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Abstract. Granville and Soundararajan have recently suggested that a general study of
multiplicative functions could form the basis of analytic number theory without zeros of
L-functions; this is the so-called pretentious view of analytic number theory. Here we
study multiplicative functions which arise from the arithmetic of number fields. For each
finite Galois extension K/Q, we construct a natural class SK of completely multiplicative
functions whose values are dictated by Artin symbols, and we show that the only functions
in SK whose partial sums exhibit greater than expected cancellation are Dirichlet characters.

1. Introduction and statement of results

In a recent series of papers ([1], [3], [4], [5], [6] as a few examples), Granville and Soundarara-
jan have introduced the notion of pretentiousness in analytic number theory. The idea
of pretentiousness is to study generic complex-valued multiplicative functions of modulus
bounded by 1 as an alternative to focusing on the zeros of L-functions. In this sense, this
philosophy can be viewed as establishing a framework for the elementary proof of the prime
number theorem due to Erdős and Selberg. Indeed, the theory has advanced well beyond
that point – there are now pretentious proofs of many deep theorems in analytic number
theory, including versions of the large sieve inequality [2], Linnik’s theorem [2], and, due
to Koukoulopoulos [10], a quantitative version of the prime number theorem for primes in
arithmetic progressions of the same quality as can be obtained by traditional methods – and
yet pretentiousness is still in its nascence. That is, even though they are essentially very
basic objects, we still have much to learn about multiplicative functions.

Arguably the most striking multiplicative functions are Dirichlet characters. These are
completely multiplicative functions defined on the primes via congruence relations, yet they
also exhibit a strong additive structure – periodicity. One way in which this additional struc-
ture manifests itself is by the startling amount of cancellation exhibited by the summatory
function. If f(n) is any multiplicative function, let

Sf (X) :=
∑
n≤X

f(n).

Generically, if |f(p)| ≈ 1, the best cancellation we can expect is what we would find in a
random model, which would yield Sf (X) = O(X1/2+ε). However, if χ(n) is a non-principal
Dirichlet character modulo q, we have the much stronger statement that Sχ(X) = Oq(1) as
X →∞, where the subscript q indicates that the implied constant may depend on q.

Given this startling, albeit elementary, cancellation exhibited by Dirichlet characters, we
may ask the following question.

Question 1. Given a completely multiplicative function f(n) such that |f(p)| ≈ 1 for almost
all primes p, if Sf (X)� X1/2−δ for some fixed δ > 0, must f(n) necessarily “come from” a
Dirichlet character?
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Of course, this question is hopelessly vague, but a more precise version can be found in
the author’s work with J. Jung [8]. Even with a more precise formulation – requiring both
that |f(p)| ≤ 1, so that f(n) fits into the classical domain of pretentiousness, and, say, that∑

n≤X |f(n)|2 � X, so that f(n) is not too small – Question 1 appears to be intractable at
present. Not all is lost, however, as we are able to provide an answer for a certain, natural
class of functions, which moreover seems like a not unreasonable place to look for conspiracies
akin to the periodicity of Dirichlet characters.

This class of functions will be defined via the arithmetic of number fields, with Dirichlet
characters arising from cyclotomic extensions. Thus, letK/Q be a finite Galois extension, not

necessarily abelian, and let
(
K/Q
·

)
denote the Artin symbol, defined so that for each rational

prime p unramified in K,
(
K/Q
p

)
is the conjugacy class in Gal(K/Q) of elements acting

like Frobenius modulo p for some prime p of K dividing p; recall that by the Chebotarev
density theorem, each class occurs for a positive proportion of primes p. We let SK denote
the class of complex-valued completely multiplicative functions f(n) satisfying the following
two properties.

First, we require that |f(p)| ≤ 1 for all primes p, with equality holding if p splits completely,
so that f both fits into the context of pretentiousness and is of the same size as a Dirichlet
character in absolute value. Secondly, generalizing the dependence of χ(p) only on the residue

class of p (mod q), we require f(p) to depend only on the Artin symbol
(
K/Q
p

)
. That is, if

p1 and p2 are any two unramified primes such that(
K/Q
p1

)
=

(
K/Q
p2

)
,

we must have that f(p1) = f(p2). We note that if K = Q(ζm), the m-th cyclotomic
extension, SK includes all Dirichlet characters modulo m, and by taking K to be a non-
abelian extension, we can obtain other functions of arithmetic interest which are intrinsically
different from Dirichlet characters; see the examples following Theorem 1.1. We are now
interested in the following reformulation of Question 1 to the class of functions in SK .

Question 2. Suppose f ∈ SK is such that Sf (X) = Of (X
1/2−δ) as X → ∞ for some fixed

δ > 0. Must f(n) coincide with a Dirichlet character? That is, must f(p) = χ(p) for all but
finitely many primes?

Modifying techniques of Soundararajan [12] that were developed to show that degree 1
elements of the Selberg class arise from Dirichlet L-functions, we are able to answer this
question in the affirmative.

Theorem 1.1. If f ∈ SK is such that Sf (X) = Of (X
1/2−δ), then f(p) = χ(p) for all

unramified primes p, where χ is a Dirichlet character of conductor dividing the discriminant
of K.

Two remarks: First, as mentioned above, the author and Jung [8] recently asked a more
general version of Question 1 in their work on pretentiously detecting power cancellation
in the partial sums of multiplicative functions. It is unfortunate that while Question 1 fits
nicely into the pretentious philosophy, the proof of Theorem 1.1 is highly non-pretentious,
as it relies critically on L-function arguments. However, we still consider this proof to be of
merit, as it highlights the interface between pretentious questions and techniques relying on
L-functions.
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Second, as the proof will show, the conditions on the class SK are not optimal. We
have chosen the definition of SK that we did for aesthetic purposes, but in fact, the class
can be expanded in a few ways. First, we do not actually require that f(n) is completely

multiplicative, only that f(p2) is also determined by the Artin symbol
(
K/Q
p

)
and that f(pk),

k ≥ 3, can be suitably bounded independent of p. We also need to assume nothing about
the size of |f(p)| for primes p that do not split completely in K. In particular, the condition
that f(p) is determined by the Artin symbol implies that square root cancellation is still
the expected random order, so that the question remains interesting. It would also be nice
to completely remove the restriction on those primes which split completely, but this would
likely require greater understanding of a particular extension of the Selberg class. At present,
following techniques used in the proof of Theorem 1.1, it would likely be possible to allow
|f(p)| ≤ 1 for primes that split completely. However, we consider within this setting the
case of |f(p)| = 1 to be the most interesting, as this is the only case in which there are
f(n) with Sf (X)� X1/2−δ; that is, if f(p) is dictated by Artin symbols and 0 < |f(p)| < 1
for primes p that split completely in K, then Sf (X) 6� X1/2−δ. We also note that, if we
do not bound f(p) at all, then coefficients of Artin L-functions associated with K are also
permitted, and, assuming they are automorphic, they would also likely exhibit more than
square root cancellation.

We conclude this section with three examples of functions in some SK which we believe
to be of arithmetic interest.

Example 1. Let F (x) = x3 + x2 − x+ 1, and let K be the splitting field of F (x), which has
Galois group G ∼= S3 and discriminant −21296 = −24 · 113. Let ρ(p) denote the number of
inequivalent solutions to the congruence F (x) ≡ 0 (mod p), and define the function f ∈ SK
by

f(p) =

 −1 if p - 22 and ρ(p) = 0,
0 if p | 22 or ρ(p) = 1,
1 if p - 22 and ρ(p) = 3.

There is a unique Dirichlet character χ in SK , which corresponds to the alternating character

of S3, and is given by χ(p) =
(
−11
p

)
. Alternatively, we can write χ(p) in terms of ρ(p) by

χ(p) =

 −1 if p 6= 11 and ρ(p) = 1, or p = 2,
1 if p - 22 and ρ(p) = 0 or 3,
0 if p = 11.

Since f(p) 6= χ(p) for those primes p such that ρ(p) = 0 or 1 and since such primes occur
a positive proportion of the time by the Chebotarev density theorem, we should not expect
to see more than square root cancellation in the partial sums of f(n) by Theorem 1.1, and
indeed, we find the following.

X Sf (X) |Sf (X)|/
√
X |Sf (X)|/(X/ log7/6X)

10 0 0 0
102 −4 0.4 0.238
103 −12 0.379 0.114
104 −102 1.02 0.136
105 −736 2.327 0.127
106 −5757 5.757 0.123
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In the next example, we discuss the apparent convergence in the fourth column.

Example 2. The astute reader may object to the above example by noting that f(n) as
constructed has mean −1/6 on the primes as a consequence of the Chebotarev density
theorem. The Selberg-Delange method [13, Chapter II.5] predicts that, for a multiplicative
function g(n) of mean z on the primes, the summatory function Sg(X) should be of the order

X(logX)z−1

Γ(z)
.

In particular, for f(n) as in the previous example, we would expect that Sf (X) should have
order X/(logX)7/6, which indeed matches the data more closely (and explains the fourth
column). Notice, however, that the predicted main term is 0 when the mean on the primes
is 0 or −1 (or any non-positive integer, but recall that we are inside the unit disc). The
latter possibility essentially corresponds to the Möbius function µ(n), so the most interesting
case occurs when the mean on the primes is 0. It is a simple exercise to see that any such
function g ∈ SK (where K is as in Example 1) arises as the “twist” of χ(n) – we must have
that g(p) = ωχ(p) for all primes p - 22 and some ω satisfying |ω| = 1. Taking g(p) = iχ(p)
for all primes p, we compute the following.

X Sg(X) |Sg(X)|/
√
X

10 1 + i 0.447
102 2 + i 0.224
103 6 + 2i 0.2
104 13 + 6i 0.143
105 36 + 50i 0.195
106 −260 + 215i 0.337

Here, the fact that Sg(X) is not O(X1/2−δ) for some δ > 0 is less apparent than was the
case in Example 1 (there is even more fluctuation than is visible in the limited information
above – for example, Sg(810000)/

√
810000 ≈ 0.059), but nevertheless, since g(n) does not

coincide with a Dirichlet character, Theorem 1.1 guarantees that the partial sums are not
O(X1/2−δ).

Example 3. Let F (x) = x4+3x+3, and let K be the splitting field of F (x), which has Galois
group G ∼= D4 and discriminant 1750329 = 36 · 74. There are five conjugacy classes of G,
three of which, each of order two, can be determined by exploiting the quadratic subfields
Q(
√
−3) and Q(

√
−7). To distinguish the remaining two conjugacy classes, each of which

consists of a single element, we exploit the factorization of F (x) modulo p. As in the previous
examples, let ρ(p) denote the number of inequivalent solutions to the congruence F (x) ≡ 0

(mod p), and additionally define l(p) to be the pair
((
−3
p

)
,
(
−7
p

))
. We now consider f ∈ SK

defined by

f(p) =



1, if l(p) = (1, 1) and ρ(p) = 4,
−1, if l(p) = (1, 1) and ρ(p) = 0,
1, if l(p) = (−1,−1),
ζ3, if l(p) = (−1, 1),
ζ23 , if l(p) = (1,−1),
0, if p | 21.
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We note that f(n) is neither a Dirichlet character nor its twist – each of the three Dirichlet
characters

(−3
·

)
,
(−7
·

)
, and

(
21
·

)
has the same value on the singleton conjugacy classes, and

these are the unique characters in SK – yet it has mean 0 on the primes. We find the
following.

X Sf (X) |Sf (X)|/
√
X

10 0 0
102 4.5− 2.598i 0.520
103 −11 + 6.928i 0.411
104 0.5− 2.598i 0.026
105 −34− 71.014i 0.249
106 −21 + 124.708i 0.126

As with Example 2, we find the fact that Sf (X) is not O(X1/2−δ) to be not entirely clear,
yet it is guaranteed to be so. In this case, there is even more fluctuation in the values of
|Sf (X)|/

√
X. For example, when X = 7.61 · 105, we have that |Sf (X)|/

√
X ≈ 0.012, yet

when X = 7.69 · 105, we have that |Sf (X)|/
√
X ≈ 0.186. Thus, without knowledge of

Theorem 1.1, it would be difficult to guess the correct order of Sf (X), although if one were
forced to speculate, O(X1/2) would probably be the most reasonable guess. In fact, under
the generalized Riemann hypothesis, we have that Sf (X) = Oε(X

1/2+ε) for all ε > 0, so that
by Theorem 1.1, square root cancellation is the truth in this case.

Acknowledgements
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that an unconditional proof of the theorem may proceed along the lines below.

2. Proof of Theorem 1.1

We begin by recalling the setup in which we are working. K/Q is a finite Galois extension
with Galois group G := Gal(K/Q), and f ∈ SK if and only if |f(p)| ≤ 1 for all primes p,
with equality holding if p splits completely in K, and f(p1) = f(p2) for all unramified primes
p1 and p2 such that (

K/Q
p1

)
=

(
K/Q
p2

)
.

Looking only at unramified primes, we can therefore regard f as a class function of G, and
as such, it can be decomposed [11, pp. 520] as

(2.1) f =
∑

χ∈Irr(G)

aχχ,

where Irr(G) denotes the set of characters associated to the irreducible representations of G
and each aχ ∈ C. We remark that, because we have disregarded any information coming
from the ramified primes, we lose all control over the values f assumes on such primes. In
the proof to come, we will show that f(p) = χ(p) for all unramified primes p. To do so, that
is, to establish Theorem 1.1, we will show that aχ = 1 for some one-dimensional χ and that
aχ′ = 0 for all other χ′. We do so incrementally, first establishing that each aχ is, in fact,
rational, then, using techniques due to Soundararajan [12] developed to study elements of
the Selberg class of degree 1, we prove the result.
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Let L(s, f) denote the Dirichlet series associated to f(n), so that we have

L(s, f) :=
∞∑
n=1

f(n)

ns
=
∏
p

(
1− f(p)

ps

)−1
,

recalling that f(n) is completely multiplicative. By matching the coefficients of p−s in each
Euler factor, the decomposition (2.1) then guarantees the Euler product factorization

L(s, f) =
∏
χ

L(s, χ)aχ
∏
p

(
1 +O(p−2s)

)
,

valid in the region of absolute convergence <(s) > 1, and where L(s, χ) is the Artin L-
function associated to the representation attached to χ. In fact, we will need to go further
with this factorization. The coefficient of p−2s in the Euler product is again essentially a
class function of G, so it can be decomposed as a linear combination of the characters χ,
and we obtain

(2.2) L(s, f) =
∏
χ

L(s, χ)aχ
∏
χ

L(2s, χ)bχA(s),

where A(s) is analytic and non-zero in the region <(s) > 1/3. Recall that Artin L-functions
factor as products of integral powers of Hecke L-functions, so that for each non-trivial χ, the
function L(2s, χ) is analytic and non-zero in some neighborhood of the region <(s) ≥ 1/2,
and for the trivial character χ0, we have that L(2s, χ0) = ζ(2s) is again analytic and non-zero
in a neighborhood of <(s) ≥ 1/2, except at s = 1/2. Thus, the product∏

χ

L(2s, χ)bχA(s)

is analytic and non-zero in some neighborhood of <(s) ≥ 1/2, except possibly at s = 1/2.
Now, the condition that ∑

n≤X

f(n) = O(X1/2−δ)

guarantees that L(s, f) is analytic in the region <(s) > 1/2 − δ, so by the above, we must
have that ∏

χ

L(s, χ)aχ

is analytic in a neighborhood of <(s) ≥ 1/2, except possibly at s = 1/2. In particular, we
must have that

(2.3) ords=s0L(s, f) =
∑
χ

aχords=s0L(s, χ)

for any s 6= 1/2 with <(s) ≥ 1/2.
Recall now that we wish to show that each aχ is rational. This would follow from (2.3)

above if there are n := #Irr(G) choices s1, . . . , sn such that the matrix

Mn(s1, . . . , sn) := (ords=siL(s, χj)) , 1 ≤ i, j ≤ n,

is invertible over Q. If this is not the case, then there must be integers nχ, not all zero, such
that, for all s0 6= 1/2 with <(s0) ≥ 1/2, we have∑

χ

nχords=s0L(s, χ) = 0.
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To see this, induct on n, the number of characters, noting that the result is obviously true
if n = 1. If n > 1, then either there is a choice of {s1, . . . , sn−1} such that the matrix
associated to the characters χ1, . . . , χn−1 is invertible, or there are such integers nχ with
χ 6= χn, and we may obviously take nχn = 0. Assuming that we are in the former case, the
matrix (ords=siL(s, χj)), 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n, has a kernel of dimension one, and if
there is no choice of sn such that Mn(s1, . . . , sn) is invertible, any linear relation between the
columns must lie in this kernel, which yields the desired nχ.

Completing the L-functions and using the functional equation, the product,

Λ(s) :=
∏
χ

Λ(s, χ)nχ ,

will be analytic and non-vanishing on C, except possibly at s = 1/2. We note that this is,
essentially, an L-function of degree d :=

∑
χ nχ dimχ and conductor q :=

∏
χ q

nχ
χ , where each

qχ is the conductor of L(s, χ). Where this breaks from standard definitions of L-functions is
in the gamma factor,

G(s) :=
∏
χ

Γ(s, χ)nχ ,

where Γ(s, χ) is the gamma factor for L(s, χ), as typically one does not allow negative
exponents. Nevertheless, much of the formalism carries through, and in particular, it is
possible to show, for example by following Iwaniec and Kowalski [7, Theorem 5.8], that the
number of zeros of height up to T is

N(T ) =
T

π
log

qT d

(2πe)d
+O(logQT ), Q :=

∏
χ

q|nχ|χ .

Since Λ(s) is non-vanishing except possibly at s = 1/2, there can be no main term, and so
we see that d = 0 and q = 1. Moreover, since Λ(s) is entire (except possibly at s = 1/2) and
is of order one, we have the factorization

Λ(s) = (s− 1/2)meA+Bs,

where m ∈ Z and A,B ∈ C. Since d = 0 and q = 1, by considering the functional equation,
first as s→∞ with s ∈ R, we see that <(B) = 0, and by s = 1/2 + it, t→∞, that B = 0.
Writing G(s) as

G(s) = Γ(s)aΓ
(s

2

)b
Γ

(
s+ 1

2

)c
and applying Stirling’s formula, we see that

logG(s) =
2a+ b+ c

2
s log s−

(
a+ (b+ c)

(
1 + log 2

2

))
s

−
(
a+ b

2

)
log s+ (a+ b+ c) log

√
2π + b

log 2

2
+O(|s|−1).

Because Λ(s) = C · (s− 1/2)m, the coefficients of both s log s and s must be zero. The fact
that 2a+ b+ c = 0 is a restatement of the fact that the degree is zero, but the condition that

a+ (b+ c)

(
1 + log 2

2

)
= 0
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implies that a = 0 and b = −c, since each of a, b, and c is an integer. We thus have that

G(s) = (s/2)−b/2(1 +O(|s|−1)),
whence ∏

χ

L(s, χ)nχ = (s− 1/2)m(s/2)b/2(1 +O(|s|−1)).

Upon taking the limit as s→∞, we find that b = m = 0, so, in fact,
∏

χ L(s, χ)nχ = 1. But
this, due to the linear independence of characters, cannot happen, so no such nχ exist, and
each of the quantities aχ must be rational.

At this stage, we are now able to prove the theorem. The advantage gained by knowing
that each aχ is rational, is that the function

F (s) :=
∏
χ

L(s, χ)aχ

enjoys nice analytic properties. In particular, apart from a possible branch along the ray
(−∞, 1/2], it will be holomorphic. To see this, let k be the denominator of the aχ, and note
that, from (2.3), we must have∏

χ

Λ(s, χ)kaχ = (s− 1/2)mh(s)k

for some entire function h(s). Ignoring the branch, F (s) essentially behaves as an L-function
of degree

∑
aχ dimχ. However, we note that this is also the evaluation of f(p) at a prime

that splits completely in K – or, equivalently, at the identity of Gal(K/Q) – by (2.1). Thus,
it is a rational number of absolute value 1, and so is either 1 or −1. However, there are no
holomorphic L-functions of negative degree, as can be seen, for example, by a zero counting
argument (which can be modified simply to account for the possible branch), and so the
degree must be 1. Moreover, it is known that a degree 1 element of the Selberg class must
come from a Dirichlet L-function, a fact which is originally due to Kaczorowksi and Perelli
[9] and was reproved by Soundararajan [12]. However, as before, F (s) does not satisfy the
axioms of the Selberg class, as its gamma factor may have negative exponents, so we must
modify Soundararajan’s proof to our situation.

There are only two key components in Soundararajan’s proof – an approximate functional
equation for F (s) and control of the gamma factors on the line <(s) = 1/2. The proof of
the approximate functional equation naturally requires the analytic properties of F (s), and
as it may have a branch in our situation, we must modify the proof slightly; we do so in
Lemma 2.1 below. On the other hand, the control over the gamma factors is provided from
our assumption on the degree, so in particular, the same estimates hold. We state these
estimates in (2.4) and we give the idea of Soundararajan’s proof below, after the proof of
Lemma 2.1.

Lemma 2.1. For any t ∈ R such that |t| ≥ 2 and any X > 1, we have that

F (1/2 + it) =
∞∑
n=1

a(n)

n1/2+it
e−n/X +O

(
X−1+ε(1 + |t|)1+ε +X1/2+εe−|t|

)
.

Proof. Consider the integral

I :=

∫
(1)

F (1/2 + it+ w)XwΓ(w)dw.
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On one hand, replacing F by its Dirichlet series and directly computing, we find that I is
given by

I =
∞∑
n=1

a(n)

n1/2+it
e−n/X .

On the other hand, moving the line of integration to the left and letting F̃ (w) denote the
integrand, we find that

I = F (1/2 + it) +

∫ −1+ε−(t+1/2)i

−1+ε−i∞
F̃ (w)dw +

∫ −1+ε+i∞
−1+ε−(t−1/2)i

F̃ (w)dw +

∫
C
F̃ (w)dw,

where C denotes the contour formed by the union of the segments [−1 + ε− (t− 1/2)i, 1/2 +
ε − (t + 1/2)i], [1/2 + ε − (t + 1/2)i, 1/2 + ε − (t − 1/2)i], and [1/2 + ε − (t − 1/2)i,−1 +
ε − (t − 1/2)i]. Notice that the contour C is bounded away from the branch cut of F (s),
whence its contribution can be bounded as O(X1/2+εe−|t|). The contribution from the two
vertical contours is handled exactly as in Soundararajan’s proof, and yields a contribution
of O(X−1+ε(1 + |t|)1+ε). �

As mentioned above, we must also have some control over the gamma factors on the line
<(s) = 1/2. This is straightforward, as Stirling’s formula yields, if G(s) =

∏
χ Γ(s, χ)aχ ,

that there are constants B,C ∈ R such that

(2.4)
G(1/2− it)
G(1/2 + it)

= e−it log
t
2e

+iB+πi
4 C−it

(
1 +O(t−1)

)
.

(For the reader closely following Soundararajan, we do not have a tiA term because, for
each χ, all µχ,j are real.) This is not the most natural representation, but it proves to be
convenient for the proof. Now, the idea of Soundararajan’s proof is to consider, for any real
α > 0, the quantities

F(α, T ) :=
1√
α

∫ 2αT

αT

F (1/2 + it)eit log
t

2πeα
−πi

4 dt

and

F(α) := lim
T→∞

1

T
F(α, T ).

Armed with Lemma 2.1, one can evalute F(α) in two ways, either using the functional
equation or not. The first method shows that F(α) = 0 unless παCq2 ∈ Z, where q =

∏
χ q

aχ
χ

and C is as in (2.4), in which case it is, essentially, the coefficient a(παCq2). The second
method, on the other hand, shows that F(α) is periodic with period 1, whence πCq2 ∈ Z
and the coefficients a(n) are periodic modulo πCq2 =: q0 ∈ Z. As remarked above, the
proof of this follows Soundararajan’s [12] exactly, with the only modification necessary being
the replacement of his approximate functional equation with ours, Lemma 2.1. In fact,
this argument extends to show that, if we modify the definition of the Selberg class to
allow rational exponents on the gamma factors and for there to be finitely many lapses of
holomorphicity, then still, the only degree 1 elements are those coming from the traditional
Selberg class.

To conclude the proof of Theorem 1.1, we note that since the coefficients F (s) are periodic
modulo q0 and are also multiplicative, we must have that, away from primes dividing q0, that



10 ROBERT J. LEMKE OLIVER

they coincide with a Dirichlet character χq0 (mod q0). Thus, we have that∏
χ

L(s, χ)aχ
.
= L(s, χq0),

where
.
= means that equality holds up to a finite product over primes. By linear independence

of characters, the only way this can happen is if χ = χq0 and aχ = 1 for some χ and aχ′ = 0
for all others. Moreover, this shows that the Euler factors absorbed into the

.
= come only

from the ramified primes. This is exactly what we wished to show, so the result follows.
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