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Abstract. Let K/Q be a number field. Let π and π′ be cuspidal automorphic represen-
tations of GLd(AK) and GLd′(AK). We prove an unconditional and effective log-free zero
density estimate for all automorphic L-functions L(s, π,K) and prove a similar estimate for
Rankin-Selberg L-functions L(s, π ⊗ π′,K) when π or π′ satisfies the Ramanujan conjec-
ture. As applications, we make effective Moreno’s analogue of Hoheisel’s short interval prime
number theorem and extend it to the context of the Sato-Tate conjecture; additionally, we
bound the least prime in the Sato-Tate conjecture in analogy with Linnik’s theorem on the
least prime in an arithmetic progression. We also prove effective log-free density estimates
for automorphic L-functions averaged over twists by Dirichlet characters and consider and
prove an “average Hoheisel” result for GL2 L-functions.

1. Introduction and statement of results

The classical prime number theorem asserts that∑
n≤x

Λ(n) ∼ x,

where Λ(n) is the von Mangoldt function. Depending on the quality of the error term, it is
possible to deduce from this a prime number theorem for short intervals, in the form

(1.1)
∑

x<n≤x+h

Λ(n) ∼ h,

provided that h is not too small; with the presently best known error terms, we may take
h a bit smaller than x divided by any power of log x, but not as small as x1−δ for any
δ > 0. Improving the error bound in the prime number theorem to allow for h to be of size
x1−δ is a monumentally hard task, known as the quasi-Riemann hypothesis, and amounts to
showing that there are no zeros of the Riemann zeta function ζ(s) in the region Re(s) > 1−δ.
Nevertheless, in 1930, Hoheisel [23] made the remarkable observation that, with Littlewood’s
improved zero-free region for ζ(s), if there are simply not too many zeros in this region, then
one can deduce (1.1) with h = x1−δ. In particular, it turns out that

(1.2) N(σ, T ) := #{ρ = β + iγ : ζ(ρ) = 0, β ≥ σ, |γ| ≤ T} � T c(1−σ)(log T )c
′
,

where c > 2 and c′ > 0 are absolute constants; this is a so-called zero density estimate.
(In this section, c and c′ will always denote positive absolute constants, though they may
represent different values in each occurrence.) Recall that there are about T

π
log T

2πe
zeros of

ζ(s) with |γ| ≤ T , so that a vanishingly small proportion of zeros have real part close to 1.
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An explicit version of (1.2) enabled Hoheisel to prove the prime number theorem in short
intervals (1.1) for h = x1−δ in the range 0 ≤ δ ≤ 1/33000; it is now known that we may take
0 ≤ δ ≤ 5

12
, due to Huxley [24] and Heath-Brown [20].

Another classical problem in analytic number theory is to determine the least prime in
an arithmetic progression a (mod q) with (a, q) = 1. Linnik [32] was able to show that the
least such prime is no bigger than qA, where A is an absolute constant; the best known value
of A is 5, due to Xylouris [54] in his Ph.D. thesis. Modern treatments of Linnik’s theorem
typically use a simplification due to Fogels [13], which involves proving a more general version
of (1.2) for Dirichlet L-functions L(s, χ). Specifically, if we define

Nχ(σ, T ) := #{ρ = β + iγ : L(ρ, χ) = 0, β ≥ σ, and |γ| ≤ T},

then Fogels showed that

(1.3)
∑

χ(mod q)

Nχ(σ, T )� T c(1−σ)

when T ≥ q. Due to the absence of a log T term as compared to (1.2), it is standard to
call such a result a log-free zero density estimate. In this paper, we are interested in
analogous log-free zero density estimates for automorphic L-functions and their arithmetic
applications, specifically to analogues of Hoheisel’s and Linnik’s theorems.

We consider the following general setup. Let K/Q be a number field with ring of adeles AK ,
and let Ad(K) denote the set of all cuspidal automorphic representations of GLd(AK) with
unitary central character. We make the implicit assumption that the central character of π
is trivial on the product of positive reals when embedded diagonally into the (archimedean
places of) the ideles. If π ∈ Ad(K), then there is an L-function L(s, π,K) attached to π
whose Dirichlet series and Euler product are given by

L(s, π,K) =
∑
a

λπ(a)

Nas
=
∏
p

d∏
j=1

(1− απ(j, p)Np−s)−1,

where the sum runs over the non-zero integral ideals of K, the product runs over the prime
ideals of K, and Na = NK/Qa denotes the norm of the ideal a.

Let π ∈ Ad(K) and π′ ∈ Ad′(K). The Rankin-Selberg L-function

L(s, π ⊗ π′, K) =
∑
a

λπ⊗π′(a)

Nas
.
=
∏
p

d∏
j1=1

d′∏
j2=1

(1− απ(j1, p)απ′(j2, p)Np−s)−1

also has an analytic continuation and a functional equation; here, the symbol
.
= indicates

equality up to a contribution from the finitely many ramified prime ideals, whose Euler
factors are slightly more complicated. Under our normalization for the central characters of
π and π′, the Rankin-Selberg L-function L(s, π ⊗ π′, K) has a pole of order one at s = 1 if
and only if π′ ∼= π̃.

Define Λπ⊗π′(a) by the Dirichlet series identity

−L
′

L
(s, π ⊗ π′, K) =

∑
a

Λπ⊗π′(a)

Nas
.

If π̃ is the representation which is contragredient to π, then it follows from standard Rankin-
Selberg theory and the Wiener-Ikehara Tauberian theorem that we have a prime number
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theorem for L(s, π ⊗ π̃, K) in the form∑
Na≤x

Λπ⊗π̃(a) ∼ x.

It is reasonable to expect (for example, it follows from the generalized Riemann hypothesis)
that there is some small δ > 0 such that for x sufficiently large and any h ≥ x1−δ, we have

(1.4)
∑

x<Na≤x+h

Λπ⊗π̃(a) ∼ h.

Unfortunately, a uniform analogue of Littlewood’s improved zero-free region does not yet
exist for all automorphic L-functions, so it seems that (1.4) is currently inaccessible except
in special situations. However, it follows from the work of Moreno [38] that if L(s, π⊗ π̃, K)
has a so-called “standard” zero-free region (one of a quality similar to Hadamard’s and de
la Vallée Poussin’s for ζ(s)), and if there is a log-free zero density estimate of the form

Nπ⊗π′(σ, T ) := #{ρ = β + iγ : L(ρ, π ⊗ π′, K) = 0, β ≥ σ, |γ| ≤ T} � T cπ,π′ (1−σ)

for L(s, π ⊗ π̃, K), then for any 0 < δ < 1/cπ,π̃ and any h ≥ x1−δ, one has

(1.5)
∑

x<Na≤x+h

Λπ⊗π̃(a)� h,

which Moreno called the Hoheisel phenomenon. However, at the time of Moreno’s work,
such log-free zero density estimates only existed in special cases. Moreover, in general, it is
only known that L(s, π ⊗ π̃, K) has a standard zero-free region if π is self-dual.

Effective log-free zero density estimates have been proven for certain natural families of
L-functions. Weiss [52] proved an effective analogue of (1.3) for the Hecke L-functions
of ray class characters, which enabled him to access prime ideals of K satisfying splitting
conditions in a finite Galois extension M/K. Additionally, Kowalski and Michel [30] obtained
a log-free zero density estimate in the conductor aspect for L-functions associated to any
family of automorphic representations of GLd(AQ) satisfying certain conditions, including
the generalized Ramanujan conjecture (see Section 2.1). Their result works best when the
T -aspect is essentially irrelevant (see [30, Remark 3]), which is useful for establishing variants
of Linnik’s theorem but not (1.5).

Recall that π ∈ Ad(K) and π′ ∈ Ad′(K). Building on Fogels’s log-free zero density
estimate for Dirichet L-functions, Akbary and Trudgian [1] proved that if K = Q, either
max{d, d′} ≤ 2 or one of π and π′ is self-dual, T is sufficiently large in terms of π and π′,
and there exists a constant 0 < δ < 1 such that

(1.6)
∑

x<n≤x+x1−δ

Λπ⊗π̃(n)�π x
1−δ and

∑
x<n≤x+x1−δ

Λπ′⊗π̃′(n)�π′ x
1−δ,

then

Nπ⊗π′(σ, T ) ≤ T cd,d′ (1−σ),

where cd,d′ > 0 is a constant depending on d and d′. By the work of Moreno mentioned earlier,
this allowed them to establish a variant of (1.5) for π⊗ π̃ when π is self-dual, provided that π
satisfies (1.6). The condition (1.6) follows immediately from the Brun-Titchmarsh theorem
[37], provided that the generalized Ramanujan conjecture holds for L(s, π,Q). Thus, their
work is unconditional in many cases of interest.
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However, even in cases where the work of Akbary and Trudgian is unconditional, they do
not make clear the dependence of the allowable range of T on π and π′, which is necessary
to obtain analogues of Linnik’s theorem. Moreover, the length of the allowable intervals in
the Hoheisel phenomenon depends on the constant cd,d′ , and Akbary and Trudgian do not
make clear its dependence on d and d′. This makes the density estimate in [1] difficult to use
in situations where uniformity in parameters over several L-functions is relevant, especially
when the L-functions in question vary in degree. Moreover, as mentioned earlier, the method
of [1] builds on work of Fogels, which, as Weiss mentions in the introduction of his Ph.D.
thesis [53] regarding GL1 L-functions, will produce an undesireable dependence on π and π′.

The main goals of this paper are to prove several log-free zero density estimates for Rankin-
Selberg L-functions L(s, π⊗π′, K), where the dependence on all parameters is made effective,
and to derive arithmetic corollaries along the lines of the Hoheisel phenomenon and Linnik’s
theorem for which this effectivity is crucial. These results, which hold independently of
whether π and π′ are self-dual, are most naturally stated in terms of the analytic conductors
q(π) and q(π′), whose definitions we give in (2.3). We begin with the following theorem.

Theorem 1.1. Let K be a number field, let π ∈ Ad(K), and let π′ ∈ Ad′(K). Suppose that
π′ satisfies the generalized Ramanujan conjecture (GRC), and let T ≥ [K : Q]. There exists
an absolute constant c1 > 0 such that if 1

2
≤ σ ≤ 1, then1

Nπ⊗π′(σ, T )� (d′)2(q(π)q(π′)T [K:Q])c1d
′d(1−σ).

The next result, which is unconditional, follows from the proof of Theorem 1.1 by letting
π′ be the trivial representation of GL1(AK), which visibly satisfies GRC.

Corollary 1.2. Let K be a number field, and let π ∈ Ad(K). If T ≥ [K : Q] and 1
2
≤ σ ≤ 1,

then
Nπ(σ, T )� (q(π)T [K:Q])c1d(1−σ).

Remark. Corollary 1.2 is the first unconditional log-free zero density estimate for all auto-
morphic L-functions L(s, π,K). (Recall that Akbary and Trudgian’s result is conditional
on the verification of (1.6) for both π and π′. Thus, even if π′ is trivial, their result is still
conditional on L(s, π,Q) satisfying (1.6).) Moreover, Corollary 1.2 applies to L-functions
over any number field, whereas Akbary and Trudgian considered only L-functions over Q.

In addition to density estimates of the form (1.3), Jutila [26] and Montgomery [35] proved
“hybrid” density estimates of the form

(1.7)
∑
q≤Q

∑?

χ mod q

Nχ(σ, T )� (Q2T )c(1−σ)(logQT )c
′
,

where the ? on the summation indicates it is to be taken over primitive characters. (By
[35], we may take c = 5

2
.) This simultaneously generalizes (1.2) and Bombieri’s large sieve

density estimate [7]. As a consequence of (1.7), one sees that the average value of Nχ(σ, T )
is noticeably smaller than what is given by (1.3). Furthermore, (1.7) can be used to prove
versions of the Bombieri-Vinogradov theorem in both long and short intervals.

Gallagher [15] proved that

(1.8)
∑
q≤T

∑?

χ mod q

Nχ(σ, T )� T c(1−σ), T ≥ 1,

1Unless mentioned otherwise, the implied constant in an asymptotic inequality is absolute and computable.
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providing a mutual refinement of (1.3) and (1.7). Our second result generalizes (1.8) to
consider twists of Rankin-Selberg L-functions associated to automorphic representations
over Q.

Theorem 1.3. Under the notation and hypotheses of Theorem 1.1 with K = Q,∑
q≤T

gcd(q,q(π)q(π′))=1

∑?

χ mod q

N(π⊗χ)⊗π′(σ, T )� (d′)2(q(π)q(π′)T )c1d
′d(1−σ),

where q(π) and q(π′) are the conductors of π and π′, respectively.

As with Theorem 1.1, we immediately obtain the following unconditional corollary by
letting π′ be the trivial representation of GL1(AQ).

Corollary 1.4. Under the notation and hypotheses of Corollary 1.2 with K = Q,∑
q≤T

gcd(q,q(π))=1

∑?

χ mod q

Nπ⊗χ(σ, T )� (q(π)T )c1d(1−σ).

It follows from Theorem 1.1 and Corollary 1.2 that we obtain log-free zero density esti-
mates for Rankin-Selberg L-functions which factor as a product of L-functions, each of which
individually satisfies the hypotheses of Theorem 1.1 or Corollary 1.2. The Langlands princi-
ple of functoriality predicts that such a factorization always exists for L(s, π⊗π′, K), and this
is known to be true in certain cases. For example, this is known when π, π′ ∈ A2(K) by work
of Ramakrishnan [45, Theorem M]. This is also known when π ∈ A2(K) and π′ ∈ A3(K) by
work of Kim and Shahidi [29] and Ramakrishnan and Wang [47]. This allows us to deduce
the following unconditional result.

Theorem 1.5. Let K be a number field. Let π ∈ Ad(K) and π′ ∈ Ad′(K) with d ≤ 2 and
d′ ≤ 3. If T ≥ [K : Q] and 1

2
≤ σ ≤ 1, then

Nπ⊗π′(σ, T )� (q(π)q(π′)T [K:Q])6c1(1−σ).

If K = Q, then ∑
q≤T

gcd(q,q(π)q(π′))=1

∑?

χ mod q

N(π⊗χ)⊗π′(σ, T )� (q(π)q(π′)T )6c1(1−σ).

In particular, Theorem 1.5 applies to L(s, π⊗ π′, K) when π, π′ ∈ A2(K) each correspond
to Hecke-Maass forms for which GRC is not known. The special case where K = Q, π
corresponds to a Hecke-Maass form, and π′ ∼= π̃ was proved by Motohashi [42] using methods
different from our own.

Another example of an L-function for which GRC is not known but there is a profitable
factorization is L(s, Sym2π⊗Sym2π,K), where π ∈ A2(K) is associated to a self-dual Hecke-
Maass form. Speficically, we have the well-known factorization

L(s, Sym2π ⊗ Sym2π,K) = ζK(s)L(s, Sym2π,K)L(s, Sym4π,K),

and it is known by work of Gelbart and Jacquet [16] and Kim [27] that Sym2π ∈ A3(K)
and Sym4π ∈ A5(K), respectively. Thus we obtain an unconditional log-free zero density
estimate for L(s, Sym2π ⊗ Sym2π,K) from three applications of Corollary 1.2.
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1.1. Arithmetic applications. We now turn to the applications of Theorems 1.1 and 1.3
and their corollaries. We begin by considering a version of (1.5) with effective bounds on the
size of the intervals for all L-functions L(s, π ⊗ π̃, K) satisfying the generalized Ramanujan
conjecture (not just those with a standard zero-free region).

Theorem 1.6. Assume the above notation. Let π ∈ Ad(K) satisfy GRC. There exists an
absolute constant 0 < c2 < 1/2 such that if

δ ≤ c2

d2[K : Q] log(3d)
,

x is sufficiently large (with respect to π), and h ≥ x1−δ, then∑
x<Na≤x+h

Λπ⊗π̃(a) � h,

where the implied constant depends on π and K. Moreover, if L(s, π ⊗ π̃, K) factors as a
product of L-functions satisfying the hypotheses of Theorem 1.1 or Corollary 1.2, then the
result is not conditional on GRC. In particular, if d = 2, then the result is unconditional.

Remark. When L(s, π ⊗ π̃, K) factors as a product of L-functions of cuspidal automorphic
representations, then Theorem 1.6 confirms the hypothesis (1.6) of Akbary and Trudgian’s
work. This is particularly interesting when π is associated to a Hecke-Maass form over
K, where GRC is not known. However, Akbary and Trudgian are concerned only with
the case K = Q, and Motohashi [42] recently proved a version of Theorem 1.6 using his
aforementioned log-free zero density estimate.

It is of course somewhat unsatisfying that we are not able to obtain an asymptotic formula
in Theorem 1.6 to provide a true short interval analogue of (1.5). As remarked earlier, this
is due to the lack of a strong zero-free region for general automorphic L-functions and seems
unavoidable at present. Good zero-free regions of a quality better than Littlewood’s exist for
Dedekind zeta functions (for example, due to Mitsui [34]), which enabled Balog and Ono [2]
to prove a prime number theorem for prime ideals in Chebotarev sets lying in short intervals.

Even though versions of Theorem 1.6 with asymptotic equality are only known in special
cases, we can use Theorem 1.3 to show that the predicted asymptotic holds on average. Our
motivation is a result of Gallagher [15, Theorem 7], which states that there exist absolute
constants c3, c4 ∈ (0, 1) such that if exp(

√
log x) ≤ Q ≤ xc3 and x/Q ≤ h ≤ x, then

(1.9)
∑
q≤Q

∑?

χ mod q

∣∣∣ ∑
x<p≤x+h

Λ(p)χ(p)− δ(χ)h+ δq,∗(χ)hξβ1−1
∣∣∣� h exp

(
− c4 log x

logQ

)
for some ξ ∈ [x, x + h]. Here, δ(χ) = 1 if χ is the trivial character and is zero otherwise,
and β1 denotes the Landau-Siegel zero associated to an exceptional real Dirichlet character
χ∗ (mod q) if it exists. We set δq,∗(χ) = 1 if χ = χ∗ and zero otherwise.

We prove the following generalization of (1.9); to obtain unconditional results and simplify
the exposition, we restrict ourselves to consider automorphic representations of GL2(AQ) with
trivial central character.

Theorem 1.7. Assume the above notation. Let π ∈ A2(Q) have a trivial central character.
There exist absolute constants c3, c4 ∈ (0, 1) such that if exp(

√
log x) ≤ Q ≤ xc3 and x/Q ≤
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h ≤ x, then∑
q≤Q

gcd(q,q(π))=1

∑?

χ mod q

∣∣∣ ∑
x<p≤x+h

Λπ⊗π̃(p)χ(p)− δ(χ)h+ δq,∗(χ)hξβ1−1
∣∣∣� h exp

(
− c4 log x

log(Qq(π))

)
for some ξ ∈ [x, x+ h]. The implied constant depends at most on q(π).

Unlike the previous log-free zero density estimates for general automorphic L-functions
discussed earlier, Theorem 1.1 allows us to handle questions where maintaining uniformity in
parameters is crucial. One famous example of such an application is the Sato-Tate conjecture,
which concerns the distribution of the quantities λπ(p) attached to representations π ∈
A2(K), where K is a totally real field; for generalizations to higher degree representations,
see, for example, Serre [49]. Suppose that π has trivial central character and is genuine (see
Section 5.3 for a definition). Suppose further that π satisfies GRC. Then |λπ(p)| ≤ 2 at all
unramified p. We may thus write λπ(p) = 2 cos θp for some angle θp ∈ [0, π]. The Sato-Tate
conjecture predicts that if I = [a, b] ⊂ [−1, 1] is a fixed subinterval, then

lim
x→∞

1

πK(x)
#{Np ≤ x : cos θp ∈ I} =

2

π

∫
I

√
1− t2 dt =: µST(I),

where πK(x) := #{p : Np ≤ x}. The Sato-Tate conjecture is now a theorem for large
classes of π. For newforms over Q and elliptic curves over totally real fields, this was
proved by Barnet-Lamb, Geraghty, Harris, and Taylor [5], and for Hilbert modular forms,
this was done by Barnet-Lamb, Gee, and Geraghty [4]. The proofs rely upon showing that
the symmetric power L-functions L(s, Symnπ,K) are all potentially automorphic, that is,
there exists a finite, totally real Galois extension L/K such that Symnπ is automorphic
over L. It is expected that L(s, Symnπ,K) ∈ An+1(K) for each n ≥ 1, but as of right
now, this is known in general only for n ≤ 4 [16, 27, 28, 29]. By recent work of Clozel
and Thorne [9], if π is associated to a Hilbert modular form, and K ∩Q(e2πi/35) = Q, then
L(s, Symnπ,K) ∈ An+1(K) for n ≤ 8. Despite this recent progress, because of our limited
knowledge of automorphy, the number of symmetric powers needed to access the interval I
is particularly important in the sorts of analytic problems considered in this paper.

Recall that the Chebyshev polynomials Un(t), defined by
∞∑
n=0

Un(t)xn =
1

1− 2tx+ x2
,

form an orthnormal basis for L2([−1, 1], µST). If πp is unramified, then Un(cos θp) is the
Dirichlet coefficient of L(s, Symnπ,K) at the prime p. We say that a subset I ⊆ [−1, 1] can
be SymN-minorized if there exist constants b0, . . . , bN ∈ R with b0 > 0 such that

(1.10) 1I(t) ≥
N∑
n=0

bnUn(t)

for all t ∈ [−1, 1], where 1I(·) denotes the indicator function of I. Note that if I can be
SymN -minorized, then it is the union of intervals which individually need not be SymN -
minorizable. We prove the following result.

Theorem 1.8. Assume the above notation. Let K be a totally real number field, and let
π ∈ A2(K) be genuine. Suppose that π satisfies GRC and has trivial central character.
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Suppose that a fixed subset I ⊆ [−1, 1] can be SymN -minorized and that Symnπ ∈ An+1(K)
for each n ≤ N . Let B = max0≤n≤N |bn|/b0, where b0, . . . , bN are as in (1.10). There exists
an absolute constant c5 > 0 such that if

δ ≤ c5

N [K : Q] log(3BN)
,

x is sufficiently large (with respect to π and N), and h ≥ x1−δ, then∑
x<Np≤x+h
πp unramified

1I(cos θp) log Np � h,

where the implied constant depends on B, I, and K. In particular, if I can be Sym4-
minorized, or if I can be Sym8-minorized and π is a Hecke newform over Q, then this is
unconditional.

Remarks. 1. For any fixed n, determining the intervals I that can be SymN -minorized is
an elementary combinatorial problem. We carry this out in Lemma A.1 to determine the
intervals that can be Sym4-minorized, which we consider to be the most interesting case;
it turns out that the proportion of subintervals of [−1, 1] which can be Sym4-minorized
is roughly 0.388. If one is not concerned with obtaining the optimal minorant or if N is
large, it is likely more convenient to apply a standard minorant for I instead. For the
Beurling-Selberg minorant (see Montgomery [36, Lecture 1]), a tedious calculation shows
that if N ≥ 3 and µST(I) ≥ 4(1 + δ)/(N + 1) for some δ > 0, then I can be SymN -minorized
with B ≤ 3

4
(N+1)δ−1. It follows that any interval can be SymN -minorized for N sufficiently

large, and thus every interval is at least conditionally covered by Theorem 1.8. However,
Lemma A.2 shows that this minorant might be far from optimal. With the Beurling-Selberg
minorant, we prove unconditional results for intervals I satisfying µST(I) > 4

5
. By contrast,

Lemma A.1 implies unconditional results for all intervals satisfying µST(I) ≥ 0.534, and for
some with measure as small as 0.139.

2. It is tempting to ask whether one can exploit existing results on potential automorphy
for symmetric power L-functions and the explicit dependence on the base field in Theorem
1.1 to obtain unconditional, albeit weaker, results for all subintervals of [−1, 1]. The proof
of the Sato-Tate conjecture crucially relies on the work of Moret-Bailly [41] establishing the
existence of number fields over which certain varieties have points. The proof of this result
unfortunately only permits control over the ramification at finitely many places, so it is not
possible to even obtain bounds on the discriminants of the fields over which the symmetric
power L-functions are automorphic. Thus, the authors do not believe it is possible to obtain
an unconditional analogue of Theorem 1.8 for all I at this time.

As mentioned earlier, Theorem 1.1 also allows us to access Linnik-type questions. As
one such example, we consider an analogue of Linnik’s theorem in the context of the Sato-
Tate conjecture. One complication in the proof of Linnik’s theorem that is not seen in
Hoheisel’s is the possible existence of a so-called Landau-Siegel zero for some Dirichlet L-
function L(s, χ). In order to handle this possible contribution (as one must, since Linnik’s
theorem is unconditional), two facts are used: there is at most one character χ (mod q) whose
associated L-function has a Landau-Siegel zero, and every coefficient in the (mod q) Fourier
decomposition of the indicator function of set {n ∈ Z : n ≡ a (mod q)} is of the same size.
Neither of these facts need be true for symmetric power L-functions L(s, Symnπ,K) and the
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minorant (1.10), so we consequently say that the minorant (1.10) does not admit Landau-
Siegel zeros if for every 1 ≤ n ≤ N for which L(s, Symnπ,K) has a Landau-Siegel zero, the
coefficient bn satisfies bn ≤ 0. (It happens that if bn ≤ 0, then the Landau-Siegel zero may
be trivially ignored in the analysis.) Finally, if a set I ⊆ [−1, 1] admits such a minorant,
then we say that I can be SymN -minorized without admitting Landau-Siegel zeros. We have
suppressed the role of the representation π in this terminology, but its presence will always
be clear in context.

Theorem 1.9. Assume the notation of Theorem 1.8, and in particular that I ⊂ [−1, 1]
can be SymN -minorized. Let π ∈ A2(K) satisfy the hypotheses of Theorem 1.8. Suppose
further that the SymN -minorant admits no Landau-Siegel zeros. If the Dedekind zeta function
ζK(s) has no Landau-Siegel zero, then there exists an absolute constant c6 > 0 such that if
Symnπ ∈ An+1(K) for n ≤ N , then there is an unramified prime p satisfying both cos θp ∈ I
and

Np� ([K : Q][K:Q]NNq(π)N
3

)c6N
4 log(3BN).

If K = Q and π is associated to a non-CM newform with squarefree level, then this may be
improved to

Np� (Nq(π))c6N
5 log(3BN).

Remarks. 1. Even if ζK(s) has a Landau-Siegel zero, we can still prove an effective bound
for the least norm of a prime ideal in the Sato-Tate conjecture, but the bound will have a
less desirable dependence on K. See the remark following the proof of Theorem 1.9.

2. When I is fixed and π varies, the bound in Theorem 1.9 has the shape Np ≤ q(π)A for
some absolute constant A, and so is comparable to Linnik’s theorem. However, if π is fixed
and I is varying, the dependence is much worse. This comes partially from the constants
in the zero-free region for L(s, Symnπ,K) (see Lemma 3.3), where the n dependence in
particular is of the form n4. Without improving the quality of the dependence on n, it seems
likely that only minor improvements can be made to Theorem 1.9.

3. Suppose that π ∈ A2(K) is self-dual and genuine. It follows from work of Hoffstein
and Ramakrishnan [22]; Goldfeld, Hoffstein, and Liemann [21] and Banks [3]; and Ramakr-
ishnan and Wang [46] that none of L(s, π,K), L(s, Sym2π,K), and L(s, Sym4π,K) has a
Landau-Siegel zero (respectively). In fact, the proof of [22, Theorem B] also shows that if
L(s, Symjπ,K) is automorphic for j ∈ {n− 2, n, n+ 2}, then L(s, Symnπ,K) does not have
a Landau-Siegel zero. From the known automorphy results mentioned earlier, it follows that
if π corresponds with a non-CM Hilbert modular form, then L(s, Symnπ,K) does not have a
Landau-Siegel zero for n = 1, 2, and 4, and additionally n = 3, 5, and 6 if K∩Q(e2πi/35) = Q.

4. Following the ideas of Moreno [39, Theorem 4.2], we could prove a version of the zero
repulsion phenomenon of Deuring and Heilbronn for L(s, π ⊗ π′, K). Such a result would
allow us to weaken the definition of I not admitting Landau-Siegel zeros. In particular,
we would only need to require that for every 1 ≤ n ≤ N such that L(s, Symnπ,K) has
a Landau-Siegel zero, the coefficient bn satisfies bn ≤ b0. Since this does not completely
eliminate the Landau-Siegel zero contribution, we do not carry out this computation.

5. If K = Q, one may use Corollary 1.4 instead of Corollary 1.2 in the proof of Theorem
1.9. This would produce a bound on the least prime p ≡ a (mod q) such that cos θp ∈ I.

Finally, we note that Corollary 1.4 can be used to study the distribution of values of au-
tomorphic L-functions in families of twists near the edge of the critical strip. For example,
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Lamzouri [31] extended the method of Granville and Soundararajan [18] for studying the dis-
tribution of L(1, χd,Q) (where χd is a primitive quadratic Dirichlet character to modulus d)
to study the distribution of L(1, π⊗χd,Q) where π is a cuspidal automorphic representation
over Q. Lamzouri’s results rely on the existence of a log-free zero density estimate (which he
called a “weak zero density estimate”) averaged over twists by χd, which is known for some
π by the aforementioned work of Kowalski and Michel [30]; Corollary 1.4 unconditionally
provides such an estimate for all π. Corollary 1.4 is also used by Pasten [44, Section 17]
to control the distribution of L′

L
(1, π ⊗ χ) in his proof that appropriate bounds for modular

degrees imply Szpiro’s conjecture in the context of modular elliptic curves over totally real
fields other than Q.

This paper is organized as follows. In Sections 2 and 3, we discuss the basic properties
of automorphic L-functions that we will use in the proofs of the theorems; we also prove a
few useful lemmas. In Section 4, we prove Theorems 1.1 and 1.3. In Section 5, we prove
Theorems 1.6, 1.8, and 1.9. In Section 6, we prove Theorem 1.7.
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2. Rankin-Selberg L-functions

2.1. Automorphic L-functions. We follow the account of Rankin-Selberg L-functions
given by Brumley [8, Section 1]. Let K/Q be a number field of absolute discriminant DK .
Let AK denote the ring of adeles over K, and let Ad(K) be the set of cuspidal automorphic
representations of GLd(AK) with unitary central character.

Let π ∈ Ad(K). We have the factorization π = ⊗vπv over the places of K. For each
nonarchimedean p, we have the Euler factor

Lp(s, π,K) =
d∏
j=1

(1− απ(j, p)Np−s)−1

associated with πp. Let Rπ be the set of prime ideals p for which πp is ramified. We call
απ(j, p) the local roots of L(s, π,K) at p, and if p /∈ Rπ, then απ(j, p) 6= 0 for all 1 ≤ j ≤ d.
The representation π has an associated automorphic L-function whose Euler product and
Dirichlet series are given by

L(s, π,K) =
∏
p

Lp(s, π,K) =
∑
a

λπ(a)

Nas
,

where p runs through the finite primes and a runs through the non-zero integral ideals of K.
This Euler product converges absolutely for Re(s) > 1, which implies that |απ(j, p)| < Np.
Luo, Rudnick, and Sarnak [33, Theorem 2] showed that if p /∈ Rπ, then

(2.1) |απ(j, p)| ≤ Np
1
2
− 1
d2+1 ,
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and Müller and Speh [43] proved that this holds for all primes p. The generalized Ramanujan
conjecture (GRC) asserts a further improvement.

The generalized Ramanujan conjecture (GRC). Assume the above notation. For each
prime p /∈ Rπ, we have |απ(j, p)| = 1, and for each prime p ∈ Rπ, we have |απ(j, p)| ≤ 1.

Remark. It is expected that all automorphic L-functions L(s, π,K) satisfy GRC. Indeed,
it is already known for many of the most commonly used automorphic L-functions. Such
L-functions include L-functions for π ∈ A1(K) and, by Deligne [12], the L-function of a
cuspidal normalized Hecke eigenform of positive even integer weight k on the congruence
subgroup Γ0(N). More generally, Blasius [6] proved that Hilbert modular forms over totally
real number fields with each weight both even and at least 2 satisfy GRC.

At each archimedean place v, we associate to πv a set of d complex numbers {µπ(j, v)}dj=1,
often called Langlands parameters, which are known to satisfy

Re(µπ(j, v)) > −1

2
+

1

d2 + 1
,

again by [33, 43]. The local factor at v is defined to be

Lv(s, π,K) =
d∏
j=1

ΓKv(s+ µπ(j, v)),

where ΓR(s) = π−s/2Γ( s
2
) and ΓC(s) = ΓR(s)ΓR(s + 1). Letting S∞ denote the set of

archimedean places, we define the gamma factor of L(s, π,K) by

L∞(s, π,K) =
∏
v∈S∞

Lv(s, π,K).

For notational convenience, we will define the complex numbers κπ(j) by

(2.2) L∞(s, π,K) =

d[K:Q]∏
j=1

ΓR(s+ κπ(j)).

Any automorphic L-function L(s, π,K) admits a meromorphic continuation to C with
poles possible only at s = 0 and 1. Let r(π) denote the order of the pole at s = 1, and define
the completed L-function

Λ(s, π,K) = (s(1− s))r(π)q(π)s/2L∞(s, π,K)L(s, π,K),

where q(π) is the conductor of π. (Note that Dd
K divides q(π).) It is well-known that

Λ(s, π,K) is an entire function of order 1 and that there exists a complex number ε(π) of
modulus 1 such that Λ(s, π,K) satisfies the functional equation

Λ(s, π,K) = ε(π)Λ(1− s, π̃,K),

where π̃ is the representation contragredient to π. For each p, we have that

{απ̃(j, p)}dj=1 = {απ(k, p)}dk=1.

Moreover,

L∞(s, π̃,K) = L∞(s, π,K) and q(π̃) = q(π).
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To maintain uniform estimates for the analytic quantities associated to L(s, π,K), we
define the analytic conductor of L(s, π,K) by

(2.3) q(s, π) = q(π)

d[K:Q]∏
j=1

(|s+ κπ(j)|+ 3).

We will frequently make use of the quantity q(0, π), which we denote by q(π).
As in the introduction, define the von Mangoldt function Λπ(a) by

−L
′

L
(s, π,K) =

∑
a

Λπ(a)

Nas
,

and let ΛK(a) be that associated to the Dedekind zeta function ζK(s). We then have that
Λπ(a) is supported on powers of prime ideals, and

Λπ(pm) = ΛK(pm)
d∑
j=1

απ(j, p)m.

In particular, Λπ(p) = λπ(p) log Np. Using the bounds for |απ(j, p)| from [33, 43], we have
that

(2.4) |Λπ(a)| ≤ dΛK(a)Na
1
2
− 1
d2+1

for every ideal a, and under GRC, we have |Λπ(a)| ≤ dΛK(a).

2.2. Rankin-Selberg L-functions. Consider two representations π ∈ Ad(K) and π′ ∈
Ad′(K). We are interested in the Rankin-Selberg product π ⊗ π′ of π and π′, which, at
primes p /∈ Rπ ∩Rπ′ , has a local factor given by

Lp(s, π ⊗ π′, K) =
d∏

j1=1

d′∏
j2=1

(1− απ(j1, p)απ′(j2, p)Np−s)−1.

For p ∈ Rπ ∩Rπ′ , we write the local roots as βπ⊗π′(j, p) with 1 ≤ j ≤ d′d, and for each such
p we define

Lp(s, π ⊗ π′, K) =
d′d∏
j=1

(1− βπ⊗π′(j, p)Np−s)−1.

This gives rise to the Rankin-Selberg L-function L(s, π ⊗ π′, K), whose Euler product and
gamma factor are given by

L(s, π ⊗ π′, K) =
∏
p

Lp(s, π ⊗ π′, K)

and

L∞(s, π ⊗ π′, K) =
∏
v∈S∞

d∏
j1=1

d′∏
j2=1

ΓKv(s+ µπ⊗π′(j1, j2, v)) =

d′d[K:Q]∏
j=1

ΓR(s+ κπ⊗π′(j)),

where

(2.5) Re(κπ⊗π′(j)) ≥ −1 +
1

d2 + 1
+

1

(d′)2 + 1
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for all 1 ≤ j ≤ d′d[K : Q] and

(2.6) |απ⊗π′(j1, j2, p)| ≤ Np
1− 1

d2+1
− 1

(d′)2+1

for all p. (See [8, Section 1] for further discussion regarding these bounds at ramified places.)
By [8, Equation 8], we have

(2.7) q(s, π ⊗ π′) ≤ q(π)d
′
q(π′)d(|s|+ 3)d

′d[K:Q].

Moreover, if K = Q, χ a primitive Dirichlet character modulo q, and gcd(q, q(π)q(π′)) = 1,
then

(2.8) q(s, (π ⊗ χ)⊗ π′) ≤ q(π)d
′
q(π′)dqd

′d(|s|+ 3)d
′d.

Finally, we note that if π′ ∼= π̃, then the order r(π ⊗ π′) of the pole at s = 1 is 1.

3. Preliminaries

3.1. Zero-free regions. We require regions of the critical strip which contain few nontrivial
zeros of L(s, π⊗π′, K). In the spirit of Mertens’s variant of the proof of the zero-free region
for ζ(s) originally due to Hadamard and de la Vallée Poussin, one typically finds a suitable
Dirichlet series D(s) with nonnegative Dirichlet coefficients such that L(s, π⊗π′, K) divides
D(s) with a multiplicity m that is (strictly) larger than the order of the pole of D(s) at
s = 1. A verification of the holomorphy of D(s)/L(s, π ⊗ π′, K)m in some interval (t, 1) for
a fixed 0 < t < 1 then yields the desired zero-free region.

In practice, one can find a region in the critical strip for which L(s, π ⊗ π′, K) is nonzero
with the possible exception of a simple real zero near s = 1 whenever at least one of π and
π′ is self-dual. (See [17, 39] for further discussion.) However, since it is our purpose only to
count zeros, it suffices to establish regions of the critical strip which contain an absolutely
bounded number of zeros. Such a result comes readily for L(s, π ⊗ π′, K), even if neither π
nor π′ is self-dual, via the following lemma, which descends from the appendix to [21].

Lemma 3.1. Let Π be an isobaric representation of GLd(AK). If r(Π⊗ Π̃) ≥ 1 is the order
of the pole of L(s,Π ⊗ Π̃, K) at s = 1, then there exists an absolute constant 2 c7 > 0 such
that Λ(σ,Π⊗ Π̃, K) has at most r(Π⊗ Π̃) real zeros in the region

σ ≥ 1− c7

(r(Π⊗ Π̃) + 1) log q(Π⊗ Π̃)
.

Proof. This is proved by Hoffstein and Ramakrishnan [22, Lemma c], but they only showed
that c7 depends on at most r(Π ⊗ Π̃) and d. The dependence can be made explicit by
proceeding as in [25, Lemma 5.9], though the degree dependence in [25, Lemma 5.9] can
be removed in our case because, as shown in [22, Lemma a], all Dirichlet coefficients of
L(s,Π⊗ Π̃) are real and nonnegative. �

Let T ≥ 1. For future convenience, we define

Q =

{
max{q(π), DK [K : Q][K:Q]} if d′ = 1 and π′ is trivial,

max{q(π)q(π′), DK [K : Q][K:Q]} otherwise

2We denote by c1, c2, . . . a sequence of constants, each of which is absolute, positive, and effectively com-
putable. We do not recall this convention in future statements, as we find it to be notationally cumbersome.
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and

(3.1) L = L(T, π ⊗ π′, K) = d′d log(QT [K:Q]).

Note that from the definition of L, we always have L � d′d[K : Q].

Lemma 3.2. Let T ≥ 1. If c8 is sufficiently small, then the region

{s = σ + it : 1− c8L−1 ≤ σ < 1, |t| ≤ T}
contains at most four zeros of L(s, π ⊗ π′, K).

Proof. This follows from applying Lemma 3.1 to the isobaric representation Π = (π ⊗
| det |it/2) � (π̃′ ⊗ | det |−it/2); see also [39, Section 3]. �

When d′ = 1 and π′ is trivial, we can obtain a tighter result regarding the location of the
zeros at the cost of a slightly worse dependence on d.

Lemma 3.3. Let T ≥ 1. The region

{s = σ + it : 1− c8(d3L)−1 ≤ σ < 1, |t| ≤ T}
contains no zeros of L(s, π,K) except possibly for one simple real zero β1, in which case π
is self-dual. We call such a zero β1 a Landau-Siegel zero.

Proof. The proof is the same as [25, Lemma 5.9]. �

3.2. Useful bounds. Let S = S(π ⊗ π′) = Rπ ∩Rπ′ , and define the partial L-function

LS(s, π ⊗ π′, K) =
∏
p6∈S

Lp(s, π ⊗ π′, K).

We write (a, S) = 1 to say that the prime factors of a do not lie in S. If (a, S) = 1, then
λπ⊗π′(a) = λπ(a)λπ′(a). Define

NS
π⊗π′(σ, T ) = #{ρ = β + iγ : LS(π, π ⊗ π′, K) = 0, β ≥ σ, |γ| ≤ T}.

If 1 − (d2 + 1)−1 − ((d′)2 + 1)−1 ≤ σ ≤ 1, it is clear that NS
π⊗π′(σ, T ) = Nπ⊗π′(σ, T ). We

will prove Theorem 1.1 and its variants for LS(s, π ⊗ π′, K) and then deduce the results for
L(s, π⊗ π′, K). Note that the zero-free regions in Section 3.1 also apply to LS(s, π⊗ π′, K).

Lemma 3.4. Let T ≥ 0, and let τ ∈ R satisfy |τ | ≤ T .

(1) Uniformly on the disk |s− (1 + iτ)| ≤ 1/4, we have that

(LS)′

LS
(s, π ⊗ π′, K) +

r(π ⊗ π′)
s

+
r(π ⊗ π′)
s− 1

−
∑

|ρ−(1+iτ)|≤1/2

1

s− ρ
� L,

where the sum runs over zeros ρ of LS(s, π ⊗ π′, K).
(2) For 1 ≥ η � L−1, we have that ∑

|ρ−(1+iτ)|≤η

1� ηL,

where the sum runs over zeros ρ of LS(s, π ⊗ π′, K).

Proof. Part 1 is a slight variation of [25, Equation 5.28]; see [1, Lemma 2.4], for example.
Part 2 follows from combining [25, Theorem 5.6] and [25, Proposition 5.8]. �

Lemma 3.5. If η > 0 and y ≥ 2, then
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(1)
∑

(a,S)=1

|Λπ⊗π′(a)|
Na1+η

� 1

η
+ d′d log(q(π)q(π′)).

(2)
∑
Na≤y

(a,S)=1

|Λπ⊗π′(a)|
Na

� log y + d′d log(q(π)q(π′)).

For convenience, we write (a, S) = 1 if the ideal a has no prime factors in S.

Proof. By the Cauchy-Schwarz inequality, we have∑
(a,S)=1

|Λπ⊗π′(a)|
(Na)1+η

�
(
− L′

L
(1 + η, π ⊗ π̃, K)

)1/2(
− L′

L
(1 + η, π′ ⊗ π̃′, K)

)1/2

.

We first estimate −L′

L
(1 + η, π ⊗ π̃, K), which is a positive quantity because η > 0 and the

Dirichlet coefficients of −L′

L
(s, π⊗ π̃, K) are real and nonnegative. By [25, Theorem 5.6] and

[25, Proposition 5.7], we have

−Re
(L′
L

(1 + η, π ⊗ π̃, K)
)

=
1

2
log q(π ⊗ π̃) + Re

(L′∞
L∞

(1 + η, π ⊗ π̃, K)
)

+
1

1 + η
+

1

η
−
∑
ρ 6=0,1

Re
( 1

1 + η − ρ

)
,

where ρ = β + iγ runs through the zeros of Λ(s, π ⊗ π′, K). Since 0 ≤ β < 1, we have

Re
( 1

1 + η − ρ

)
=

1 + η + β

(1 + η + β)2 + γ2
> 0,

the contribution from sum over zeros is negative, so we can discard it. Thus

−Re
(L′
L

(1 + η, π ⊗ π̃, K)
)
≤ 1

2
log q(π ⊗ π̃) + Re

(L′∞
L∞

(1 + η, π ⊗ π̃, K)
)

+
1

1 + η
+

1

η
.

By the proof of [25, Proposition 5.7, part 2], we have

Re
(L′∞
L∞

(1 + η, π ⊗ π̃, K)
)

= −
∑

|s+κπ⊗π̃(j)|<1

Re
( 1

1 + η + κπ⊗π̃(j)

)
+O(log q(π ⊗ π̃)).

Since Re(κπ⊗π′(j)) > −1 for all 1 ≤ j ≤ d′d[K : Q], it follows that Re( 1
1+η+κπ⊗π̃(j)

) > 0.

Therefore, by positivity and (2.7),

−L
′

L
(1 + η, π ⊗ π̃, K)� 1

η
+ log(q(π ⊗ π̃))� 1

η
+ d log q(π).

Since the analogue holds for π′, part 1 follows. Part 2 follows by choosing η = (log y)−1. �

We conclude this section with bounds on the mean values of Dirichlet polynomials.

Lemma 3.6. Let T ≥ 1 and u > y � (QT [K:Q])c9, where c9 is sufficiently large. Define

Sy,u(τ, π ⊗ π′) :=
∑

y<Np≤u

Λπ⊗π′(p)

Np1+iτ
.

1. If L(s, π′, K) satisfies GRC, then∫ T

−T
|Sy,u(τ, π ⊗ π′)|2dτ �

(d′)2(log u)(log u+ d2 log q(π))

log y
.
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2. If K = Q and L(s, π,Q) satisfies GRC, then

∑
q≤T 2

gcd(q,q(π)q(π′))=1

log
T 2

q

∑?

χ mod q

∫ T

−T
|Sy,u(τ, (π ⊗ χ)⊗ π′)|2dτ � (d′)2(log u)(log u+ d2 log q(π)).

Proof. 1. Let b(p) be a complex-valued function supported on the prime ideals of K such
that

∑
p |b(p)|2Np < ∞ and b(p) = 0 whenever Np ≤ y. With our choice of T and y, it

follows from [52, Corollary 3.8] that

(3.2)

∫ T

−T

∣∣∣∑
p

b(p)Np−iτ
∣∣∣2dτ � 1

log y

∑
p

|b(p)|2Np,

If we define b(p) by

b(p) =


Λπ⊗π′(p)

Np
if y < Np ≤ u,

0 otherwise

and recall the definition of Sy,u(τ, π ⊗ π′), then an application of (3.2) yields the bound∫ T

−T
|Sy,u(τ, π ⊗ π′)|2dτ �

1

log y

∑
y<Np≤u

|Λπ⊗π′(p)|2

Np
.

Since y is greater than the norm of any ramified prime, it follows from our assumption of
GRC for L(s, π′, K) that

∑
y<Np≤u

|Λπ⊗π′(p)|2

Np
=

∑
y<Np≤u

|λπ(p)|2|λπ′(p)|2(log Np)2

Np
≤ (d′)2

∑
y<Np≤u

|λπ(p)|2(log Np)2

Np
.

Since all prime ideals p in the sum are unramified, we have that |λπ(p)|2 log Np = |Λπ⊗π̃(p)|.
The claimed result now follows by partial summation using Lemma 3.5.

2. Let K = Q. Suppose that a(p) is a function on primes such that a(p) = 0 if p ≤ Q and∑
p |a(p)|2p <∞. By [15, Theorem 4], we have that for T ≥ 1,

(3.3)
∑
q≤Q

log
Q

q

∑?

χ mod q

∫ T

−T

∣∣∣∑
p

a(p)χ(p)p−it
∣∣∣2dt�∑

p

(Q2T + p)|a(p)|2.

Let Q = T 2 and

a(p) =


Λπ⊗π′(p)χ(p)

p
if y < p ≤ u,

0 otherwise.

Note that if gcd(q, q(π)q(π′)) = 1, then Λπ⊗π′(p)χ(p) = Λ(π⊗χ)⊗π′(p); moreover, our choice of
y implies that a(p) = 0 at every ramified prime p dividing q((π⊗ χ)⊗ π′). Choosing c9 > 6,
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our hypotheses imply that T 5 � p for every p ∈ (u, y]. Thus∑
q≤T 2

gcd(q,q(π)q(π′))=1

log
T 2

q

∑?

χ mod q

∫ T

−T
|Sy,u(τ, (π ⊗ χ)⊗ π′)|2dτ

≤
∑
q≤T 2

log
T 2

q

∑?

χ mod q

∫ T

−T

∣∣∣ ∑
y<p≤u

Λπ⊗π′(p)χ(p)

p1+iτ

∣∣∣2dτ
�

∑
y<p≤u

(T 5 + p)
|Λπ⊗π′(p)|2

p2
≤
∑
y<p≤u

|Λπ⊗π′(p)|2

p
.

This is bounded using GRC just as in the proof of Part 1. �

4. The zero density estimate

In this section, we prove Theorem 1.1 by generalizing Gallagher’s [15] and Weiss’s [52]
treatment of Turán’s method for detecting zeros of L-functions, obtaining a result that is
uniform in K, π, and π′. The key result is the following technical proposition, whose proof
we defer to the end of the section. Recall from Lemma 3.2 that L = d′d log(QT [K:Q]).

Proposition 4.1. Recall the notation and hypotheses of Theorem 1.1. Let y = ec9L with c9

sufficiently large. Suppose that η satisfies L−1 � η ≤ 1/55. Let

Sy,u(τ, π ⊗ π′) :=
∑

y<Np≤u

Λπ⊗π′(p)

Np1+iτ
.

If LS(s, π ⊗ π′) has a zero ρ0 satisfying |ρ0 − (1 + iτ)| ≤ η and Re(ρ0) ≤ 1− c8/L, then for
sufficiently large c10 and c11, we have that

yc10η

(log y)3

∫ yc11

y

|Sy,u(τ, π ⊗ π′)|2
du

u
� 1.

We first deduce Theorem 1.1 from Proposition 4.1. The proof of Proposition 4.1 relies on

certain upper and lower bounds on the derivatives of (LS)′

LS
‘(s, π ⊗ π′), which are proven and

assembled subsequently.

4.1. Proof of Theorems 1.1 and 1.3. By [25, Theorem 5.8],

(4.1) Nπ⊗π′(0, T ) =
T

π
log
(
q(π ⊗ π′)

( T

2πe

)d′d[K:Q])
+O(log q(iT, π ⊗ π′))

for all T ≥ 1; by a slight variation of the proof, the same bound holds for NS
π⊗π′(0, T ). Thus

it suffices to prove Theorems 1.1 and 1.3 for 1 − σ sufficiently small. Since the left side of
Theorem 1.1 is a decreasing function of σ and the right side of Theorem 1.1 is essentially
constant for 1 − σ � L−1, it suffices to prove the theorem for 1 − σ � L−1. Therefore, we
may assume that c12 ≤ σ ≤ 1 − c8L−1, where 1

2
< c12 < 1. Since c8 and c12 are absolute,

we may take c8 sufficiently close to 0 and c12 sufficiently close to 1 such that we may take
η =
√

2(1− σ) in Proposition 4.1.
Suppose that T ≥ 1 and ρ = β + iγ satisfies |γ| ≤ T and σ ≤ β ≤ 1− c8L−1. For τ ∈ R,

let

ψρ(τ) =

{
1 if |γ − τ | ≤ 1− σ and |τ | ≤ T ,

0 otherwise.
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Since η =
√

2(1− σ), we have that
√

2
∫ T
−T ψρ(τ)dτ ≥ η for each ρ, while

∑
ρ ψρ(τ)� ηL by

Lemma 3.4. Thus

NS
π⊗π′(σ, T )�

∫ T

−T

∑
ρ

η−1ψρ(τ)dτ.

Since ψρ(τ) 6= 0 implies that |ρ − (1 + iτ)| ≤ η, we have by Proposition 4.1 and the bound
1� ηL that∫ T

−T

∑
ρ

η−1ψρ(τ)dτ �
∫ T

−T
η−1
(∑

ρ

ψρ(τ)
) yc10η

(log y)3

(∫ yc11

y

|Sy,u(τ, π ⊗ π′)|2
du

u

)
dτ

� L yc10η

(log y)3

∫ yc11

y

(∫ T

−T
|Sy,u(τ, π ⊗ π′)|2dτ

)du
u
.

If π′ satisfies GRC, then it follows from Part 1 of Lemma 3.6, the definition of Sy,u(τ, π⊗π′),
and the fact that y = ec9L (with c9 sufficiently large) that

NS
π⊗π′(σ, T )� (d′)2L yc10η

(log y)4

∫ yc11

y

(log u)(log u+ d2 log q(π))

u
du� (d′)2yc10η.

Since η =
√

2(1− σ) and y = ec9L, we have

NS
π⊗π′(σ, T )� (d′)2yc10

√
2(1−σ) � (d′)2(QT [K:Q])

√
2c9c10d′d(1−σ).

We let c1 = 24
√

2c9c10, so that

NS
π⊗π′(σ, T )� (d′)2(QT [K:Q])c1d

′d(1−σ)/24.

To conclude the proof of Theorem 1.1, we make a few small observations. First, note that
Dd+d′

K divides q(π)q(π′). Thus if we replace the condition T ≥ 1 with T ≥ [K : Q], then
QT [K:Q] � (q(π)q(π′)T [K:Q])2, giving the slightly tidier bound

NS
π⊗π′(σ, T )� (d′)2(q(π)q(π′)T [K:Q])c1d

′d(1−σ)/12.

Second, our method only detects zeros of Λ(s, π ⊗ π′, K) with the Euler factors at the
ramified primes removed, so we must account for the O(d′d[K : Q]) “trivial zeros” which
arise as poles of L∞(s, π ⊗ π′, K) along with the O(log(q(π)q(π′))) zeros that arise from the
removed Euler factors. However, the real parts of these zeros are no larger than 1 − (d2 +
1)−1 − ((d′)2 + 1)−1 by (2.5) and (2.6). Thus for σ ∈ [1 − (d2 + 1)−1 − ((d′)2 + 1)−1, 1),
we have Nπ⊗π′(σ, T ) = NS

π⊗π′(σ, T ). If 1/2 ≤ σ < 1 − (d2 + 1)−1 − ((d′)2 + 1)−1, then the
bound for Nπ⊗π′(σ, T ) in Theorem 1.1 is trivial when compared to (4.1). Finally, we increase
the implied constant to account for the four possible zeros in Lemma 3.2, and Theorem 1.1
follows. To obtain Corollary 1.2, note that if π′ is the trivial representation of GL1(AK),
then q(π′) ≤ DK(T + 4)[K:Q], so we find that

Nπ(σ, T )� (q(π)DK(T + 4)[K:Q]T [K:Q])c1d(1−σ)/4 � (q(π)T [K:Q])c1d(1−σ)/2.

Theorem 1.3 and Corollary 1.4 are proven similarly using (2.8), but we use part 2 of Lemma
4.2 instead of part 1.
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4.2. Bounds on derivatives. We begin the proof of Proposition 4.1 by introducing nota-
tion which we will use throughout this section and the next. First, let r = r(π ⊗ π′) be the
order of the possible pole of LS(s, π⊗ π′, K) at s = 1. We suppose that LS(s, π⊗ π′, K) has
a zero ρ0 with Re(ρ0) ≤ 1− c8/L satisfying

|ρ0 − (1 + iτ)| ≤ η,

and we set

F (s) =
(LS)′

LS
(s, π ⊗ π′, K).

Suppose that |τ | ≤ T , where T ≥ 1, as in the statement of Proposition 4.1. On the disk
|s− (1 + iτ)| < 1/4, by part 1 of Lemma 3.4, we have

F (s) +
r

s
+

r

s− 1
=

∑
|ρ−(1+iτ)|≤1/2

1

s− ρ
+G(s),

where G(s) is analytic and |G(s)| � L. Setting ξ = 1 + η + iτ , we have

(4.2)
(−1)k

k!

dkF

dsk
(ξ) + r(ξ − 1)−(k+1) =

∑
|ρ−(1+iτ)|≤1/2

(ξ − ρ)−(k+1) +O(8kL),

where the error term absorbs the contribution from integrating G(s) over a circle of radius
1/8 centered at ξ and the term coming from differentiating r

s
. We begin by obtaining a lower

bound on the derivatives of F (s).

Lemma 4.2. Assume the notation above. For any M � ηL, there is some k ∈ [M, 2M ]
such that

ηk+1

k!

∣∣∣dkF
dsk

(ξ)
∣∣∣ ≥ 1

2
(100)−(k+1),

where ξ = 1 + η + iτ .

We prove Lemma 4.2 by using a version of Turán’s [51] power-sum estimate.

Lemma 4.3 (Turán). Let z1, . . . , zm ∈ C. If M ≥ m, then there exists k ∈ Z ∩ [M, 2M ]
such that |zk1 + · · ·+ zkm| ≥ ( 1

50
|z1|)k.

Let M = 300η log y. By our choices of η, L, y, M , and k, we have the useful relationship

(4.3) 1� ηL � η log y �M � k.

Proof of Lemma 4.2. We begin by considering the contribution to (4.2) from those zeros ρ
satisfying 200η < |ρ − (1 + iτ)| ≤ 1/2. In particular, by decomposing the sum dyadically
and applying part 2 of Lemma 3.4, we find that∑

200η<|ρ−(1+iτ)|≤1/2

|ρ− ξ|−(k+1) �
∞∑
j=0

(2j200η)−(k+1)2j+1rL � (200η)−kL,

This shows that it suffices to consider the zeros ρ for which |ρ− (1 + iτ)| ≤ 200η.
Since 0 < η ≤ 1/55, we have

(4.4)
1

k!

dkF

dsk
(ξ) + r(ξ − 1)−(k+1) ≥

∣∣∣ ∑
|ρ−(1+iτ)|≤200η

(ξ − ρ)−(k+1)
∣∣∣−O((200η)−kL).
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By Lemma 3.4 (part 2), the sum over zeros has � ηL terms. Since M � ηL, Lemma 4.3
tells us that for some k ∈ [M, 2M ], the sum over zeros on the right side of (4.4) is bounded
below by (50|ξ − ρ0|)−(k+1), where ρ0 is the nontrivial zero which is being detected.

Since |ξ − ρ0| ≤ 2η, the right side of the above inequality is bounded below by

(100η)−(k+1)(1−O(2−kηL)).

Since k ≥M � ηL and L−1 � η � 1, there is a constant 0 < θ < 1 so that

2−kηL = O(θηLηL) ≤ 1/4.

Therefore, for some k ∈ [M, 2M ] with M � ηL, we have

ηk+1

k!

∣∣∣dkF
dsk

(ξ)
∣∣∣+ rηk+1|(ξ − 1)−(k+1)| ≥ 3

4
(100)−(k+1).

During the proof of Theorem 4.2 in [52], Weiss proves that

rηk+1|(ξ − 1)−(k+1)| ≤ 1

4
(100)−(k+1).

The desired result now follows, that ηk+1

k!
|dkF
dsk

(ξ)| ≥ 1
2
(100)−(k+1). �

We now turn to obtaining an upper bound on the derivatives of F (s), for which we have
the following.

Lemma 4.4. Assume the notation preceeding Lemma 4.2. Let M = 300η log y, and let k be
determined by Lemma 4.2. Then

ηk+1

k!

∣∣∣dkF
dsk

(ξ)
∣∣∣ ≤ η2

∫ yc11

y

|Sy,u(τ, π ⊗ π′)|
du

u
+

1

4
(100)−(k+1),

where Sy,u(τ, π ⊗ π′) is as in Proposition 4.1.

Proof. Let M = 300η log y and y = ec9L for some c9, which we will take to be sufficiently
large. For u > 0, define

jk(u) =
uke−u

k!
,

which satisfies

jk(u) ≤

{
(100)−k if u ≤ k/300,

(110)−ke−u/2 if u ≥ 20k.

Letting c11 ≥ 12000 be sufficiently large, we thus have

(4.5) jk(η log(Na)) ≤

{
(110)−k if Na ≤ y,

(100)−k(Na)−η/2 if Na ≥ yc11 .

Differentiating the Dirichlet series for F (s) directly, we obtain

(−1)k+1ηk+1

k!

dkF

dsk
(ξ) = η

∑
(a,S)=1

Λπ⊗π′(a)

Na1+iτ
jk(η log(Na))

Splitting the above sum
∑

in concert with the inequality (4.5) and suppressing the sum-
mands, we write ∑

=
∑

Np∈(0,y]∪(yc11 ,∞)

+
∑

a not prime

+
∑

y<Np≤yc11
.
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We will estimate these three sums separately.
We use Lemma 3.5 and (4.3) to obtain∣∣∣η ∑

Np∈(0,y]∪(yc11 ,∞)

∣∣∣� η(110)−k
( ∑

Na≤y
(a,S)=1

|Λπ⊗π′(a)|
Na

+
∑

(a,S)=1

|Λπ⊗π′(a)|
Na1+η/2

)
� η(110)−k(η−1 + log y + d′d log(q(π)q(π′)))

� (110)−k(1 + η log y + ηL)� k(110)−k.

Since η ≤ 1/55, the identity
∑

m≥0 jm(u) = 1 implies that

Na−1/2jk(η log(Na)) = (2η)kNa−ηjk(log(Na)/2) ≤ (110)−kNa−η.

Thus, as above,∣∣∣η ∑
a not prime

∣∣∣� η(110)−k
∑
a=pm

m≥2
(a,S)=1

|Λπ⊗π′(a)|
Na1/2+η

� η(110)−k
∑

(a,S)=1

|Λπ⊗π′(a)|
Na1+2η

� k(110)−k.

as well. Finally, recall that

Sy,u(τ, π ⊗ π′) =
∑

y<Np≤u

Λπ⊗π′(p)

Np1+iτ
.

Summation by parts gives us∑
y<Np≤yc11

= Sy,yc11 (τ, π ⊗ π′)jk(η log yc11)− η
∫ yc11

y

Sy,u(τ, π ⊗ π′)j′k(η log u)
du

u

since Sy,y(τ, π ⊗ π′) = 0. Much like the above calculations,

|ηSy,yc11 (τ, π ⊗ π′)jk(η log yc11)| � η(110)−ky−c11η/2
∑

Np≤yc11
(p,S)=1

|Λπ⊗π′(p)|
Np

� k(110)−k.

Therefore, since |j′k(u)| = |jk−1(u)− jk(u)| ≤ jk−1(u) + jk(u) ≤ 1, we have∣∣∣η ∑
y<Np≤yc11

∣∣∣ ≤ η2

∫ yc11

y

|Sy,u(τ, π ⊗ π′)|
du

u
+O(k(110)−k).

However, by (4.3) and the bound η � L−1, it follows that if k is sufficiently large, then each
term of size O(k(110)−k) is at most 1

16
(100)−(k+1). The lemma follows. �

4.3. Zero detection: The proof of Proposition 4.1. We now combine our upper and
lower bounds on the derivatives of F to prove Proposition 4.1. Thus, we wish to show that
if ρ0 is a zero satisfying |ρ0 − (1 + iτ)| ≤ η and Re(ρ) ≤ 1− c8/L, then

yc10η

(log y)3

∫ yc11

y

|Sy,u(τ, π ⊗ π′)|2
du

u
� 1.

Combining Lemmas 4.2 and 4.4, we find that if if |ρ0− (1+ iτ)| ≤ η and Re(ρ) ≤ 1−c8/L,
then

η2

∫ yc11

y

|Sy,u(τ, π ⊗ π′)|
du

u
≥ 1

4
(100)−(k+1).
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Using (4.3), we have

η2

∫ yc11

y

|Sy,u(τ, π ⊗ π′)|
du

u
� y−c10η/4,

where c10 is sufficiently large. Multiplying both sides by y−c10η/4 yields

y−c10η/4η2

∫ yc11

y

|Sy,u(τ, π ⊗ π′)|
du

u
� y−c10η/2.

Using (4.3) again, we have that y−c10η/4η2 � (log y)−2, so

1

(log y)2

∫ yc11

y

|Sy,u(τ, π ⊗ π′)|
du

u
� y−c10η/2.

Squaring both sides and applying the Cauchy-Schwarz inequality yields the proposition.

4.4. Proof of Theorem 1.5. We conclude this section with the proof of Theorem 1.5. It
suffices to consider the case where d, d′ 6= 1 since these cases are handled by Theorem 1.1.
If d = d′ = 2, then by work of Ramakrishnan [45, Theorem M], π ⊗ π′ is an isobaric sum of
cuspidal automorphic representations of degree at most 4. Thus L(s, π ⊗ π′, K) factors as
a product of L-functions satisfying the hypotheses of Corollaries 1.2 and 1.4; the theorem
follows upon applying the corollaries to each factor. If d = 2 and d′ = 3, then by work
of Kim and Shahidi [29] and Ramakrishnan and Wang [47], π ⊗ π′ is an isobaric sum of
cuspidal automorphic representations of degree at most 6. Thus L(s, π ⊗ π′, K) also factors
as a product of L-functions satisfying the hypotheses of Corollaries 1.2 and 1.4; the theorem
follows upon applying the corollaries to each factor.

5. Proof of Theorems 1.6, 1.8, and 1.9

In this section, we consider the arithmetic applications of the zero-density estimates pro-
vided in Theorem 1.1 and Corollary 1.2 to approximate versions of Hoheisel’s short interval
prime number theorem. We prove Theorems 1.6 and 1.8, and Theorem 1.9 follows readily
from Theorem 1.8 after addressing the issue of Landau-Siegel zeros.

5.1. Proof of Theorem 1.6. We require explicit formulae, such as (5.7), in order to study
the right hand side of Theorem 1.6 without making reference to the size of Λπ⊗π̃(a). Note
that the analogous result in [1, Equation 5.2] requires that the mean value of Λπ⊗π̃(a) remain
bounded over short intervals (a straightforward consequence of GRC), and the analogous
result in [42, Proof of Theorem 1.1] requires an asymptotic estimate for a certain sum of
Dirichlet coefficients with a power-saving error term. Our explicit formula only uses the
well-known fact that Λπ⊗π̃(a) ≥ 0 for all a; it holds regardless of whether π is self-dual.

Let x ≥ 2. Define

ψπ⊗π̃(x) =

∫ x

0

(∑
Na≤t

Λπ⊗π̃(a)
)
dt = − 1

2πi

∫ 2+i∞

2−i∞

L′

L
(s, π ⊗ π̃, K)

xs+1

s(s+ 1)
ds.

Note that the sum in the first integrand is monotonically increasing. Thus if 1 < y < x,
then by the mean value theorem,

(5.1) − ψπ⊗π̃(x− y)− ψπ⊗π̃(x)

y
≤
∑
Na≤x

Λπ⊗π̃(a) ≤ ψπ⊗π̃(x+ y)− ψπ⊗π̃(x)

y
.
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By a standard residue theorem computation,

ψπ⊗π̃(x) =
x2

2
−
∑
ρ 6=0,−1

xρ+1

ρ(ρ+ 1)
− (Ress=0 + Ress=−1)

L′

L
(s, π ⊗ π̃, K)

xs+1

s(s+ 1)
,

where ρ runs over all zeros of L(s, π ⊗ π̃, K). Thus

±ψπ⊗π̃(x± y)− ψπ⊗π̃(x)

y
= x± y

2
∓
∑
ρ 6=0,−1

xρ+1((1± y
x
)ρ+1 − 1)

yρ(ρ+ 1)

∓ (Ress=0 + Ress=−1)
L′

L
(s, π ⊗ π̃, K)

xs+1((1± y
x
)s+1 − 1)

ys(s+ 1)
.(5.2)

We first address the sum over zeros ρ = β + iγ, restricting our attention to those ρ for
which 0 < β < 1. Observe that for each such ρ,

(5.3) ∓
xρ+1((1± y

x
)ρ+1 − 1)

yρ(ρ+ 1)
= −x

ρ

ρ
∓ yw±ρ xρ−1,

where

w±ρ :=
(1± y

x
)ρ+1 − 1∓ (ρ+ 1) y

x

ρ(ρ+ 1)( y
x
)2

.

Since 0 < β < 1 and 1 < y < x, a minor change in the proof of [19, Lemma 2.1] yields the
bound |w±ρ | ≤ 1 in both ± cases. Thus for any 1 ≤ T ≤ x, the sum over zeros ρ = β + iγ
with 0 < β < 1 in (5.2) equals

(5.4) −
∑
|γ|≤T
0<β<1

xρ

ρ
+O

( ∑
|γ|≥T
0<β<1

∣∣∣xρ+1((1± y
x
)ρ+1 − 1)

yρ(ρ+ 1)

∣∣∣+ y
∑
|γ|≤T
0<β<1

xβ−1
)
.

Using (4.1) and the fact that 1 < y < x, we see that the first sum over zeros in the error
term of (5.4) is

� x2

y

∑
|γ|≥T
0<β<1

1

|ρ|2
� [K : Q]d2x

2(log T ) log q(π)

yT
.

We choose x ≥ q(π)d
2

and

(5.5) y =
x(log x)3

√
T

( ∑
|γ|≤T
0<β<1

xβ−1
)−1/2

so that the sum over zeros ρ = β + iγ in (5.2) equals

(5.6) −
∑
|γ|≤T
0<β<1

xρ

ρ
+O

(x(log x)3

√
T

( ∑
|γ|≤T
0<β<1

xβ−1
)1/2)

.

With our choice of y, the contribution to the sum over zeros ρ = β + iγ in (5.2) with
β ≤ 0 is smaller than the error term in (5.6). The same can be said for the contribution
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from the residues in (5.2), which can be bounded using [25, Equation 5.24]. Collecting all of
our estimates, we now see that

(5.7)
∑
Na≤x

Λπ⊗π̃(a) = x−
∑
|γ|≤T
0<β<1

xρ

ρ
+O

(x(log x)3

√
T

( ∑
|γ|≤T
0<β<1

xβ−1
)1/2)

.

Therefore, for any 1 ≤ h ≤ x,∣∣∣ ∑
x<Na≤x+h

Λπ⊗π̃(a)− h
∣∣∣ =

∣∣∣− ∑
|γ|≤T
0<β<1

(x+ h)ρ − xρ

ρ
+O

(x(log x)3

√
T

( ∑
|γ|≤T
0<β<1

xβ−1
)1/2)∣∣∣

≤ h
∑
|γ|≤T
0<β<1

xβ−1 +O
(x(log x)3

√
T

( ∑
|γ|≤T
0<β<1

xβ−1
)1/2)

= h
∑
|γ|≤T

0<β<1−c8/L

xβ−1 +O
(x(log x)3

√
T

( ∑
|γ|≤T

0<β<1−c8/L

xβ−1
)1/2)

+ o(h).(5.8)

The o(h) term arises from the at most four zeros β+ iγ with 1− c8L < β < 1 in Lemma 3.2.
To bound the sums over zeros in (5.8), note that by the functional equation for L(s, π ⊗

π̃, K) and the zero-free region in Lemma 3.2 that∑
|γ|≤T

0<β<1−c8/L

xβ−1 ≤ 2

∫ 1−c8/L

1/2

xσ−1dNπ⊗π̃(σ, T ).

We let A = 4c1d
2, x ≥ ([K : Q][K:Q]q(π)2)A, and T = q(π)−2/[K:Q]x1/(A[K:Q]) ≥ [K : Q].

Observe that if π satisfies GRC, then Theorem 1.1 and our choice of x and T imply that

(5.9) L ≤ 1

4c1

log x, Nπ⊗π̃(σ, T )� d2(q(π)2T [K:Q])c1d
2(1−σ) = d2x

1
4

(1−σ).

Thus∫ 1−c8/L

1/2

xσ−1 dNπ⊗π̃(σ, T ) = x−1/2Nπ⊗π̃(1/2, T ) + log x

∫ 1−c8/L

1/2

xσ−1Nπ⊗π̃(σ, T ) dσ

� x−3/8 + d2 log x

∫ 1−4c1c8/ log x

1/2

x
3
4

(σ−1) dσ

� x−3/8 + d2(x−3/8 + e−3c1c8).(5.10)

If L(s, π⊗ π′, K) factors into a product of L-functions satisfying the hypotheses of Theorem
1.1 or Corollary 1.2, then we apply Theorem 1.1 and/or Corollary 1.2 to the factors of
L(s, π ⊗ π′, K) and deduce (5.10). (This can always be accomplished when d = 2.)

Applying (5.10) to bound the sum over zeros in (5.8), it follows from the relationship
between x and T that∣∣∣ ∑

x<Na≤x+h

Λπ⊗π̃(a)− h
∣∣∣ ≤ c13d

2e−3c1c8h+ o(h) +O(q(π)1/[K:Q]x1− 1
2A[K:Q] (log x)3)
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where c13 is sufficiently large. Because c1 is both large and absolute, we may replace c1 with
the larger constant max{c1, (3c8)−1 log(4c13d

2)}. This yields∣∣∣ ∑
x<Na≤x+h

Λπ⊗π̃(a)− h
∣∣∣ ≤ h

4
+ o(h) +O(q(π)1/[K:Q]x1− 1

2A[K:Q] (log x)3).

Finally, taking h � q(π)1/[K:Q]x1− 1
2A[K:Q] (log x)4, the theorem follows when x is sufficiently

large.

5.2. An intermediate lemma. For the remaining proofs, we require an analogue of (5.8)
that holds for those L(s, π,K) whose Dirichlet coefficients are not nonnegative. For conve-
nience, we restrict our consideration to sums over primes.

Lemma 5.1. Let π ∈ Ad(K). If A = 4c1d, x ≥ ([K : Q][K:Q]q(π))A,
√
x ≤ h ≤ x, and

T = q(π)−2/[K:Q]x1/(A[K:Q]), then∣∣∣ ∑
x<Np≤x+h

Λπ(p)− r(π)h
∣∣∣ ≤ h

∑
|γ|≤T
0<β<1

xβ−1 +O
(x(log x)5

√
T

)
,

where β + iγ runs through the zeros of L(s, π,K).

Proof. For 1 ≤ y ≤ x, define

(5.11) φ(t) =

{
min{1, 1 + x−t

y
} if 0 ≤ t ≤ x+ y,

0 otherwise.

If Re(s) > 0, then the Mellin transform of φ(t) at s is given by

φ̂(s) =

∫ ∞
0

φ(t)ts−1dt =
xs+1((1 + y

x
)s+1 − 1)

ys(s+ 1)
,

which is the same as (5.3) upon replacing s with ρ. For T ≥ 1, we see that∑
Na≤x

(a,S)=1

Λπ(a) = −
∫ 2+i∞

2−i∞

(LS)′

LS
(s, π,K)φ̂(s)ds+O

( ∑
x<Na≤x+y

(a,S)=1

|Λπ(a)|
)
.(5.12)

Pushing the contour to the left, we see that the integral in (5.12) is equal to the expression in
(5.2) with π replacing π⊗ π̃, where the ρ = β+ iγ now run through the zeros of LS(s, π,K).
If we choose y as in (5.5), then the integral is estimated just as in the proof of Theorem 1.6.

The most important difference is the fact that (LS)′

LS
(s, π,K) has poles at (logαπ(j, p))/ log Np

for each p ∈ S. The real part of each of these poles is less than 1/2 by (2.1).
It remains to bound the error term in (5.12) and show that the difference between the

sum over integral ideals a in (5.12) differs negligibly from the sum over primes p in the
statement of the lemma; once these tasks are completed, the proof proceeds much like the
proof of Theorem 1.6. We accomplish both of these tasks by using Lemma 3.5 and the
identity Λπ⊗π̃(a) = |Λπ(a)|2 for (a, S) = 1. We see that for our choice of x,∑

Na≤x
(a,S)=1

Λπ⊗π̃(a) ≤ x
∑
Na≤x

(a,S)=1

Λπ⊗π̃(a)

Na
� x log x.
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The Cauchy-Schwarz inequality then yields the bounds∣∣∣ ∑
Na≤x

(a,S)=1

Λπ(a)−
∑
Np≤x

Λπ(p)
∣∣∣� ( ∑

Npm≤x
m≥2
p/∈S

log Np
)1/2( ∑

Npm≤x
m≥2
p/∈S

Λπ⊗π̃(a)
)1/2

+ x1/2(log x)
∑
p∈S

1

(which is �
√
x(log x)2) and, for 1 ≤ y ≤ x,∑

x<Na≤x+y

|Λπ(a)| �
( ∑
x<Npm≤x+y

Λπ⊗π̃(pm)
)1/2( ∑

x<Npm≤x+y

log Np
)1/2

� [K : Q]
√
xy log x.

(For the second bound, we used the Brun-Titchmarsh theorem [37] and the fact that at most
[K : Q] prime ideals of K lie over a given rational prime.)

�

5.3. The Sato-Tate conjecture. Following Shahidi [50, pg. 162], we now specify the
representations π for which we expect the Sato-Tate conjecture to hold. Let K be a totally
real field, and let π ∈ A2(K) be non-CM and have trivial central character. There are two
types of exceptional representations we would like to exclude: monomial representations,
and representations of Galois type. A representation π is a monomial representation if there
exists a nontrivial character χ of K× \ A×K such that π ⊗ χ ∼= π. A representation ρ is
of Galois type if for every archimedean place v of K, the Langlands parameters ρv (which
are representations of the Weil group of Kv) associated with the archimedean components
πv factor through the Galois group of K̄v/Kv. We say that π is genuine if it is neither
monomial nor of Galois type.

Examples of genuine π include those associated to non-CM Hilbert modular forms over
totally real number fields with each weight both even and at least 2 (including non-CM
newforms over Q of even weight k ≥ 2) and Hecke-Maass forms whose Laplace eigenvalue is
not equal to 1/4. As elliptic curves over real quadratic fields are known to be modular [14],
our results apply unconditionally to the representations π associated to such curves.

Recall that the Sato-Tate conjecture concerns the distribution of the quantities λπ(p) =
2 cos θp as p ranges over primes for which πp is unramified, where θp ∈ [0, π]. At each such
prime p, the local factor of the n-th symmetric power L-function is given by

Lp(s, Symnπ,K) =
n∏
j=0

(1− eiθp(n−2j)Np−s)−1 =
∞∑
k=0

Un(cos(kθp))

Nps
,

where Un is the n-th Chebyshev polynomial of the second kind. At ramified primes p, it

follows from [43] there are numbers βSymnπ(j, p) of absolute value at most Np
1
2
− 1

(n+1)2+1 for
which the local factor is given by

Lp(s, Symnπ,K) =
n∏
j=0

(1− βSymnπ(j, p)Np−s)−1.

(If p is ramified, then some of the βSymnπ(j, p) might equal zero.) We note that L(s, Sym1π,K) =
L(s, π,K) and L(s, Sym0π,K) = ζK(s).

In Theorem 1.8, our goal is to estimate for I ⊆ [−1, 1] the summation

(5.13)
∑

x<Np≤x+h
p/∈S

1I(cos θp) log Np
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where S is the set of p for which π is ramified and h ≥ x1−δ for some δ > 0. Recall from
the discussion before Theorem 1.8 in Section 1 that I can be SymN -minorized if there exist
b0, . . . , bN ∈ R such that b0 > 0 and (1.10) holds for all t ∈ [−1, 1]. Thus, if I can be Symn-
minorized, we can obtain a non-trivial lower bound for (5.13) by considering an appropriate
linear combination of the logarithmic derivatives of L(s, Symnπ,K) for n ≤ N .

Proof of Theorem 1.8. Let S be the set of prime ideals p for which πp is ramified. The upper
bound follows from the Brun-Titchmarsh theorem [37], so we proceed to the lower bound.
Suppose that I ⊂ [−1, 1] can be Symn-minorized and that L(s, Symnπ,K) is automorphic
for each 0 ≤ n ≤ N . Let b0, . . . , bn be as in (1.10) and set B = max0≤n≤N |bn|/b0. Let
A = 4c1(N + 1),

x ≥ ([K : Q][K:Q] max
0≤n≤N

q(Symnπ))A,

and T = q(Symnπ)−1/[K:Q]x1/(A[K:Q]).
First, observe that x is larger than the norm of any p ∈ S. Thus

(5.14)
∑

x<Np≤x+h

Un(cos θp) log Np =
∑

x<Np≤x+h

ΛSymnπ(p).

This establishes the lower bound

(5.15)
∑

x<Np≤x+h

1I(cos θp) log Np ≥
N∑
n=0

bn
∑

x<Np≤x+h

ΛSymnπ(p).

By Lemma 5.1 and a calculation nearly identical to (5.10), we deduce the existence of a
sufficiently large c14 > 0 such that∑
x<Np≤x+h

1I(cos θp) log Np ≥ b0

(
(1−N(c14Be

−3c1c8 − o(1)))h−O(BNx1− 1
2A[K:Q] (log x)5)

)
.

As before, we make c1 sufficiently large, and the o(1) term arises from the contributions of
the at most four zeros present in Lemma 3.2. Because c1 is large and absolute, we may
replace c1 with the larger constant max{c1, (3c8)−1 log(4c14BN)}, so∑

x<Np≤x+h

1I(cos θp) log Np ≥ b0

((1

4
− o(1)

)
h−O(BNx1− 1

2A[K:Q] (log x)5)
)
.

Choosing h� BNx1− 1
2A[K:Q] (log x)6, we obtain the lower bound

(5.16)
∑

x<Np≤x+h

1I(cos θp) log Np� b0h(1− o(1)).

when x is sufficiently large. �

Proof of Theorem 1.9. First, we determine the integers 0 ≤ n ≤ N for which L(s, Symnπ,K)
has a Landau-Siegel zero. Recall from the second part of Lemma 3.3 that a Landau-Siegel
zero of L(s, Symnπ,K) is a simple real zero β such that

β ≥ 1− c8((n+ 1)4 log(q(Symnπ)[K : Q][K:Q]))−1.

In [22, 3, 46], it is shown that L(s, π,K), L(s, Sym2π,K), and L(s, Sym4π,K), respectively,
have no Landau-Siegel zeros. As an application of [22, Theorem B], if n ≥ 3 and Symjπ ∈
Aj+1(K) for j ∈ {n− 2, n, n+ 2}, then L(s, Symnπ,K) has no Landau-Siegel zero, provided
that c8 is sufficiently small. We conclude that if N ≥ 3 and L(s, Symnπ,K) is automorphic
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over K for all n ≤ N , then the only n ≤ N for which L(s, Symnπ,K) might have a Landau-
Siegel zero are n ∈ {0, N − 1, N}. By hypothesis, ζK(s) has no Landau-Siegel zero, so
L(s, Symnπ,K) might have a Landau-Siegel zero if n ∈ {N − 1, N}

If we repeat the proof of Theorem 1.8 with h = x using the zero-free region in Lemma 3.3,
then we find that∑

x<Np≤2x

1I(cos θp) log Np ≥ b0

((1

4
− o(1)

)
x−O(BNx1− 1

2A[K:Q] (log x)3)
)
,

provided that c1 is sufficiently large and

(5.17) x ≥
(

[K : Q][K:Q] max
0≤n≤N

q(Symnπ)
)4(N+1)4 max{c1,(3c8)−1 log(4c14BN)}

.

Here, the o(1) term comes from the possible Landau-Siegel zeros associated to SymN−1π and
SymNπ. By hypothesis, I can be SymN -minorized without admitting Landau-Siegel zeros;
thus bn ≤ 0 for each n ∈ {N − 1, N} such that L(s, Symnπ,K) has a Landau-Siegel zero.
Therefore, if n ∈ {N − 1, N} and L(s, Symnπ,K) has a Landau-Siegel zero, then such a
Landau-Siegel zero gives a positive contribution to the lower bound in (5.16), and we may
discard this contribution. We conclude that there is an unramified p such that cos θp ∈ I
and Np ≤ 2x, where x is given by (??).

It remains to bound max0≤n≤N q(Symnπ). Let 0 ≤ n ≤ N . For each unramified p,
consider the identity Lp(s, π ⊗ Symn−1π,K) = Lp(s, Symnπ,K)Lp(s, Symn−2π,K). Using
(4.1) to relate the arithmetic conductor of each side, we conclude by induction on n that
log q(Symnπ)� n3 log q(π)� N3 log q(π). (See also Rouse [48, Lemma 2.1]. His proof gives
an implied constant depending on [K : Q], but this dependence is easily removed.) From
the shape of L∞(s, Symnπ,K) given by Moreno and Shahidi [40], it follows that

log
( (n+1)[K:Q]∏

j=1

(|κSymnπ(j)|+ 3)
)
� n log

(
n

2[K:Q]∏
j=1

(|κπ(j)|+ 3)
)
,

and the result follows. In the special case that π corresponds to a newform of Q of squarefree
level and trivial nebentypus, Cogdell and Michel [10] use the local Langlands correspondence
to show that log q(Symnπ) = n log q(π), which accounts for the claimed improvement. �

Remark. Suppose now that ζK(s) does have a Landau-Siegel zero. A slight reformulation of
the proof of Theorem 1.8 with h = x yields the lower bound∑
x<Np≤2x

1I(cos θp) log Np ≥ b0

( ∑
x<Np≤2x

log Np− c14BNe
−3c1c8x−O(BNx1− 1

2A[K:Q] (log x)3)
)
,

Using the unconditional lower bound for
∑

x<Np≤2x log Np that follows from [52, Theorem
5.2], we conclude that there exists a sufficiently large constant c15 such that∑
x<Np≤2x

1I(cos θp) log Np ≥ b0

( 1

([K : Q][K:Q]DK)c15
x−c15BNe

−3c1c8x−O(BNx1− 1
2A[K:Q] (log x)3)

)
.

One can now easily find an effective value of x (which is at least as large as the upper bound
in Theorem 1.8) such that there exists an unramified p such that cos θp ∈ I and Np ≤ 2x.
Here, c1 needs to be sufficiently large with respect to B, K, and N .
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6. Proof of Theorem 1.7

Let π ∈ A2(Q) have trivial central character. Thus π 6∼= π ⊗ χ for all nontrivial primitive
Dirichlet characters χ; in particular, π is not monomial. Throughout this section, χ will
denote a primitive Dirichlet character of modulus q such that (q, q(π)) = 1. For such χ, we
have that Λ(π⊗χ)⊗π̃(n) = Λπ⊗π̃(n)χ(n) for all n ≥ 1. All implied constants in this section
will depend at most on q(π).

First, we address the possibility of a Landau-Siegel zero of L(s, (π ⊗ χ)⊗ π̃,Q). We have
the factorization L(s, (π⊗χ)⊗ π̃,Q) = L(s, χ,Q)L(s, Sym2π⊗χ,Q). Banks [3] proved that
L(s, Sym2π ⊗ χ,Q) has no Landau-Siegel zero, and L(s, χ,Q) has no Laundau-Siegel zero
except possibly in the case where χ is a real primitive character. Page proved that if c8 is
suitably small and Q ≥ 3, then there is at most one real primitive Dirichlet character χ with
modulus q ≤ Q for which L(s, χ,Q) has a Landau-Siegel zero β1 satisfying β1 > 1−c8/ logQ
[11, Chapter 14]. Therefore, as χ varies through the primitive Dirichlet characters modulo q
with q ≤ Q, we see that at most one of the L-functions L(s, (π ⊗ χ)⊗ π̃,Q) has a Landau-
Siegel zero β1, and β1 must also a Landau-Siegel zero of L(s, χ,Q).

Let T ≤ Q, x ≤ hQ and log x ≤ (logQ)2. We apply Lemma 5.1 to each factor of
L(s, (π ⊗ χ)⊗ π̃,Q) and obtain∑

x<n≤x+h

Λπ⊗π̃(p)χ(p)− δ(χ)h+ hξβ1−1 � h
( ∑
|γ|≤T

xβ−1 +
Q2

√
T

)
,

for some ξ ∈ [x, x + h], where the summation on the right-hand side is over the nontrivial
zeros ρ = β + iγ of L(s, (π ⊗ χ) ⊗ π̃,Q) which are not β1. Since there are O(Q2) primitive
Dirichlet characters to modulus q ≤ Q, it follows that∑

q≤Q
gcd(q,q(π))=1

∑?

χ mod q

∣∣∣ ∑
x<p≤x+h

Λπ⊗π̃(p)χ(p)− δ(χ)h+ δq,∗(χ)hξβ1−1
∣∣∣

� h
( ∑

q≤Q
gcd(q,q(π))=1

∑?

χ mod q

∑
|γ|≤T

xβ−1 +
Q4

√
T

)
.(6.1)

If we let

N (σ,Q, T ) =
∑
q≤Q

gcd(q,q(π))=1

∑?

χ mod q

N(π⊗χ)⊗π̃(σ, T ),

then the triple sum in (6.1) is bounded by

log x

∫ 1

1
2

xσ−1N (σ,Q, T )dσ + x−1/2N (1/2, Q, T ).

Using Theorem 1.5 and Lemma 3.3 and recalling our choice of T , we bound the above display
by

log x

∫ 1− c8L′

1
2

x
1
2

(σ−1)dσ + x−
1
4 � x−

c8
2L′ + x−

1
4 ,

where L′ = 162 log(q(π)QT ). If we choose T = Q10, then the right-hand side of (6.1) is
bounded as claimed in the statement of Theorem 1.7.
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Appendix A. Symn-minorants

We close with two lemmas on Symn-minorants. The first explicitly classifies the intervals
which can be Sym4-minorized, i.e. those intervals in Theorem 1.8 we can access uncondi-
tionally for any L(s, π,K). The second concerns the asymptotics of the smallest n needed
to access the set of primes with |λπ(p)| > 2(1 − δ) as δ → 0 and obtains an improvement
over the näıve Fourier bound.

Lemma A.1. Let β0 = 1+
√

7
6

= 0.6076 . . . and β1 = −1+
√

7
6

= 0.2742 . . . . The interval

[a, b] ⊆ [−1, 1] can be Sym4-minorized if and only if it satisfies one of the following conditions:

(1) a = −1 and b > −β0,

(2) −1 < a ≤ −β0 and b > a+
√

16a4−11a2+2
2(1−4a2)

,

(3) −β0 ≤ a ≤ −β1 and b > −1
6a

,

(4) −β1 ≤ a < β1 and b > a+
√

16a4−11a2+2
2(1−4a2)

, and

(5) β1 ≤ a < β0 and b = 1.

Proof. We begin with sufficiency. For each case, we list a polynomial F (x) which, for x ∈
[−1, 1], is positive only if x ∈ [a, b]. We then compute

b0(F ) :=

∫ 1

−1

FdµST

and verify that it is positive. This is sufficient, since any such F (x) can be scaled to minorize
the indicator function.

(1) F (x) = (x− 1)(x− b)(x− β1)2 and b0(F ) = (b+ β0)(14+
√

7
36

).

(2) F (x) = −(x− a)(x− b)(x+ a+b
4ab+1

)2 and b0(F ) = (1−4a2)b2−ab+a2−1/2
4(4ab+1)

.

(3) F (x) = (x− 1)(x+ 1)(x− a)(x− b) and b0(F ) = −3
4
(ab+ 1

6
).

(4) F (x) = −(x− a)(x− b)(x+ a+b
4ab+1

)2.

(5) F (x) = (x+ 1)(x− a)(x+ β1)2 and b0(F ) = (β0 − a)(14+
√

7
36

).

The proof of necessity necessarily involves tedious casework, which we omit. Let us say
only that we consider polynomials F (x), ordered by degree, the number of real roots, and the
placement of those roots relative to a, b, 1, and −1, and in each case we determine conditions
under which b0(F ) > 0. �

Lemma A.2. If n ≥ 1, then the set [−1,−a]∪[a, 1] can be Sym2n-minorized if a <
√

1− 3/2
n+1

.

Proof. We recall the well-known fact that∫ 1

−1

x2m dµST =
1

m+ 1

(
2m

m

)
=: Cm.

Given n and a satisfying the conditions of the lemma, we use the minorant fn,a(x) = (x2 −
a2)x2n−2, and we find that∫ 1

−1

fn,a dµST =
Cn−1

4n−1

(
1− a2 − 3/2

n+ 1

)
.

�
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Remark. The Sato-Tate measures of the sets considered in Lemma A.2 satisfy µ−1 � n3/2,
so the minorants in the proof provide a significant improvement over those arising from a
näıve Fourier approximation.
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