(φ2) is non-empty.

Proof. By Corollary 5.3, we may find primes `1 and `2 that fall into case (ii) of Lemma 3.4. Thus,
by Lemma 2.10, there is a twist s such that c`j (φi,s) = 1/3 for all i, j ∈ {1, 2}.
By Corollary 5.5, we may also find a prime `3 such that v`3(j(E′′)) = 3v`3(j(E)) = 9v`3(j(E′)).
If `3 6= 3, then c`3(φ1,s) = 1/3 and c`3(φ2,s) = 3 for some s by Lemma 2.10. By Lemma 3.6 com-

bined with Lemma 2.4, we may additionally find s such that c3(φ1,s)c∞(φ1,s) = c3(φ2,s)c∞(φ2,s) = 1.
Taking s satisfying all of the above further satisfying cp(φ1,s) = 1 = cp(φ2,s) for all p - 3`1`2`3∞,
we will then have c(φ1,s) = 1/27 and c(φ2,s) = 1/3, showing that T−3(φ1) ∩ T−1(φ2) is non-empty.
If `3 = 3, then by Table 1 in [8], there is some s such that c3(φ1,s) = 1 and c∞(φ2,s) = 3. By

Lemma 2.4, we may therefore find s such that c3(φ1,s)c∞(φ1,s) = 1/3 and c3(φ2,s)c∞(φ2,s) = 3.
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The result then follows as before by taking s satisfying all of the above further satisfying cp(φ1,s) =
1 = cp(φ2,s) for all p - 3`1`2`3∞. �

5.1. Proof of Theorem 1.4. To prove Theorem 1.4, we need the following result concerning 2-
Selmer groups of elliptic curves with rational two-torsion.

Theorem 5.7. Let E/Q be an elliptic curve such that E(Q)[2] ' Z/2Z and let E′ be the curve
which is 2-isogenous to E. Let r ≥ 0 be an integer and let γ be a specified class in

∏
v|2NE∞Q∗v/Q∗2v .

If ∆E∆E′ is not a square, then at least 1/2 of the twists of E by s ∈ γ have |Sel2(Es)| ≥ 2r.

Proof. This is essentially due to the main result of Xiong [27] and of Klagsbrun and Lemke Oliver [15].
While neither result explicitly allows for restricting to s ∈ γ, each relies on a variant of the classical
Erdős–Kac theorem on the distribution of additive functions, and standard techniques allow for the
imposition of a fixed congruence condition. For example, the proof of [15, Theorem 1.3] is heavily
based on the methods of Granville and Soundararajan [13] that connect the Erdős–Kac theorem to
ideas from sieve theory, where it is straightforward to impose a fixed congruence condition. �

The following lemma shows that the hypothesis of Theorem 5.7 that ∆E∆E′ is not a square is
always satisfied in the cases in which we wish to apply the result.

Lemma 5.8. Suppose that E/Q is an elliptic curve such that E(Q)[2] ' Z/2Z and additionally
suppose that E has a rational 3-isogeny. If E′/Q is the curve that is 2-isogenous to E, then ∆E∆E′

is not a square.

Proof. As the modular curve X0(6) has genus 0, it follows from a rational parametrization given by
Maier [17] that there is some t ∈ Q such that

j(E) =
(t+ 6)3(t3 + 18t2 + 84t+ 24)3

t(t+ 8)3(t+ 9)2
, t 6= 0,−8,−9.

It follows that E is a quadratic twist of the curve with c4 = (t + 6)(t3 + 18t2 + 84t + 24) and
c6 = (t2+12t+24)(t4+24t3+192t2+504t−72) and discriminant t(t+8)3(t+9)2 ∈ t(t+8)Q∗2. Since
taking quadratic twists changes the discriminant by sixth powers, we find that ∆E ∈ t(t + 8)Q∗2.
A similar computation reveals that ∆E′ ∈ (t+ 9)Q∗2. Thus, ∆E∆E′ is a square if and only if there
is a rational y 6= 0 such that y2 = t(t + 8)(t + 9). This equation defines an elliptic curve, which is
observed to have rank 0 and Mordell-Weil group Z/2Z×Z/2Z over Q. The three points of order two
correspond exactly to the trivial solutions t = 0,−8,−9 ruled out above, and the lemma follows. �

Proof of Theorem 1.4. Let E′/Q have a cyclic 18-isogeny, and recall we are trying to show that a
positive proportion of twists of E′ have an element of order 6 in their Tate-Shafarevich groups. In
addition to the 9-isogeny φ discussed above, it also follows that E′ has a rational two-torsion point.
Moreover, by Lemma 5.8 E′ is subject to Theorem 5.7.
Suppose that E′ is not a twist of a curve in the isogeny class 14a. By Proposition 5.6, the

set T−3(φ1) ∩ T−1(φ2) is non-empty, so that by Proposition 2.13, a proportion at least 5/6 of
s ∈ T−3(φ1) ∩ T−1(φ2) are such that |X(E′s)[3]| ≥ 9. Combining this with Theorem 5.7, we find
that a proportion at least 1/3 of s ∈ T−3(φ1) ∩ T−1(φ2) are such that X(E′s) has an element of
order 6. This establishes the theorem. �

Theorem 5.7 and Lemma 5.8 together also quickly imply the following result.

Corollary 5.9. Suppose that E/Q has a rational degree 6 isogeny. Then for any r2 ≥ 1 and ε > 0,
|X(Es)[2]| ≥ 4r2 for a proportion at least 1/2− ε of twists Es.
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Proof. Since E has a degree 6 isogeny, it also possesses a degree 3 isogeny φ. Letm be any integer for
which Tm(φ) is non-empty. By Theorem 2.12, it follows that as r3 →∞, a proportion 1−O(1/r3) of
twists by s ∈ Tm(φ) have |Sel3(Es)| ≤ 3r3 . Combining this with Theorem 5.7 and Proposition 2.13,
the claimed result follows for the relative proportion of such s ∈ Tm(φ). Adding these proportions
across those m for which Tm(φ) is non-empty, we obtain the corollary. �

6. Exploiting Modular Curves

In this section, we prove Theorem 1.5 and Corollaries 1.6-1.8 We begin with Theorem 1.5.

Proof of Theorem 1.5. We begin by recalling the setup. We are given a non-cuspidal point x ∈
X0(3p)(F ). Label the four cusps ci, i ∈ {1, 3, p, 3p}, of X0(3p)(F ) according to their ramification
degree, so that ωi is the number of primes at which x and ci have the same reduction. Now, let E/F
be any elliptic curve corresponding to the point x onX0(3p)(F ). Then E has an F -rational 3-isogeny
φ : E → E′ and an F -rational p-isogeny ψ : E → E′′. We will ultimately apply Proposition 2.13 to
these two isogenies, so we begin by analyzing their Selmer ratios.
Let p - 3p be a prime for which x̄ = c̄i for some i. If r ≥ 1 is such that x and ci have the

same reduction (mod pr) but not (mod pr+1), then vp(j(E)) = −ri. Moreover, by considering
the action of the Fricke involutions W3 and Wp on X0(3p), we find that

(−vp(j(E′)),−vp(j(E′′))) =


(3r, pr) if i = 1,
(r, 3pr) if i = 3,
(3pr, r) if i = p, and
(pr, 3r) if i = 3p.

Taking Es to be a twist such that Es has split multiplicative reduction at p, we get cp(φs) = 3 and
cp(ψs) = p in the case i = 1 and cp(φs) = 1/3 and cp(ψs) = p in the case i = 3 by Lemma 2.10.
Thus, ∏

p:x̄=c̄1 or c̄3

cp(φs) = 3ω1−ω3 and
∏

p:x̄=c̄1 or c̄3

cp(ψs) = pω1+ω3 .

At all other primes p - 3p, we may choose s so that cp(φs) = cp(ψs) = 1. At primes p | 3, we choose
s so that cp(ψs) = 1. At worst, for this s we have

3−d ≤
∏
p|3

cp(φs) ≤ 32d.

At p | p, we may at the very least choose s so that cp(ψs) ≥ 1 while maintaining cp(φs) = 1.
Compiling these contributions, we have

3ω1−ω3−d ≤
∏
p<∞

cp(φs) ≤ 3ω1−ω3+2d and
∏
p<∞

cp(ψs) ≥ pω1+ω3 .

Thus, there are two extremes to be concerned with: either v3(c(φs)) could be large and positive,
or v3(c(φs)) could be large and negative. Considering the infinite places, in the first case, there is
a choice of s for which vp(c(ψs)) − v3(c(φs)) ≥ 2ω3 − 2d, while in the latter, there is a choice for
which vp(c(ψs))− |v3(c(φs))| ≥ 2ω1 − 2d. The result now follows from Proposition 2.13. �

We now proceed to the proofs of the associated corollaries to Theorem 1.5.

Proof of Corollary 1.6. Let x be the point on the modular curve X(1) corresponding to E and let
F be the field Q(x′) where x′ is a preimage of x under the degree 4p+ 4 covering X0(3p)→ X(1).
At each prime ` at which E has multiplicative reduction, the point x reduces to the (unique) cusp of
X(1), so at any prime l of F lying over `, the point x′ must reduce to one of the four cusps of X0(3p).
In fact, by our assumption on the Galois action on E[3p], we must have that `OF = l1l3lpl3p, where
the reduction of x′ on X0(3p) (mod li) is the same as that of ci. As we have assumed that there
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are at least 4p + 4 + r such primes `, it follows that each ωi ≥ 4p + 4 + r. The result now follows
from Theorem 1.5. �

Proof of Corollary 1.7. Let E : y2 +xy+y = x3 +x2−13x−219 be the elliptic curve with Cremona
label 50b3. We wish to show that |X(Es)[5]| ≥ 25 for an explicit set of s. E has both a 3-isogeny
φ : E → E′ and a 5-isogeny ψ : E → E′′, where E′ and E′′ have Cremona labels 50b4 and 50b1,
respectively. We claim that if s ≡ 1 (mod 8) is a positive squarefree integer coprime to 5, then the
two global Selmer ratios are given by c(φs) = 1 and c(ψs) = 25. It then follows from Proposition 2.13
that for at least 50% of such s, Es(Q) will have rank 0 and |X(Es)[5]| ≥ 25. Thus, the theorem
will follow from the claim about the global Selmer ratios of φs and ψs.
The curve E has split multiplicative reduction of Kodaira type I1 at p = 2 and additive reduction

of Kodaira type II∗ at p = 5. By Proposition 2.4, it follows that c2(φs) = 3 for all squarefree s ≡ 1
(mod 8) and c5(φs) = 1 for all s that are coprime to 5. In addition, a computation in Magma [4]
shows that c3(φs) = 1 for all s and c∞(φs) = 1/3 for all positive s. We thus find that for s as
claimed, we have c(φs) = 1.
We now consider c(ψs). From [8, Table 1], we see that c2(ψs) = 5 for all squarefree s ≡ 1 (mod 8).

The field Q(kerψ) = Q
(√

5
√

5− 50
)
is totally complex, so it follows that c∞(ψs) = 1 for all positive

s. Lastly, c5(ψs) = c5(E′′s )/c5(Es) · αψs,Q5 . Since E has Kodaira type II∗ at p = 5, it follows that
c5(E′′s )/c5(Es) = 1 for all s. Observe that ∆E = −2 · 510 while ∆E′′ = −25 · 52, so that by [12,
Theorem 1], αψs,Q5 = 5 for all s coprime to 5. Pulling this together, we find that c(ψs) = 25 for all
positive squarefree s ≡ 1 (mod 8) that are coprime to 5, and the theorem follows. The claim about
the elliptic curve 50b4 follows along the same lines. �

We now turn to the proof of Corollary 1.8 concerning fields over which the modular curves X0(15)
and X0(21) have infinitely many points. Recall that X0(15) and X0(21) both have genus one, so
that they may be given the structure of an elliptic curve. The following lemma will be used to find
rational points which reduce to specified cusps modulo many primes.

Lemma 6.1. Let E/F be an elliptic curve of positive rank and let T ∈ E(F ) be a non-trivial torsion
point. Fix an integral model for E. Given any ω1 and ω3, there exist distinct primes p1, . . . , pω1

and q1, . . . , qω3 for which there are infinitely many points P ∈ E(F ) for which P ≡ O (mod pi) for
each i ≤ ω1 and P ≡ T̄ (mod qj) for each j ≤ ω3.

Proof. Let P ∈ E(F ) be of infinite order. Let d be the order of T . Let w = max(ω1, ω3), and
let `1, . . . , `w ∈ Z be any odd primes congruent to 1 (mod d) and sufficiently large that both `iP
and `iP − T have a denominator divisible by a prime not dividing the denominator of P or P − T ;
as any elliptic curve has only finitely many S-integral points (see Corollary IX.3.2.1 in [25], for
example), this is always possible. Let pi be a prime for which the denominator of `iP has a non-
trivial valuation and let qi be such a prime for `iP − T . Set ` = `1 . . . `w. Then for any integer
n ≡ 1 (mod d), the point n`P satisfies the desired conditions. �

Proof of Corollary 1.8. Suppose that p = 5 or p = 7. The embedding X0(3p) → J0(3p) given
by x 7→ [x] − [c1] is an isomorphism, endowing X0(3p) with the structure of an elliptic curve E.
Moreover, by the Manin-Drinfeld theorem, the cusps ci of X0(3p) are torsion points in the Mordell-
Weil group E(F ). For any r ≥ 1, let ω1 = ω3 = r + 2d. Applying Lemma 6.1 with T = [c3]− [c1],
we find infinitely many points x ∈ X0(3p)(F ) for which Theorem 1.5 produces a curve E/F with
|X(Es/F )[p]| ≥ p2r for a positive proportion of twists. This is Corollary 1.8. �

Remark 6.2. The proof of Lemma 6.1 could likely be adapted to show that when the points P of
E(F ) are ordered by height, almost all will be such that the conclusion of the lemma holds for fixed
values of ω1 and ω3. For example, most integers n have at least 1

2 log log n prime factors, so that
there are at least 1

2 log logn primes contributing to ω1 for most points nP . Similarly, most n also
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have at least 1
2φ(d) log logn prime factors congruent to 1 (mod d). Since `nP −T = ` · (nP −T ) for

such a prime `, it follows that most points nP will also have ≥ 1
2φ(d) log log n primes contributing to

ω3. This argument essentially suffices in the case that E(F ) has rank 1, and we expect an analogous
argument can be made in higher rank.

7. Exploiting primes of (potential) good reduction

Let p be an odd prime. If E/Q is an elliptic curve with irreducible Gal(Q̄/Q)-representation E[3p],
then our techniques can say nothing about the average size of X(Es)[p] as s varies over Q×/Q×2,
since E admits neither a 3-isogeny nor a p-isogeny over Q.
This is of course no longer the case if we base change E to a sufficiently large extension, a fact

that we took advantage of in the proof of Corollary 1.6. However, Corollary 1.6 requires that E
have a large number of places of multiplicative reduction, imposing a significant restriction on E.
In the proof of Theorem 1.9 that follows, we show how similar results can be obtained by exploiting

primes dividing the degrees of the two isogenies. This allows us to extend our results to many
additional curves, including those with everywhere potentially good reduction.

Proof of Theorem 1.9. E/Q is an elliptic curve with potentially good and ordinary reduction at 3
and p, and Gal(Q̄/Q) acts transitively on the set of F`-lines in E[`] for both ` = 3 and ` = p. It
follows that Gal(K/Q) acts transitively on the F`-lines in Es[`] as well, where K = Q(E[3p]).
We now replace E by its base change to K = Q(E[3p]); then E/K has everywhere semi-stable

reduction. Let ψ : E → E′ be any of the p+ 1 isogenies of degree p emanating from E defined over
K, and φ : E → E0 be any of the four 3-isogenies out of E, all of which are defined over K as well.
We restrict our focus to the subset S of elements s ∈ K∗/K∗2 such that

c`(φs) = 1 = c`(ψs)

for all primes ` ofK at which E has multiplicative reduction. By Lemmas 2.10 and 2.7, this condition
holds whenever Es does not have split multiplicative reduction at `, so S has positive density. We
now claim that the average rank of Es for s ∈ S is at most d

2 + 3−6, where d = 1
2 [K : Q].

Since c`(φs) = 1 at all places where E has bad reduction, Corollary 2.11 says c(φs) = c∞(φs)c3(φs),
where cp(φ) =

∏
p|p cp(φ). As K is totally complex, we have c∞(φs) = 3−d. For p | 3, Lemma 2.8

says that cp(φs) is either 3[Kp : Q3] or 1, depending on whether kerφ reduces mod p to the kernel of
absolute Frobenius (the “canonical subgroup”).
The primes of K above 3 are permuted transitively by Gal(K/Q) and this Galois action is com-

patible the Gal(K/Q)-action on the canonical subgroups: if σ ∈ Gal(K/Q) then the canonical
subgroup of E over Kpσ is (kerφ)σ. It follows that kerφs is the kernel of Frobenius for exactly 1/4
of all primes p of K above 3. Therefore c3(φs) = 3d/2 · 13d/2 = 3d/2, which gives c(φs) = 3−d/2.
Hence, by Theorem 2.12, the average rank of Es for s ∈ S is at most d

2 + 1
3d/2

. Since K contains ζ3

and ζp, we have 2(p − 1) | 2d. Thus, d/2 is an integer greater than 1, and the average rank of Es,
for s ∈ S, is at most d

2 + 1
9 .

Turning our attention to ψ, we observe that the same reasoning yields c(ψs) = p2d/(p+1)−d. It
follows that Selp(E

′
s) has Fp-dimension at least d− 2d

p+1 for all s ∈ S. However, a positive proportion
of twists E′s by s ∈ S have rank at most d

2 . For these s, we conclude that dimFp X(E′s)[p] is at least

(7.1) d− 2d

p+ 1
− d

2
=
d

2

(
1− 4

p+ 1

)
,

which tends to d
2 as p→∞ and is positive for all p ≥ 5. �
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8. Tate-Shafarevich groups of CM elliptic curves

In this section we prove lower bounds for the average order of X(Es)[n], for a large class of
elliptic curves E with complex multiplication, which is the content of Theorem 1.10. We will need
two preliminary results.

Lemma 8.1. Let E be an elliptic curve over a number field F , and suppose EndF (E) is the quadratic
ring of discriminant Df2, with D a fundamental discriminant. Then there exists a cyclic f -isogeny
φ : E → E0 such that EndF (E0) has discriminant D.

Proof. Let K = Q(
√
D), and let OK be its ring of integers. We identify EndF (E) with the order

O of index f inside OK . Then fOK ⊂ O is an O-ideal and the desired isogeny φ is the isogeny
φ : E → E/E[fOK ]. Indeed, kerφ ' E[fOK ] ' O/fOK ' Z/fZ, so φ is a cyclic f -isogeny.
Moreover, if we define E0 = E/E[fOK ], then EndF (E0) ' OK , by [14, Thm. 20]. �

Proposition 8.2. Suppose φ : E → E0 is as in Lemma 8.1, and f = pn for some prime p. If p is
a prime of F above p of (potentially) ordinary reduction for E, then cp(φ) = pn[Fp : Qp].

Proof. Since p is a prime of potentially ordinary reduction, by [8, Table 1], to compute cp(φ), we
may replace Fp by a finite extension over which E has good ordinary reduction. So we may assume
that this is the case already for E over F .
We let φ̄ : Ē → Ē0 be the induced isogeny of elliptic curves over the residue field Fp. The key point

is that ker φ̄ is connected, i.e. φ̄ is (up to isomorphism) the nth power of the absolute Frobenius
isogeny of E over Fp. In other words, kerφ is the canonical subgroup of E[pn]. To see this, note
that ψ ◦ φ = [pn], for some cyclic pn-isogeny ψ : E0 → E. The canonical subgroup C in E0[p] is
of the form E0[a] for some ideal a ⊂ OK , so End(E0/C) ' OK . It follows that kerψ intersects
trivially with the canonical subgroup of E0[p]. Indeed, if the intersection were non-trivial, then
ψ : E0 → E would factor through an isogeny of degree pn−1 : E0/C → E. This is impossible, since
Disc(End(E)) = pnDisc(End(E0/C)) and the discriminant changes by at most a factor of p under
a p-isogeny (see e.g. [20, Cor. 4.3]).
We conclude that ker ψ̄ is étale, and hence ker φ̄ is connected. In other words, kerφ reduces to

the formal group of E. By Lemma 2.8, we conclude that cp(φ) = pn[Fp : Qp]. �

Proof of Theorem 1.10. On the one hand, by [3, Thm. 2.7], the average rank of Es is at most 1.
Since the rank of Es(F ) is even, this means that at least 50% of these twists have rank 0. On the
other hand, we will show that for all but finitely many s ∈ F×/F×2, the f -Selmer group Self (Es)

has size at least fd. For those twists with rank 0, this implies that |X(Es)[f ]| ≥ fd, proving the
theorem.
To give a lower bound for |Self (Es)|, we choose E0 over F with EndF (E0) ' OK and such that

there is a cyclic isogeny φ : E → E0 of degree f , as in Lemma 8.1. We will show that c(φs) = fd,
for all s. From Proposition 2.1, it will then follow that Selφ(Es) has size at least fd, and hence
Self (Es) has size at least fd for all but finitely many s, which will complete the proof.
To compute c(φs), it suffices to consider the case s = 1. We need to compute cp(φ) for all primes

p of F . If p is a finite prime not dividing f , then Lemma 2.7 implies that cp(φ) = 1 since E0 has a
quadratic twist of good reduction (see [3, Proof of Thm. 11.2]). Next we consider primes p dividing
f , and primes p of F above p. Then E has potentially ordinary reduction at p, since p splits in K.
We can factor φ : E → E0 into a φ2 ◦ φ1 with φ2 a p-power isogeny and φ1 a prime-to-p isogeny. As
noted in Section 2, we then have cp(φ) = cp(φ1)cp(φ2) = cp(φ2) by Lemma 7.2(b) in [18]. Applying
Proposition 8.2, this is equal to pn[Fp : Qp], where pn is the highest power of p dividing f .



20 MANJUL BHARGAVA, ZEV KLAGSBRUN, ROBERT J. LEMKE OLIVER, AND ARI SHNIDMAN

Finally, if p is archimedean, then p is complex since F necessarily contains K. We therefore have∏
p|∞ cp(φ) = f−[F : K]. Putting all of the local computations together, we conclude that

(8.1) c(φ) =

∏
p|f

∏
p|p

cp(φ)

∏
p|∞

cp(φ) =

∏
p|f

∏
p|p

pn[Fp : Qp]

 f−[F : K] =

∏
p|f

pn[F : Q]

 f−[F : K]

=

∏
p|f

pn

[F : Q]

f−[F : K] = f [F : Q]f−[F : K] = f [F : K] = fd

as desired. �

Note that the interesting cases of Theorem 1.10 are for f ≥ 3, and in those cases F has degree at
least 4 over Q. The degree of such an F necessarily grows with f , since the field of definition for
any CM elliptic curve with End(E) of discriminant Df2 is the ring class field of K of conductor f .

Example 8.3. If f = 3, we can take K to be any imaginary quadratic field in which 3 splits. In
this case, F must contain H(

√
−3), where H is the Hilbert class field of K. Indeed, H(

√
−3) is

the ring class field of K of conductor 3 whenever 3 splits in K. If K has class number 1, then we
can take F = K(

√
−3), which is biquadratic over Q. Theorem 1.10 then says that at least 50% of

twists Es have rank 0 and satisfy |X(Es)[3]| ≥ 9. If we base change this E to a number field F ′ of
degree 2d over Q, then half of all twists over F ′ have rank 0 and X(Es)[3] of size at least 3d.

9. Tate-Shafarevich groups of CM abelian varieties

The approach used in the previous section can be extended to more general CM abelian varieties.
We spell out the details in a particularly pretty example.
Let J be the Jacobian of the genus three Picard curve C : y3 = x4 − x. Over Q, J has good

reduction away from 3. Moreover, J is absolutely simple and has CM by K = Q(ζ9); see [3, §12].
The complex multiplication is defined over all fields containing K, so we will work for now over a
general number field F containing K. Also write K+ for the maximal totally real cubic subfield of
K, which is an abelian cubic extension of Q.
Let p be a prime of ordinary good reduction for J over Q. For example, take p to be any prime

which splits completely in K, or in other words such that p ≡ 1 (mod 9). We can then write
pOK =

∏6
i=1 pi, and J [p] '

⊕
J [pi].

Let p be a prime of F above p, and let pi be the prime of K below it. Write JFp for the reduction
of J over Fp = OF /p. Over the completion Fp, there is a unique subgroup Cp of J [p] of order p3

which lifts the kernel of the absolute Frobenius

Fr: JFpi
→ J

(p)
Fpi
' JFpi

.

Note that Fpi ' Fp. Since Frobenius commutes with the OK-action on JFpi
, the kernel Cp is more

than just a group, it is an OK-submodule of J [p] ' OK/pOK . The OK-submodules of OK/pOK of
index p3 are of the form n/pOK , for some ideal n ⊂ OK which is a product of three distinct prime
ideals above p. Hence Cp = J [np], for some such ideal np ⊂ OK , which depends only on pi, not p
itself.

Lemma 9.1. If σ ∈ Gal(K/Q), then nσ(pi) ' σ(npi).

Proof. Given the explicit equations for C and ζ9 ∈ Aut(C), the lemma follows from transport of
structure. More generally, it is a consequence of the Main Theorem of complex multiplication for
CM abelian varieties. �
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Lemma 9.2. Cp̄i ∩ Cpi = 0, where ·̄ denotes complex conjugation.

Proof. Using the principal polarization on J , we may view the dual isogeny α̂, for any α ∈ End J ,
as an element of End J . Moreover, if ι : OK ' End J is our given identification of OK with the
endomorphism ring of J , then we have ι(ᾱ) = ι̂(α). Combining with the previous Lemma, we
deduce that Cp̄i reduces to ker F̂r over Fpi . Since J is ordinary at pi, the latter is an étale group
scheme. On the other hand, Cpi reduces to ker Fr over Fpi , which is a connected group scheme. It
follows that Cp̄i ∩ Cpi = 0. �

Since Gal(K/Q) ' Z/6Z, and complex conjugation has order 2, it follows from the preceding
lemmas that the six ideals npi are (after re-indexing):

p1p2p3, p2p3p4, p3p4p5

and their complex conjugates
p4p5p6, p5p6p1, p6p1p2.

Note that pOK = npn̄p and A[p] = A[np] ⊕ A[n̄p], where n̄p denotes the complex conjugate of np.
Also note that Cp is defined over the number field K, and hence F as well. We refer to the Cp as
canonical subgroups.
For simplicity, let us now assume that F also contains the field K(J [p]) over which the action of

GK on the Galois module J [p] of order p6 becomes trivial.

Definition 9.3. A subgroup C ⊂ J [p] of order p3 is anti-canonical if it intersects trivially with all
six canonical subgroups Cpi .

There are many anti-canonical subgroups of J [p]. We describe one such subgroup below.

Example 9.4. Over C we have JC ' C3/OK , where the embedding of OK as a full rank lattice in
C3 is via the CM-type of J . We use this embedding to view all lattices in K as lattices in C3. Let
Op be the order OK+ +pOK of index p3 inside OK . There are natural (Z/pZ)3-isogenies of complex
tori

C3/OK ' C3/pOK → C3/Op and C3/Op → C3/OK
which descend to isogenies of abelian varieties ψ : J → A and φ : A → J over F . The composition
φ ◦ ψ is simply multiplication-by-p on J . Note also that EndF (A) ' Op and kerφ = A[pOK ]. If
we denote the kernel of ψ by C, then we claim that C ⊂ J [p] has trivial intersection with all six
canonical subgroups Cp = J [np]. This follows from the fact that Op ∩ np = pOK .

For our purposes, anti-canonical subgroups C ⊂ J [p] are interesting because they reduce injectively
into JFp(Fp), for all primes p of F above p. In particular, the isogeny ψ : J → J/C induces an
isomorphism on formal groups, and so αψ,Fp = 1 by Lemma 2.8. This is the last bit of input we
need to prove the following theorem.

Theorem 9.5. Let p ≡ 1 (mod 9) be a prime, and let F be a number field containing K(J [p]). Let
C be any anti-canonical subgroup of J [p], and set A = J/C. Then at least 50% of all quadratic
twists As have rank 0 and satisfy |X(As)[p]| ≥ p3d, where [F : Q] = 2d.

Proof. By [3, Thm. 12.5], the average rank of Js(F ) is at most 3, and at least 50% of twists have
rank 0. It follows that at least 50% of twists As have rank 0 as well. Let ψ : J → A be the natural
quotient with kernel C, and let φ : A→ J be the unique isogeny (of degree p3) such that φ◦ψ = [3].
We will show that the isogeny φs : As → Js satisfies c(φs) = p3d. It will then follow that for all but
finitely many s ∈ F×/F×2, we have |Selp(As)| ≥ p3d. Hence, for those As with rank 0, we must
have |X(As)[p]| ≥ p3d, which proves the theorem.
To compute c(φs), we first argue that cq(φs) = 1 for any prime q - p∞. This follows from

Lemma 2.11 and the fact that As and Js have quadratic twists of good reduction at q. (J has
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good reduction at all primes of F above 3 by [23, §2].) On the other hand, c∞(φs) = p−3d, since
F is totally complex. For primes p of F above p, we claim that cp(φs) = p3[Fp : Qp]. First note that
cp(φs) = αφs,Fp since As and Js have twists of good reduction. We also have αφs,Fp = α[p],Fp

α−1
ψs,Fp

.
Since Cs is anti-canonical, the extension of Cs to the Néron model of A over OFp is étale, and hence

αφ,Fp = α[p],Fp
α−1
ψ,Fp

= p3[Fp : Qp] · 1 = p3[Fp : Qp].

Putting everything together, we find that

c(φs) = p−3d ·

∏
p|p

p3[Fp : Qp]

 = p−3d
(
p3[F :Q]

)
= p−3dp6d = p3d,

which concludes the proof. �

10. Example: The isogeny family 14a

This section concerns the isogeny class of elliptic curves with Cremona label 14a. In particular,
the curve with Cremona label 14a1

E : y2 + xy + y = x3 + 4x− 6

has conductor 14 and admits two independent 3-isogenies φ1 : E → E′ and φ2 : E → E′′, where E′
and E′′ have Cremona labels 14a3 and 14a4, respectively. Over Q2, the curves E, E′, and E′′ have
nonsplit multiplicative reduction with Kodaira types I6, I18, and I2, respectively. Over Q7, E has
split multiplicative reduction of type I3, while E′ and E′′ have type I1. Additionally, we find that
kerφ1 ' Z/3Z and kerφ2 ' µ3.
Thus, using Proposition 2.4, we find c2(φ1,s) = 3 and c2(φ2,s) = 1/3 if s ≡ 5 (mod 8), and

c2(φ1,s) = c2(φ2,s) = 1 otherwise. Similarly, we find c7(φ1,s) = 1/3 = c7(φ2,s) if s ≡ 1, 2, 4 (mod 7),
and that both are equal to 1 otherwise. Over Q3, E has good ordinary reduction, and the points of
kerφ1 reduce injectively modulo 3. By Lemma 2.8, we have c3(φ1,s) = 1 and c3(φ2,s) = 3 for all s.
Finally, we also find that c∞(φ1,s) = 1/3 when s is positive and c∞(φ1,s) = 1 when s is negative,
and vice versa for c∞(φ2,s).
Thus, we see that

Z \ {0} = T−2(φ1) ∪ T−1(φ1) ∪ T0(φ1) ∪ T1(φ1)

and
Z \ {0} = T−2(φ2) ∪ T−1(φ2) ∪ T0(φ2) ∪ T1(φ2).

To compute the densities of these sets and their intersections, we find it convenient to use a gener-
ating function (in fact, a generating polynomial). From the local computations above, we find∑

m∈Z
µ(Tm(φ1))qm =

(
1 + q−1

2

)(
q

6
+

5

6

)(
27

48
+

21

48
q−1

)
=

35

192
q−2 +

29

64
q−1 +

61

192
+

3

64
q.

Thus, for example, the set T0(φ1) has density 61/192, so that by Theorem 2.12 at least 61/384 ≈
15.88% of twists Es/Q have rank 0. This expression also yields a bound of 1183

864 ≈ 1.369 on the
average rank of twists Es(Q) for s squarefree. Similarly, we compute that∑

m∈Z
µ(Tm(φ2))um = u

(
1 + u−1

2

)(
u−1

6
+

5

6

)(
27

48
+

21

48
u−1

)
=

7

192
u−2 +

17

64
u−1 +

89

192
+

15

64
u.
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This yields that a larger proportion 89/384 ≈ 23.18% of twists Es/Q have rank 0, and a smaller
bound of 1043

864 ≈ 1.207 on the average rank of Es(Q) for s squarefree.
We can do much better by combining these isogenies, however. In particular, we find that∑
m,n∈Z

µ(Tm(φ1) ∩ Tn(φ2))qmun =
3

64
qu−1 +

15

64
q−1u+

35

192
q−2 +

7

192
u−2 +

7

32
q−1u−1 +

9

32
.

This shows that every squarefree s is in either T0(φ1)∪T0(φ2) or T−1(φ1)∪T1(φ1)∪T−1(φ2)∪T1(φ2).
Thus, Corollary 2.14 and Proposition 2.2 yield that at least 25% of twists Es/Q have rank 0, at
least 5/6 have 3-Selmer rank one, and that the average rank of Es(Q) for s squarefree is at most
7/6. These rank bounds are the best one can hope for using only the methods of this paper.
Moreover, we are also able to exploit the isogenies φ1 and φ2 to produce 3-torsion elements of Tate-

Shafarevich groups. In particular, the set T−2(φ1)∩T0(φ2) has density 35/192. By Proposition 2.13,
we find that a proportion 35/384 of squarefree s are such that |X(E′s)[3]| ≥ 9. Similarly, we find
that for at least 7/384 of squarefree s, we have |X(E′′s )[3]| ≥ 9.
In fact, each of the curves E, E′, and E′′ also has a single rational two-torsion point, and hence a

rational 2-isogeny. The three additional curves that are the codomain of these 2-isogenies complete
the isogeny class 14a, whose isogeny graph is given in Figure 1.

14a3 14a1 14a4

14a5 14a2 14a6

E′ E E′′
3 3

3 3
2 2 2

Figure 1. The isogeny graph of the isogeny class 14a.

By an easy diagram chase, the global Selmer ratios of the two 3-isogenies in the top row are equal
to those of the bottom row, so the analysis for the isogenies in the bottom row is identical to that
of the top row. In particular, exactly the same results hold for the proportion of twists with small
rank, and exactly the same results hold on 3-torsion in Tate-Shafarevich groups for the curve 14a5 as
do for E′, and the same for 14a6 as do for E′′. In fact, exploiting the 2-isogeny and Theorem 5.7, it
is possible to show that each curve in the family has a positive proportion of twists with arbitrarily
large 2-torsion in their Tate-Shafarevich groups.
Unfortunately, it is not clear how to prove that any of these curves has a positive proportion of

twists with an element of order six in X, which is why these curves are the lone exceptional case
in Theorem 1.4. For example, to produce elements of order three in X(E′s), we used above that
within T−2(φ1) ∩ T0(φ2), 50% of twists E′s(Q) have rank 0. We also know by Theorem 5.7 that for
50% of s ∈ T−2(φ1) ∩ T0(φ2), we have that |Sel2(E′s)| ≥ 2r2 for any r2 ≥ 0. To show that there is
an element of order six in X, we would need these two sets of density 1/2 to intersect, which we
currently see no way to guarantee.
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