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Abstract. The problem of determining when an integral quadratic form represents every
positive integer has received much attention in recent years, culminating in the 15 and 290
Theorems of Bhargava-Conway-Schneeberger and Bhargava-Hanke. For ternary quadratic
forms, there are always local obstructions, but one may ask whether there are ternary
quadratic forms which represent every locally represented integer. Indeed, such forms exist
and are called regular, and Jagy, Kaplansky, and Schiemann proved that there are at most
913; however, only 899 of these are actually known to be regular. We consider the remaining
14 forms, and establish the regularity of each under the generalized Riemann Hypothesis,
following the method pioneered by Ono and Soundararajan. Moreover, we consider the
exceptional arithmetic consequences if a large, locally represented integer is not globally
represented by a ternary quadratic form, proving that some Dirichlet L-function would
necessarily have a Siegel zero or that some quadratic twist of an elliptic curve would have
an unusally large Tate-Shafarevich group.

1. Introduction and statement of results

The problem of determining, given a positive de�nite integral quadratic form, the integers
represented by the quadratic form has motivated, and indeed encodes, a great deal of modern
number theory. The problem of determining which forms are universal � forms that represent
every positive integer � originates with Lagrange's four squares theorem, but it is only
recently that a complete characterization has been found; this is the so called �15 Theorem� of
Bhargava, Conway, and Schneeberger [1] and the �290 Theorem� of Bhargava and Hanke [2].
In addition, there is very recent work of Rouse [17] proving a �451 Theorem� for representation
of odd integers.
When dealing with such problems, arguably the deepest case is that of ternary quadratic

forms, bearing in mind that there are always local obstructions, so that the interesting
problem becomes to determine the locally represented integers which are globally represented.
The reason for the depth in this case is that the number of representations of an integer can
be canonically decomposed into a �large� part and a �small� part, neither of which is well-
understood. These notions are only valid asymptotically, and a theorem on representations
follows by determining the point after which the large part truly is larger than the small
part, a method �rst explicitly employed by Ono and Soundararajan [16] in their study of
Ramanujan's ternary quadratic form; these techniques have subsequently been improved
upon by Kane [14], Jetchev and Kane [13], and Chandee [5]. Both the large and small parts
have an alternative arithmetic interpretation: the large part corresponds to the class number
of an imaginary quadratic �eld (and hence to the value of a Dirichlet L-function, which can
be ine�ectively bounded from below by Siegel's theorem), and the small part corresponds to
the central critical value of a modular L-function. Thus, the general problem of determining
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when the large part dominates requires a great deal of understanding of the behavior of
L-functions, much of which is beyond our current technology.
Here, we are concerned principally with classifying regular positive de�nite integral ternary

quadratic forms. A quadratic form is regular if the only obstructions to representation are
local obstructions, which, as mentioned above, is the natural generalization of universal forms
to the ternary setting. Jagy, Kaplansky, and Schiemann [12] proved that there are at most
913 regular ternary quadratic forms, and they proved that 891 of these forms are indeed
regular. In subsequent work of Oh [15], eight more forms in the list of 913 were proved to be
regular. The purpose of this paper is to establish that the remaining 14 forms are regular,
albeit conditionally; see Sections 2.2 and 2.3 for the list of these forms.

Theorem 1.1. Assume the GRH for all Dirichlet L-functions and all modular L-functions.
Then each of the remaining 14 ternary quadratic forms mentioned above is regular.

Remark. As the proof of Theorem 1.1 will show, we do not actually need the GRH for all
modular L-functions. Rather, we need it for the set of quadratic twists of certain weight two
newforms.

While it is obviously unfortunate that we are not able to provide an unconditional proof
of this result, the fact that the GRH plays a role should not be surprising. The only general
method to obtain results on representation depends on the decomposition into the large and
small parts mentioned above, both of which encode values of L-functions. We understand
both objects very well assuming the GRH, but for neither do we currently possess uncon-
ditional bounds of su�cient quality. We remark that, to the author's knowledge, no set of
integers represented by a positive de�nite ternary quadratic form which does not globally
represent at least two locally represented integers has been determined without assuming
GRH.
Motivated by work of Granville and Stark [9], who established that a form of the abc-

conjecture implies that there are no Siegel zeros of Dirichlet L-functions, we consider what
exceptional arithmetic consequences would arise from the failure of a large locally represented
integer to be globally represented.

Theorem 1.2. Let Q be a ternary quadratic form of discriminant ∆, and assume the

GRH for the family of L-functions associated to quadratic twists of newforms of conduc-

tor dividing ∆. Moreover, given any integer n, let n denote the image of n in the �nite

set
∏

p|∆ Q×p /
(
Q×p
)2
. Then there is an explicitly computable constant N(Q, a) such that if

n ≥ N(Q, a), n = a, n is squarefree, and n is locally represented but is not globally repre-

sented, then there is a Siegel zero of some Dirichlet L-function.

Remark. By a Siegel zero of a Dirichlet L-function, we mean a real zero σ < 1 of some
L(s, χ), where χ is a primitive real Dirichlet character to the modulus q and

σ > 1− c

log 3q
,

where c is some positive real number. Of course, we allow the quantity N(Q, a) in Theorem
1.2 to depend upon the choice of c.

The constant N(Q, a) in Theorem 1.2 is especially nice in the case that the cuspidal part
of the theta function associated to Q is a Hecke eigenform. As an example of this, we have
the following application to Ramanujan's ternary quadratic form, Q = x2 +y2 +10z2, which,
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in their pioneering paper, Ono and Soundararajan [16] proved represents all odd integers
greater than 2719 under the assumption of the GRH.

Corollary 1.1. Assume the GRH for the L-functions of all quadratic twists of the elliptic

curve y2 = x3 + x2 + 4x+ 4. If the quadratic form Q = x2 + y2 + 10z2 does not represent an

odd integer n ≥ 2.8 · 1025, then some Dirichlet L-function has a Siegel zero with

c = 342395 · n−0.392 log2 n.

Moreover, if c is �xed, if Q does not represent a locally represented integer n ≥ 8.179 · 1024 ·
c−2.793, then some Dirichlet L-function possesses a Siegel zero.

Lastly, for completeness, we consider the complementary question of, assuming the GRH
for Dirichlet L-functions, deducing from the failure of a locally represented integer to be
globally represented exceptional behavior for the arithmetic of modular forms. While we are
able to state a more general result (see the third remark following the theorem), we focus on
a case of more arithmetic interest. We say that a ternary quadratic form Q is associated to an

elliptic curve E/Q if the cuspidal part of its theta function is a Hecke eigenform which lifts,
under the Shimura correspondence, to the cusp form associated to E. Also, given any elliptic
curve E, let Ed denote its quadratic twist by d, and let X(Ed) denote the Tate-Shafarevich
group of Ed.

Theorem 1.3. Assume the GRH for Dirichlet L-functions and the Birch and Swinnerton-

Dyer conjecture for rank 0 elliptic curves, and suppose that Q is associated to the elliptic

curve E. If n is locally represented but not globally, then there is a positive integer d � n
for which

|X(E−d)| �E
d

log4 d
,

where the implied constant can be made explicit.

Three remarks:

1) Ramanujan's quadratic form x2 +y2 +10z2 is an example of a quadratic form associated
to an elliptic curve; namely, it is associated to the curve y2 = x3+x2+4x+4 given in Corollary
1.1. In this case, we would have d = 10n.
2) While the lower bound on the size of X(Ed) does not contradict the Goldfeld-Szpiro

conjecture [7] that, for any E/Q with conductor N , |X(E)| �ε N
1/2+ε uniformly in E,

in fact a stronger statement is expected for the family of quadratic twists. In particu-
lar, the Ramanujan conjecture for half-integral weight modular forms would imply that
|X(Ed)| �E,ε d

1/2+ε.
3) In the event that Q is not associated to an elliptic curve, it is still possible to deduce

similar sorts of arithmetic implications. To any packet of Galois representations, and in
particular to a newform, one can associate a Tate-Shafarevich group, and it is possible, under
the appropriate conjectures, to deduce that some quadratic twist of a newform associated to
Q would have an usually large Tate-Shafarevich group in this sense. See, for example, work
of Bloch and Kato [3] for more information on such objects.
This paper is organized as follows. In Section 2, we go over the necessary background in

more detail, and we prove Theorem 1.1. In Sections 3 and 4, we prove Theorems 1.2 and
1.3, respectively.
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2. Representation by ternary quadratic forms

We begin this section by going into more detail on the decomposition alluded to in the
introduction, and we discuss the general approach to be taken to prove Theorem 1.1; this
comprises Section 2.1. This approach proves to be technically slightly easier in the case that
the form in question is in a genus of size two. This is the case for 11 of the 14 forms, and
we prove that each is regular in Section 2.2. The remaining three forms are each in a genus
of size three, and we dispatch these in Section 2.3.

2.1. Eisenstein series and cusp forms. We begin with a brief review of the theory of
quadratic forms as it relates to the theory of modular forms. Since we are only concerned
with the case of positive de�nite integral ternary quadratic forms, it is to be understood that
when we talk about a quadratic form, it is assumed to be such. Now, given two quadratic
forms Q1 and Q2, we say that Q1 and Q2 are (globally) equivalent if there is some matrix
γ ∈ GL3(Z) such that the variable substition (x, y, z) 7→ γ · (x, y, z) takes Q1 to Q2; we say
that they are locally equivalent if for each prime p, there is some matrix γp ∈ GL3(Zp) taking
Q1 to Q2. The genus of a form Q, denoted by G(Q), is the set of forms locally equivalent to
Q modulo global equivalence.
We can express Q in the form

Q(x) =
1

2
xτAx,

where A is a symmetric 3 × 3 matrix with integer entries and even diagonal entries. The
discriminant ∆ of Q is the determinant of A, and the level of Q is the least integer N for
which NA−1 has integer entries and even diagonal entries. The theta function associated to
Q is given by

θQ(z) :=
∑
x∈Z3

qQ(x), q := e2πiz,

and it is a classical fact that θQ(z) is a modular form of weight 3/2, level N , and nebentypus(−4∆
·

)
. As such, it can be decomposed as

(2.1) θQ(z) = E(z) + C(z),

where E(z) is an Eisentein series and C(z) is a cusp form. In fact, E(z) can always be found
from the theta functions of the forms in the genus of Q by the formula

E(z) =

∑
Q′∈G(Q)

1
|Aut(Q′)|θQ′(z)∑

Q′∈G(Q)
1

|Aut(Q′)|
,

where Aut(Q′) denotes the (�nite) automorphism group of Q′. In addition, there is the
Siegel mass formula, which asserts that the Fourier coe�cients of E(z) are essentially class
numbers of imaginary quadratic �elds multiplied by certain local densities. In particular, we
have, if E(z) =

∑
aE(n)qn, that

(2.2) aE(n) =
24h(−Mn)

Mw(−Mn)

∏
p|2N

βp(n) ·
1− χ(p)

(
n
p

)
p−1

1− p−2
,

where h(−d) denotes the class number of the imaginary quadratic �eld Q(
√
−d), w(−d)

denotes the number of roots of unity in Q(
√
−d), M is a rational number depending on
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n (mod 8N2) such that −nM is a fundamental discriminant, and the quantities βp(n) are
certain local densities depending on the image of n in the �nite set∏

p|∆

Q×p /
(
Q×p
)2
.

See work of Hanke [11] or Rouse [17] for more information on these densities. Hence, if n is
locally represented, each βp(n) 6= 0, and we have that

aE(n)�Q h(−Mn)�ε n
1/2−ε,

where the last inequality is the notoriously ine�ective theorem of Siegel. Currently, the best
e�ective lower bound on class numbers is due to Goldfeld [8]. This relies on the deep work of
Gross and Zagier [10], and would yield aE(n) �ε log1−ε n. As we will see, this bound is far
too small to be of use, and it is for this reason that we must assume the GRH for Dirichlet
L-functions. Assuming the GRH, the best explicit lower bounds on class numbers are due
to Chandee [5], and are, of course, of the same quality as Siegel's lower bound.
To handle the cuspidal part C(z) of θQ(z), we note that C(z) can be decomposed as a

linear combination of eigenforms. Each of these is either a unary theta function, which
necessarily has coe�cients supported on a single square class, or is subject to a theorem of
Waldspurger [18], which says that the coe�cients in certain square classes are essentially
the square roots of central L-values of quadratic twists of the integral weight cusp form
associated to the eigenform via Shimura's correspondence. Precisely, we have the following.

Theorem (Waldspurger). Suppose that f(z) ∈ Sλ+1/2(Γ0(N), χ) is a half-integer weight

eigenform of each of the Hecke operators T (p2), p - N , and eigenvalues λ(p). Moreover,

assume that F (z) ∈ S2λ(Γ0(N), χ2) has the same system of eigenvalues under each T (p).
If n1 and n2 are two positive squarefree integers with n1/n2 ∈ (Q×p )2 for each p | N and

f(z) =
∑∞

n=1 a(n)qn, then

a(n1)2n
λ−1/2
2 χ

(
n2

n1

)
L
(
1, F ⊗ χ−1χn2(−1)λ

)
= a(n2)2n

λ−1/2
1 L

(
1, F ⊗ χ−1χn1(−1)λ

)
.

Now, assuming either the Ramanujan conjecture for half-integral weight cusp forms or the
GRH for the family of quadratic twists of weight two newforms, it is possible to show that
the Fourier coe�cients aC(n) satisfy aC(n)�ε n

1/4+ε. Unconditionally, the convexity bound
for the family of quadratic twists yields that aC(n) �ε n

1/2+ε, which is not su�cient to
establish any asymptotic result (recall that aE(n)�ε n

1/2−ε). The best known subconvexity
bound, due to Blomer and Harcos [4], yields that aC(n) �ε n

7/16+ε, which, combined with
Siegel's theorem, is enough to establish an asymptotic result. Blomer and Harcos's result is
e�ective, but, even assuming the GRH for Dirichelt L-functions (so as to obtain an e�ective
lower bound on aE(n)), the bound is not strong enough to yield a compuationally feasible
problem. Thus, in order to obtain an e�ective and usable result, we must assume the GRH.
Doing so, the best explicit results for the cuspidal coe�cients are again due to Chandee [5].
At this stage, assuming the GRH for Dirichlet L-functions and for the family of L-functions

associated to quadratic twists of certain weight two newforms, we are able to obtain that
if n is locally represented but is not globally represented, then aE(n) + aC(n) = 0, and
from Chandee's bounds, we are able to rule this out for large values of n (strictly speaking,
one must ensure that aC(n) has no contribution from a unary theta function, which can be
done, e.g., by assuming that the squarefree part of n is large; however, in all of the cases of
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interest to us in Theorem 1.1, it will turn out that there is no contribution from unary theta
functions). A �nite computation then su�ces to establish the result. Unsurprisingly, if the
cuspidal part of θQ(z) is an eigenform, the bounds are marginally easier to assemble, and we
are left with computations that are shorter. Since this is generically the case if the genus of
Q is of size two, we consider those forms �rst before considering the forms in a genus of size
three.

2.2. Proof of Theorem 1.1: Genera of size two. Of the 14 quadratic forms whose
regularity remains unproven, there are 11 that are in a genus of size two; see Table 2.1 for
the list of these forms. As mentioned above, for each of these forms, the cuspidal part of the
theta function is an eigenform, whose system of eigenvalues necessarily comes from a weight
two newform. In fact, each of these newforms is associated to a rational elliptic curve, and we
have indicated the Cremona label of each in Table 2.1. With this information and Chandee's
bounds, it is now possible to put into action the approach described in the previous section.

Form Disc. Ell. Curve Req. n Time (s.)
3x2 + 6y2 + 14z2 + 4yz + 2xz + 2xy 224 32a 6.1 · 106 75
x2 + 5y2 + 13z2 + 2yz + xz + xy 240 48a 6.7 · 106 318
x2 + 6y2 + 13z2 + 3yz + xz 297 99b 2.7 · 108 3103
2x2 + 5y2 + 11z2 + 2yz + 2xz + xy 405 27a 1.1 · 104 0.2
3x2 + 5y2 + 15z2 + 3yz + 3xz + 3xy 720 48a 2.2 · 107 381
x2 + 10y2 + 29z2 + 5yz + xz 1125 225b 3.8 · 108 3508
5x2 + 8y2 + 11z2 − 4yz + xz + 2xy 1620 27a 8.5 · 108 23703
2x2 + 15y2 + 32z2 + 15yz + xz 3375 225c 8.3 · 108 6386
5x2 + 13y2 + 33z2 − 6yz + 3xz + xy 8232 1176h 7.2 · 105 47
9x2 + 11y2 + 29z2 − 4yz + 3xz + 6xy 10125 225b 9.4 · 104 3
11x2 + 15y2 + 39z2 − 3yz + 6xz + 3xy 24696 1176h 2.4 · 106 217

Table 2.1. The 11 forms in a genus of size two.

The form with the smallest discriminant is Q := 3x2 + 6y2 + 14z2 + 4yz+ 2xz+ 2xy, with
discriminant 224 = 25 · 7, and it is associated to the elliptic curve E with Cremona label
32a, given by the Weierstrass equation E : y2 = x3 − x. For each of the 32 square classes a
in Q×2 /(Q×2 )2 ×Q×7 /(Q×7 )2, we can �nd constants a, b, and d such that

rQ(n) = aE(n) + aC(n) = ah(−bn)± dn1/4L(1, E ⊗ χ−56n)1/2

whenever n = a; if a is not represented, then a = d = 0. As an example, if a = (3, 1), we
�nd that a = 1/4, b = 56, and d = 0.422 . . . . Using Dirichlet's class number formula, we
have that

h(−56n) =
1

π

√
56nL(1, χ−56n),

and so if n is not represented, we have that

L(1, E ⊗ χ−56n)1/2

L(1, χ−56n)
≥ 1.409 · n1/4.

On the other hand, using Chandee's theorems, we �nd that

L(1, E ⊗ χ−56n)1/2

L(1, χ−56n)
≤ 10.091 · n0.124,
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which implies that n ≤ 6.108 · 106. Similar computations for the other square classes yield
either the same or smaller bounds on n, so it su�ces to check that Q is regular for n ≤
6.108 · 106. For convenience of computation, we note that elementary arguments imply that
Q represents n if and only if Q′ := w2 + 17y2 + 10yz + 41z2 represents 3n. We check the
regularity of Q′ up to 20 · 106 for integers divisible by 3, which takes 75 seconds.
The other forms of genus two are handled in exactly the same fashion. The required

bounds on n are recorded in Table 2.1, along with the time required for the computation.

2.3. Proof of Theorem 1.1: Genera of size three. We now turn to the remaining three
forms; see Table 2.2 for the list. For forms in a genus of size greater than two, we no longer
expect the cuspidal part of the theta function to be an eigenform. Nonetheless, we are in the
lucky situation that the cuspidal part of the �rst form, Q := 5x2+9y2+15z2+9yz+3xz+3xy,
happens to be an eigenform, so it can be dispatched as in Section 2.2; we have recorded the
relevant data in Table 2.2. Moreover, while the cuspidal parts of the theta functions of the
remaining two forms are not eigenforms under all Hecke operators T (p2) for p - N , each is an
eigenform under some T (p2). We exploit this fact to more easily compute the decomposition
of C(z) into eigenforms.

Form Disc. Ell. Curve(s) Req. n Time (s.)
5x2 + 9y2 + 15z2 + 9yz + 3xz + 3xy 2160 48a 6.7 · 106 320
5x2 + 9y2 + 17z2 + 6yz + 5xz + 3xy 2592 32a, 288e 2.4 · 107 1974
5x2 + 9y2 + 27z2 + 3xz + 3xy 4536 56a, 504d 7.0 · 108 30161

Table 2.2. The three forms in a genus of size three.

For the third form in Table 2.2, Q := 5x2+9y2+27z2+3xz+3xy, C(z) is an eigenform under
the Hecke operators T (p2) for p = 5, 7, and 13, with eigenvalues 2,−1, and 2, respectively.
There are only two newforms with these eigenvalues in the appropriate weight two spaces,
and they are associated with the elliptic curves 56a and 504d. For convenience, we denote
these two curves by E1 and E2, respectively. Following the same approach as above, for each
of the 128 classes a ∈ Q×2 /(Q×2 )2 ×Q×3 /(Q×3 )2 ×Q×7 /(Q×7 )2, we have, if n = a, that

rQ(n) = ah(−bn)± d1n
1/4L(1, E1 ⊗ χ−14n)1/2 ± d2n

1/4L(1, E2 ⊗ χ−14n)1/2,

where each of a, b, d1, and d2 can be computed explicitly. We obtain for the squareclass
a = (3, 2, 3), that

a = 1/4, b = 56, d1 = 0.851 . . . , d2 = 0.0801 . . . ,

which yields a bound of the form

d1

√
L(1, E1 ⊗ χ−14n) + d2

√
L(1, E2 ⊗ χ−14n)

L(1, χ−56n)
≥ 0.595 · n1/4,

and, following Chandee, we have that

d1

√
L(1, E1 ⊗ χ−14n) + d2

√
L(1, E2 ⊗ χ−14n)

L(1, χ−56n)
≤ 7.743 · n0.124.

This yields a bound on n of 6.918 · 108. Similar computations reveal only smaller bounds.
For the second form in Table 2.2, Q := 5x2 + 9y2 + 17z2 + 6yz + 5xz + 3xy, C(z) is an

eigenform for every p ≡ 3 (mod 4) with eigenvalue 0, indicating it is associated to weight
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two CM cusp forms. There are eight such forms of possible level, each, again, associated to
an elliptic curve. However, we �nd that of these eight systems of eigenvalues, only two play
a role in C(z); we have listed the Cremona data for each in Table 2.2. We follow the same
technique as above, and have listed the relevant information in Table 2.2.

3. Siegel zeros: Proof of Theorem 1.2

In this section, we consider the arithmetic consequences resulting from a large locally
represented integer failing to be globally represented. The essential idea of the proof of
Theorem 1.2 comes from equation (2.1), which states that

θQ(z) = E(z) + C(z).

Similar to what we did in Section 2, by assuming the GRH for the family of modular L-
functions arising from quadratic twists of newforms of conductor dividing ∆(Q), we are able
to use Chandee's theorems [5] to obtain explicit upper bounds on the Fourier coe�cients
aC(n) of C(z). Consequently, if n is locally represented, so that aE(n) is non-zero, and is
not globally represented, so that aE(n) + aC(n) = 0, we obtain an explicit upper bound on
aE(n), which would seemingly contradict the ine�ective lower bound aE(n) �ε n

1/2−ε. Of
course, the recti�cation of this comes from the fact that the implied constant depends upon
a possible Siegel zero of some Dirichlet L-function. In particular, if there are no Siegel zeros
σ < 1 satisfying

σ > 1− c

log 3q
,

then, following standard techniques (see Davenport [6, �21], for example) a lower bound of
the form

(3.1) h(d) ≥ α · ce−8c d
1/2

log2 d

can be obtained, where α = 1.288 . . . · 10−4. Thus, if we are able to use the above ideas to
contradict the bound (3.1), we will have produced a Siegel zero. This is obviously now our
goal.
Following the techniques developed in Section 2, by applying Chandee's theorem, we obtain

a bound of the form

aC(n) ≤ r · ns,

for some explicit constants r, s depending only on the class of n in
∏

p|∆ Q×p /
(
Q×p
)2
. In

fact, by varying the parameter x in Chandee's bound [5, Equation (19)], we can obtain
many di�erent values of (r, s), a fact which we will exploit for the purposes of optimization
whenever dealing with a speci�c form � see the proof of Corollary 1.1 � but in general we
only require x to be chosen so that s < 1/2. Provided that there is no contribution to C(z)
from a unary theta function, we are guaranteed to be able to make this choice (see equation
(3.2) below), and if we restrict n to be squarefree and greater than the level of Q, we bypass
this issue entirely. We could also require, if we write n = n0n

2
1 with n0 squarefree, that n0 is

greater than the level, but we have chosen the statement we did for aesthetic purposes. At
this point, Theorem 1.2 follows immediately. We now prove Corollary 1.1 to make this more
explicit.
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Proof of Corollary 1.1. We begin by noting that Q = x2 +y2 + 10z2 has discriminant 40 and
is associated to the elliptic curve E : y2 = x3 + x2 + 4x + 4 with Cremona label 20a. For
each square class a ∈ Q×2 /(Q×2 )2 × Q×5 /(Q×5 )2, and in particular each odd square class, we
can �nd a, b, and d such that

rQ(n) = ah(−bn)± d
√
L(1, E ⊗ χ−10n),

so that if n is not represented by Q, the bound

h(−bn) ≤ d

a

√
L(1, E ⊗ χ−10n)

must hold. On the other hand, if there are no Siegel zeros for some c < 1/8, we also have
the bound (3.1), so if the inequality

c ≥ 4ed

aαb1/2
n−1/2 log2 n

√
L(1, E ⊗ χ−10n)

holds, we will have arrived at a contradiction. The bound for L(1, E⊗χ−10n) obtained from
Chandee's theorem is independent of the square class a, and we compute that the constant
is largest for the class (1, 1), with a = 2/3, b = 40, and d = 1.572 . . . . This yields that

c ≥ 31480 · n−1/2 log2 n
√
L(1, E ⊗ χ−10n)

will be problematic. As mentioned above, using Chandee's theorem, it is possible to bound
the L-value by rns, where each of r and s depend upon a parameter x. In particular, we
have that

(3.2) s =
1 + λ

log x

and

(3.3) log r = <

(∑
m≤x

a(m)

m
1
2

+ λ
log x logm

log x
m

log x

)
+

2(λ2 + λ)

log2 x
+

8e−λ

x
1
2 log2 x

+
1 + λ

2 log x
log

(
800

π2

)
,

where log x
2
≥ λ ≥ λ0, λ0 = 0.4912 . . . is the unique positive solution to e−λ0 = λ0 + λ2

0/2,
and the a(m)'s are the coe�cients of the Dirichlet series

−L
′

L
(s, E ⊗ χ−10n).

By taking λ = λ0 and x = 1000, we obtain that s = 0.215 . . . and r = 118.285 . . . . Thus,
if c ≥ 342395 · n−0.392 log2 n, this yields a contradiction. However, we have assumed that
c ≤ 1/8, and we note that this bound is only below that if n ≥ 2.8 · 1025. This is the stated
result.
Moreover, the bounds on a, b, and d are all worst when a = (1, 1). Using the same values

of λ and x, and that log n ≤ e1/εnε for every ε > 0, we �nd that if

n ≥ 8.179 · 1024 · c−2.793,

then some Dirichlet L-function must have a Siegel zero. This establishes Theorem 1.2. �
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4. Tate-Shafarevich groups: Proof of Theorem 1.3

We now turn our attention to the proof of Theorem 1.3. The starting point is again the
inequality

h(−bn) ≤ d

a

√
L(1, E ⊗ χ−Dn),

which must hold if n is in the locally represented square class a but n is not globally rep-
resented. Here, we have assumed that Q is associated to the elliptic curve E. Instead of
proceeding as we did in the proof of Theorem 1.2, however, we now assume GRH for Dirichlet
L-functions, from which we obtain a lower bound for the central critical value of the modular
L-function of the form

L(1, E ⊗ χ−Dn) ≥ a2α2b

64d2e2

n

log4(bn)
� n

log4 n
,

which should be compared to the Ramanujan bound L(1, E ⊗ χ−d)�E,ε d
ε. This inequality

immediately guarantees that the analytic rank of E ⊗ χ−Dn is 0, which in turn yields that
the arithmetic rank is 0 and the Tate-Shafarevich group X(E ⊗ χ−Dn) is �nite. However,
if we want more control over the size of the Tate-Shafarevich group, we must assume the
strong form of the Birch and Swinnerton-Dyer conjecture for rank 0 curves, which asserts,
for any elliptic curve E ′ of rank 0, that

L(1, E ′) =
#X(E ′) · Tam(E ′) · Ω(E ′)

#E ′tors(Q)2
,

where X(E ′) denotes the Tate-Shafarevich group of E ′/Q, Ω(E ′) is the real period of E ′,
Tam(E ′) is the Tamagawa number of E ′, and E ′tors(Q) denotes the rational torsion subgroup
of E ′. As E ′ varies over the family of quadratic twists of E, the torsion subgroup E ′tors(Q)
is bounded by Mazur's theorem. In fact, a stronger bound can be obtained � apart from
possible 2-torsion, there are only �nitely many twists with non-trivial torsion subgroup � but
this is essentially irrelevant for our theorem. Moreover, the real period varies in a predictable
manner; namely, we have that

Ω(E ⊗ χ−d)
Ω(E ⊗ χ−4)

= d−1/2.

While the Tamagawa numbers are harder to control, the general bound

Tam(E ⊗ χ−d)� d1/2

holds uniformly in E (see, e.g., [7]). The net e�ect of this is that, if n is locally represented
but not globally, the inequality

#X(E ⊗ χ−Dn)�E
n

log4 n

must hold, where the implied constant can be made explicit. As mentioned in the introduc-
tion, this contradicts standard conjectures about the size of the Tate-Shafarevich group in
the family of quadratic twists.
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