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Abstract. The Jacobi Triple Product Identity gives a closed form for many infinite product
generating functions that arise naturally in combinatorics and number theory. Of particular
interest is its application to Dedekind’s eta-function η(z), defined via an infinite product,
giving it as a certain kind of infinite sum known as a theta function. Using the theory of
modular forms, we classify all eta-quotients that are theta functions.

1. Introduction and Statement of Results

Jacobi’s Triple Product Identity states that

(1.1)
∞∏
n=1

(1− x2n)(1 + x2n−1z2)(1 + x2n−1z−2) =
∞∑

n=−∞

z2mxm
2

,

which is surprising because it gives a striking closed form expression for an infinite product.
Using (1.1), one can derive many elegant q-series identities. For example, one has Euler’s
identity

(1.2) q
∞∏
n=1

(1− q24n) =
∞∑

k=−∞

(−1)kq(6k+1)2

and Jacobi’s identity

(1.3)
∞∏
n=1

(1− q2n)5

(1− qn)2(1− q4n)2
=

∞∑
k=−∞

qk
2

.

Both (1.2) and (1.3) can be viewed as identities involving Dedekind’s eta-function η(z), which
is defined by

(1.4) η(z) := q1/24
∞∏
n=1

(1− qn),

where q := e2πiz. It is well known that η(z) is essentially a half-integral weight modular form,
a fact which Dummit, Kisilevsky, and McKay [5] exploited to classify all the eta-products
(functions of the form

∏s
i=1 η(niz)ti , where each ni and each ti is a positive integer) whose

q-series have multiplicative coefficients. Martin [7] later obtained the complete list of integer
weight eta-quotients (permitting the ti to be negative) with multiplicative coefficients.

The right hand sides of both (1.2) and (1.3) also have an interpretation in terms of half-
integral weight modular forms: they are examples of theta functions. Given a Dirichlet
character ψ, the theta function θψ(z) of ψ is given by

(1.5) θψ(z) :=
∑
n

ψ(n)nδqn
2

,
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where δ = 0 or 1 according to whether ψ is even or odd. The summation over n in (1.5) is
over the positive integers, unless ψ is the trivial character, in which case the summation is
over all integers. With this language, (1.2) becomes

η(24z) = θχ12(z),

where χ12(n) =
(
12
n

)
and

( ·
·

)
is the Jacobi symbol. This fact is subsumed into the theorem

of Dummit, Kisilevsky, and McKay, as η(24z) is an eta-product and any theta function
necessarily has multiplicative coefficients. However, we note that (1.3) is equivalent to

η(2z)5

η(z)2η(4z)2
= θ1(z),

which is covered neither by the theorem of Dummit, Kisilevsky, and McKay (as the left-hand
side is a quotient of eta-functions, not merely a product), nor is it covered by the theorem
of Martin (as the modular forms involved are of half-integral weight). It is therefore natural
to ask which eta-quotients are theta functions.

Theorem 1.1. 1. The following eta-quotients are the only ones which are theta functions
for an even character:

η(2z)5

η(z)2η(4z)2
=

∞∑
n=−∞

qn
2

,

η(8z)η(32z)

η(16z)
=
∞∑
n=1

(
2

n

)
qn

2

,

η(16z)2

η(8z)
=
∞∑
n=1

(n
2

)2
qn

2

,

η(6z)2η(9z)η(36z)

η(3z)η(12z)η(18z)
=
∞∑
n=1

(n
3

)2
qn

2

,

η(24z) =
∞∑
n=1

(
12

n

)
qn

2

,

η(48z)3

η(24z)η(96z)
=
∞∑
n=1

(
24

n

)
qn

2

,

η(48z)η(72z)2

η(24z)η(144z)
=
∞∑
n=1

(n
6

)2
qn

2

,

η(24z)η(96z)η(144z)5

η(48z)2η(72z)2η(288z)2
=
∞∑
n=1

(
18

n

)
qn

2

.

2. The following eta-quotients are the only ones which are theta functions for an odd
character:

η(8z)3 =
∞∑
n=1

(
−4

n

)
nqn

2

,
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η(16z)9

η(8z)3η(32z)3
=
∞∑
n=1

(
−2

n

)
nqn

2

,

η(3z)2η(12z)2

η(6z)
=
∞∑
n=1

(n
3

)
nqn

2

,

η(48z)13

η(24z)5η(96z)5
=
∞∑
n=1

(
−6

n

)
nqn

2

,

η(24z)5

η(48z)2
=
∞∑
n=1

( n
12

)
nqn

2

.

In fact, we establish a broader classification theorem. Given a positive integer m, let Θ0
m

denote the linear span of the set of all theta functions associated to an even character ψ
whose modulus is m together with its ‘twists’ by χ2,0, χ3,0, and χ6,0, where χr,0 denotes
the principal character modulo r, and let Θ1

m denote the analogous space associated to odd
characters of modulus m. Here, the twist of a theta function associated to ψ by another
character χ is the theta function associated to ψχ. For convenience, let Θm denote the union
of Θ0

m and Θ1
m. We call an element of Θm monic if its q-expansion has the form 1 +O(q) or

q +O(q4).

Theorem 1.2. 1. The only eta-quotients which are monic elements of Θ0
m for some m are

those in Theorem 1.1 together with

η(z)2

η(2z)
=

∞∑
n=−∞

(
1− 2

(n
2

)2)
qn

2

=
∞∑

n=−∞

(−1)nqn
2

,

η(z)η(4z)η(6z)2

η(2z)η(3z)η(12z)
=

∞∑
n=−∞

(
1− 3

2

(n
3

)2)
qn

2

,

η(2z)2η(3z)

η(z)η(6z)
=

∞∑
n=−∞

(
1− 2

(n
2

)2
− 3

2

(n
3

)2
+ 3

(n
6

)2)
qn

2

,

η(8z)5

η(4z)2η(16z)2
=

∞∑
n=−∞

(
1−

(n
2

)2)
qn

2

,

η(9z)2

η(18z)
=

∞∑
n=−∞

(
1− 2

(n
2

)
−
(n

3

)2
+ 2

(n
6

)2)
qn

2

,

η(18z)5

η(9z)2η(36z)2
=

∞∑
n=−∞

(
1−

(n
3

)2)
qn

2

,

η(4z)η(16z)η(24z)2

η(8z)η(12z)η(48z)
=

∞∑
n=−∞

(
1−

(n
2

)2
− 3

2

(n
3

)2
+

3

2

(n
6

)2)
qn

2

,

η(72z)5

η(36z)2η(144z)2
=

∞∑
n=−∞

(
1−

(n
2

)2
−
(n

3

)2
+
(n

6

)2)
qn

2

,
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η(3z)η(18z)2

η(6z)η(9z)
=
∞∑
n=1

(
2
(n

6

)2
−
(n

3

)2)
qn

2

,

η(8z)2η(48z)

η(16z)η(24z)
=
∞∑
n=1

(
3
(n

6

)2
− 2

(n
2

)2)
qn

2

.

2. The only eta-quotients which are monic elements of Θ1
m for some m are those in

Theorem 1.1 together with

η(6z)5

η(3z)2
=
∞∑
n=1

(
2
( n

12

)
−
(n

3

))
nqn

2

.

Remark. A theorem of Mersmann [8] classifying holomorphic eta-quotients implies that
there are essentially only finitely many eta-quotients which could be in any Θm, even allowing
non-monic elements. Unfortunately, while Mersmann’s result can be made effective, the
computations necessary to prove either case of Theorem 1.2 in this way would be prohibitively
large. Consequently, our proof proceeds along fundamentally different lines. We note that
Mersmann’s result is slightly misquoted in [3] - the theorem credited to Mersmann on Page
30 of [3] is stronger than what he proves in his thesis.

Our proof proceeds as follows. Instead of using the method employed by Mersmann [8]
- essentially a careful study of the order of vanishing of eta-quotients - we make use of the
combinatorial properties of eta-quotients and the constraints on the q-series of theta func-
tions. Combined with the theory of modular forms, in particular the Fricke involution Wk,M ,
asymptotic formulae, Eisenstein series, and Shimura’s correspondence, the classification in
Theorems 1.1 and 1.2 reduces to a case by case analysis. In this analysis, we make great use
of the simple observation that if a > b, then (1 + qa)(1 + qb) = 1 + qb +O(qa). In this regard,
we also need the solution to a classical Diophantine problem.

Acknowledgements

The author would like to thank Ken Ono, who suggested this problem to him, Marie
Jameson, Jeremy Rouse, and Karl Mahlburg, for useful discussions, and the anonymous
referees, who suggested considerable improvements.

2. Preliminary Facts

We begin by recalling some basic facts about modular forms. A holomorphic function
f : H → C is a weakly holomorphic modular form of weight k ∈ 1

2
Z for the subgroup

Γ ⊆ SL2(Z) if f(γz) = εγ(cz + d)kf(z) for all γ =

(
a b
c d

)
∈ Γ, acting in the usual way

by fractional linear transformation, where εγ is a suitable fourth root of unity. Moreover, we
require for each γ ∈ SL2(Z) that (f |k γ)(z) := (cz + d)−kf(γz) is represented by a Fourier
series of the form

(f |k γ)(z) =
∑
n≥n0

aγ(n)qnN ,

where qN := e2πi/N . In fact, there are only finitely many such series required, one for each
“cusp” of Γ \ H, that is, an element ρ ∈ Γ \ Q. In this case, we let qρ := qN . The space of
all weakly holomorphic modular forms of weight k on Γ is denoted by M !

k(Γ); its subspace
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consisting of all forms which are holomorphic (resp. vanishing) at the cusps is denoted by
Mk(Γ) (resp. Sk(Γ)) (these are the spaces of modular forms and cusp forms, respectively).
For the subgroups we are concerned with, namely the congruence subgroups of level N ,

Γ1(N) :=

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 ∗
0 1

)
(mod N)

}
,

weakly holomorphic modular forms are fixed under the substitution z 7→ z + 1, and so they
have a Fourier series at infinity with respect to the variable q := e2πiz. Although we will
briefly need the Fourier expansions at other cusps, it is this Fourier series (also called a
q-expansion) that is of the most interest to us.

If f(z) ∈ M !
k(Γ1(N)), then f(z) is said to be modular of level N . If f(z) is holomorphic,

then necessarily k ≥ 0 and the space Mk(Γ1(N)) decomposes naturally into two pieces: the
previously mentioned cusp space Sk(Γ1(N)) and the so-called Eisenstein space Ek(Γ1(N)).
If k ∈ Z, exploiting this decomposition, the size of the Fourier coefficients af (n) of f(z) is
well-understood. In particular, letting af (n) = acusp(n) + aEis(n), then we have that both

aEis(n)�f,ε n
k−1+ε,

due to the explicit nature of the coefficients (see (2.5) below), and

acusp(n)�f,ε n
(k−1)/2+ε,

which is the celebrated bound of Deligne. If k ∈ 1/2 + Z, then the coefficients of both the
Eisenstein series and the cuspidal part are not understood nearly as well, as both frequently
encode values of L-functions. Nevertheless, polynomial bounds are known for each. In
particular, we have the “trivial” bound that

acusp(n)�f n
k/2,

valid for all k ≥ 1/2 and

aEis(n)�f,ε n
k−1+ε

for k ≥ 3/2, and aEis(n) � nε if k = 1/2. Although stronger bounds are known (most re-
cently, due to Blomer and Harcos [1]), it is only the fact that each is polynomially bounded
that will be relevant to us. This is because if f(z) is weakly holomorphic, but not holomor-
phic, then the coefficients of f(z) are of a fundamentally different size. Namely, for n in
certain arithmetic progressions depending on the level, they satsify

log |af (n)| � n1/2.

This is due, in various settings, to Rademacher and Zuckerman ([11], [12], [14], [15]), and,
more recently, to Bringmann and Ono [2]. We will find this vast difference in size useful later
on.

We recall that, given a Dirichlet character ψ of modulus r, the function θψ(z) is defined

by θψ(z) :=
∑

n ψ(n)nδqn
2
, where δ = 0 or 1 according to whether ψ is even or odd. In both

cases, the summation over n is assumed to be over the positive integers unless r = 1, in
which case the sum is over all integers. It is classical that θψ(z) is a modular form of weight
1/2 if ψ is even and of weight 3/2 if ψ is odd. Each θψ(z) is of level 4r2 and, moreover, if
r 6= 1, then it is a cusp form. Regardless of the parity of ψ, we refer to θψ(z) as a theta
function of modulus r.

The twist of a theta function θψ(z) by a character χ is the theta function associated to
ψχ. Given a positive integer m, we let Θ0

m denote the linear span of the set of all weight 1/2
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theta functions whose moduli are m and their twists by χ2,0, χ3,0, and χ6,0, and we let Θ1
m

denote the analogous space for weight 3/2 theta functions. Let Θm be the union of Θ0
m and

Θ1
m.
Dedekind’s eta-function η(z) is defined by

η(z) := q1/24
∏
n

(1− qn).

It is almost a modular form of weight 1/2 on SL2(Z), in the sense that

(2.1) η

(
−1

z

)
= (−iz)1/2η(z),

but it fails to transform suitably under z 7→ z+1. However, since η(z) is non-vanishing away
from the cusps, a function of the form

(2.2) f(z) =
∏
d|N

η(dz)rd

will be a weakly holomorphic modular form on Γ1(24N) if
∑

d|N drd ≡ 0 (mod 24). This

level may not be sharp, in the sense that f(z) may be a weakly holomorphic modular form
on Γ1(M) for some proper divisor M of 24N , but what is important for our purposes is
that the only primes dividing the level of f(z) are those dividing N together with 2 and 3.
We call a function of the form (2.2) satisfying this condition an eta-quotient. The order of
vanishing of f(z) at the cusp ρ := α

δ
is given by [10, Theorem 1.65]

(2.3) ordz=ρf(z) =
N

24

∑
d|N

(d, δ)2rd

(δ, N
δ

)dδ
.

Lemma 2.1. Suppose that f(z) =
∏

d|N η(dz)rd is an element of Θm. Set a := 1 +

max(1, ν2(m)) and b := max(1, ν3(m)), where νp(·) is the standard p-adic valuation, and
let m0 be the maximal divisor of m coprime to 6. Then rd = 0 for d - 22a32bm2

0.

Proof. Given a theta function θ(z) of modulus r and weight k, it is well known that θ(z) |
Wk,4r2 := (−2rz)−kθ

( −1
4r2z

)
is again a modular form of weight k whose Fourier series has

integral exponents, where Wk,4r2 is the usual Fricke involution (see [10, Proposition 3.8]).
This property also holds for θ(z)|Wk,4r2t for any t, and so we see that the operator Wk,22a32bm2

0

sends Θm to the union of two spaces of modular forms whose Fourier series have integral
exponents. If f(z) is in Θm and has weight k, therefore, we must have that f(z)|Wk,22a32bm2

0

is a modular form of weight k with only integral exponents.
On the other hand, we compute using (2.1) that

f(z)|Wk,22a32bm2
0

= (−2a3bm0z)−k
∏
d|N

η

(
−d

22a32bm2
0z

)rd
= C

∏
d|N

η

(
22a32bm2

0z

d

)rd
=: Cf̃(z)

for some constant C. But the only way for f̃(z) to have a Fourier series with integral
exponents is if for each d - 22a32bm2

0 we have that rd = 0. �
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The above lemma limits the eta-quotients which are in Θm for a fixed m, but we still
need a way to control the possible values of m. The following proposition permits us to do
that. First, though, we fix notation. Given a weakly holomorphic modular form f(z) =∑

n�−∞ a(n)qn of level N , the Up operator for a prime p is defined by

f(z)|Up :=
∑

n�−∞

a(pn)qn.

It is well known that f(z)|Up is again a weakly holomorphic modular form of level N if p | N
and level pN if p - N .

Proposition 2.2. If f ∈ M !
k(Γ1(N)) and p - N is prime, then f(z)|Up = 0 if and only if

f(z) = 0.

Before proving Proposition 2.2, we deduce its application to the problem at hand.

Corollary 2.3. If f(z) =
∏

d|N η(dz)rd is in Θm for some m, then the only primes dividing
m are 2 and 3.

Proof. We first show that any eta-quotient f(z) is not annihilated by the Up operator for
any p ≥ 5. Fix such a prime and write f(z) = f1(z)f2(pz), with

f1(z) :=
∏

d|N,p-d

η(dz)rd , and

f2(z) :=
∏

d|N,p|d

η

(
dz

p

)rd
,

where an empty product has value 1. We now have that f(24z)|Up = f1(24z)|Up · f2(24z).
Since f1(24z) is a weakly holomorphic modular form of level indivisible by p, we see by Propo-
sition 2.2 that f1(24z)|Up is non-zero, and since f2(24z) 6= 0, we also have that f(24z)|Up is
non-zero. Since p - 24 by assumption, it follows that that f(z)|Up 6= 0.

On the other hand, functions in Θm have the property that their coefficients are supported
on exponents which are coprime to m. Hence, for any prime divisor p of m, we must have
that Up annihilates Θm. Thus, if f(z) is in Θm, the only way it can have this property is if
the only primes dividing m are 2 and 3. �

The proof of Proposition 2.2 relies upon a lemma on sums of almost-everywhere multi-
plicative functions, which we define to be functions satisfying f(mn) = f(m)f(n) for any
coprime m and n, neither of which is divisible by any of a finite set of primes called the bad
primes. As an example, if f(n) is a multiplicative function such that f(t) 6= 0 for some t, then
f(tn)/f(t) is not generically multiplicative. It is, however, almost-everywhere multiplicative
away from the primes dividing t.

Lemma 2.4. Suppose that f1, · · · , fs are almost-everywhere multiplicative functions which
are each non-zero for an infinite set of primes. Moreover, assume that, for each i 6= j,
fi(p) 6= fj(p) for an infinite number of primes p. If c1f1(n) + . . . + csfs(n) = 0 for all n
indivisible by every bad prime, then each ci = 0.

Proof. We proceed by induction, noting that the result is obviously true if s = 1.
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If s ≥ 2, we may assume by way of contradiction that each ci 6= 0, so we have that

(2.4) fs(n) = −
s−1∑
i=1

ci
cs
fi(n)

for every n not divisible by any bad prime. Let m and n be coprime integers not divisible
by any bad prime. We then have that both

fs(mn) = −
s−1∑
i=1

ci
cs
fi(m)fi(n)

and

fs(mn) =

(
−

s−1∑
i=1

ci
cs
fi(m)

)(
−

s−1∑
i=1

ci
cs
fi(n)

)

=
s−1∑
i=1

(
ci
cs

s−1∑
j=1

cj
cs
fj(m)

)
fi(n).

Equating these two expressions for fs(mn), we obtain that

s−1∑
i=1

(
ci
cs
fi(m) +

ci
cs

s−1∑
j=1

cj
cs
fj(m)

)
fi(n) = 0,

which, by our induction hypothesis, can only happen if for each i and m, we have that

ci
cs

(
fi(m) +

s−1∑
j=1

cj
cs
fj(m)

)
= 0.

Since ci 6= 0 for each i, we then get a linear combination of fj(m) equaling 0, and again using
the induction hypothesis, we find that ci = −cs and all other cj = 0. Since we assumed that
each cj 6= 0, this can only happen if s = 2, and in that case, (2.4) yields that f1(n) = f2(n)
for all n away from the set of bad primes. But since these functions were assumed to be
distinct, this cannot happen. �

Proof of Proposition 2.2. If the Fourier expansion of f(z) at the cusp ρ is given by

f(z) =
∑

n�−∞

aρ(n)qn+κρρ ,

then the principal part of f(z) at ρ is

f−ρ (z) =
∑

n+κρ<0

aρ(n)qn+κρρ .

Following either the classical work of Rademacher and Zuckerman ([11], [12], [14], [15]) or
the recent work of Bringmann and Ono [2], we can write f(z) = f−(z)+fhol(z), where f−(z)
is a linear combination of so-called Maass-Poincaré series which matches the principal part
of f(z) at each cusp and fhol(z) is a holomorphic modular form. Since the coefficients of the
Maass-Poincaré series grow superpolynomially along certain arithmetic progressions modulo
N and the coefficients of fhol(z) are polynomially bounded (see the above discussion), in
order for f(z)|Up to be 0, we must have that f−(z) = 0 and f(z) = fhol(z). In the case that
k < 0, we are now done, as there are no holomorphic modular forms of negative weight. If
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k = 0, the only holomorphic modular forms are constant and are preserved under Up. Hence,
in this case too, we must have that f(z) = 0.

If k = 1/2, a deep theorem of Serre and Stark [13] states that f(z) must be a linear
combination of weight 1/2 theta functions θχ(z) of level dividing N and their dilates θχ(tz),
with t · cond(χ) | N . Thus, if (n,N) = 1, we have that

0 = af (p
2n2) =

∑
χ

cχχ(p)χ(n),

where the sum runs over the characters of conductor dividing N , and each cχ is a constant.
But by the linear independence of characters, we must have that each cχχ(p) = 0, whence
cχ = 0 since (p, cond(χ)) = 1. Considering iteratively af (tp

2n2) in the same way, the result
follows if k = 1/2.

We may now suppose that k ≥ 1. In the case that k is an integer, following [4], a basis
for the Eisenstein space of Mk(Γ1(N)) is given by

{Eε,ψ,t
k (z) : (ε, ψ, t) ∈ Ak,N},

where we define Eε,ψ,t
k (z) using the series

(2.5) Eε,ψ
k (z) = ck,ε,ψ +

∞∑
n=1

∑
d|n

ε(n/d)ψ(d)dk−1

 qn

by Eε,ψ,t
k (z) = Eε,ψ

k (tz) for k 6= 2 or (ε, ψ) 6= (1, 1), and E1,1,t
2 (z) = E1,1

2 (z) − tE1,1
2 (tz) for

t 6= 1. In the above, ck,ε,ψ is a constant and Ak,N is the set of triples (ε, ψ, t) where ε and ψ
are primitive Dirichlet characters of conductor u and v, respectively, with (εψ)(−1) = (−1)k,
and t is a positive integer such that tuv | N . In the case k = 2 we exclude the triple (1, 1, 1),
and in the case k = 1, we require the first two elements of a triple to be unordered. We note
that the Fourier coefficients of the Eisenstein series Eε,ψ

k (z) are multiplicative; we denote

these coefficients by σε,ψk−1(n).
For the cusp space Sk(Γ1(N)), we may choose a basis of Hecke eigenforms, so that any

holomorphic modular form is a linear combination of forms g1(z), · · · , gs(z), each with Fourier
coefficients a1(n), · · · , as(n) that are “essentially” multiplicative: in the case that ai(n) arises
from a newform (that is, a form not coming from some level M | N), it is legitimately
multiplicative, but if ai(n) arises from a non-newform, then it is of the form ai(tn) = aj(n)
for some t | N and the coefficients aj(n) of some newform (the role of t will be handled easily
in the proof below). In particular, if f(z) =

∑
a(n)qn, we may, for (n,N) = 1, write

a(n) = c1f1(n) + · · · crfr(n)

for some constants c1, · · · , cr and multiplicative fi(n), coming either from an Eisenstein series
or an eigenform. Since f(z)|Up = 0, we must have that a(pn) = 0 for all n. In particular,
for (n, pN) = 1, we must have that

0 = c1f1(pn) + · · ·+ crfr(pn) = c1f1(p)f1(n) + · · ·+ crfs(p)fr(n),

and we may omit any fi(n) arising from an Eisenstein series Eε,ψ
k (tz) with t > 1 or from

a non-newform (since (n,N) = 1 and t | N , the omitted coefficients are 0 and will have
no effect on a(pn)). By Lemma 2.4, we must have that each cifi(p) = 0. Now, fi(p) may
be zero for some i, but in that case we necessarily have that fi(p

2) 6= 0 (this follows from
the Euler product expansion in the case of a cusp form and by a direct computation in
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the case of Eisenstein series, which can only have this property if k = 1). Thus, by also

considering a(p2n), we see that each ci not arising from an Eε,ψ
k (tz) or a non-newform must

be 0. Iteratively letting t be the smallest divisor of N not yet considered and repeating the
argument above for a(tpn) and a(tp2n), we see that all ci = 0, whence f(z) = 0 identically.

In the case that the weight is half-integral, we may still choose as a basis of the cusp space
a sequence of Hecke eigenforms, but we no longer know that there is a basis of the Eisenstein
space with multiplicative Fourier coefficients. We proceed, therefore, to show that f(z) is a
cusp form. The argument in the integer weight case then applies, showing that f(z) = 0.

Consider the image of f(z) under the Shimura map Sλ,τ : Mλ+ 1
2
(Γ1(N)) → M2λ(Γ1(N)),

where λ := k − 1/2 and τ is any squarefree positive integer (often, this map is only defined
for the cusp-space; see, for example, work of Jagathesan and Manickam [6] on extensions of
this). If f(z) =

∑
a(n)qn, the non-constant terms of Sλ,τ (f(z)) =

∑
b(n)qn =: F (z) are

given by the Dirichlet series formula [10, Theorem 3.14]

∞∑
n=1

b(n)n−s = L(s+ 1− λ, χτ )
∞∑
n=1

a(τn2)n−s,

where χτ is a Dirichlet character. Hence, we have that

b(n) =
∑
d|n

dλ−1χτ (d)a

(
τn2

d2

)
.

In particular if (p, n) = 1, then

b(pmn) =
∑
d|pmn

dλ−1χτ (d)a

(
τp2mn2

d2

)

=
∑
d|n

(pmd)λ−1χτ (p
md)a

(
τn2

d2

)
= pm(λ−1)χτ (p

m)b(n),

since a(pr) = 0 for any r. Let F0(z) denote the projection of F (z) into the Eisenstein space
of M2λ(Γ1(N)). We can express F0(z) as

(2.6) F0(z) =
∑
(ε,ψ,t)

aε,ψ,tE
ε,ψ
2λ (tz),

where we are summing over all triples (ε, ψ, t) such that ε and ψ are primitive characters of
conductor dividing N and t is any divisor of N (thus, we include triples (ε, ψ, t) which do
not arise in A2λ,N). We require that aε,ψ,t = 0 when (ε, ψ, t) 6∈ A2λ,N , unless λ = 1, where

we let a1,1,1 absorb the coefficients of E1,1
2 (z) arising from the terms E1,1,t

2 (z) in the basis
expansion of the Eisenstein space of M2(Γ1(N)). We then have that, if (n, pN) = 1,

b(pmn) =
∑
ε,ψ

aε,ψ,1σ
ε,ψ
2λ−1(p

mn) +O
(
(pmn)λ−1/2+ε

)
by Deligne’s bound. Similarly, we also have for such n that

b(n) =
∑
ε,ψ

aε,ψ,1σ
ε,ψ
2λ−1(n) +O

(
nλ−1/2+ε

)
.
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Since b(pmn) = pm(λ−1)χτ (p
m)b(n), we must have that

(2.7)
∑
ε,ψ

ãε,ψσ
ε,ψ
2λ−1(n) = O

(
(pmn)λ−1/2+ε

)
,

where

ãε,ψ = aε,ψ,1 · (σε,ψ2λ−1(p
m)− pm(λ−1)χτ (p

m)).

Let n = `1`2, where `1 and `2 are large primes such that `2 � `
1/2
1 . Then (2.5) implies that

σε,ψ2λ−1(`1`2) = (ψ(`1)`
2λ−1
1 + ε(`1)) · (ψ(`2)`

2λ−1
2 + ε(`2))

= ψ(`1)ψ(`2)(`1`2)
2λ−1 + ψ(`1)ε(`2)`

2λ−1
1 +O

(
`
λ−1/2
1

)
.

Using this in (2.7) and dividing by (`1`2)
2λ−1, we see that∑

ε,ψ

ãε,ψψ(`1)ψ(`2) = O
(
`
−λ+1/2
1 + pm(λ−1/2)+ε`

−λ+1/2+ε
1

)
,

and letting `1 and `2 tend to infinity along fixed arithmetic progressions modulo N , we see
that, in fact, ∑

ε,ψ

ãε,ψψ(`1)ψ(`2) = 0.

Hence, (2.7) and the expansion of σ2λ−1(`1`2) now yield that∑
ε,ψ

ãε,ψψ(`1)ε(`2) = O
(
`
−λ+1/2
1 + pm(λ−1)+ε`

− 1
2
(λ−1/2)+ε

1

)
,

and again letting `1 and `2 tend to infinity along fixed arithmetic progressions, we see that

(2.8)
∑
ε,ψ

ãε,ψψ(`1)ε(`2) = 0.

Since `1 and `2 were chosen to be in arbitrary arithmetic progressions modulo N , this can
be viewed as an equation in terms of the matrix KN ⊗KN , where KN is the φ(N) × φ(N)
matrix whose components are χ(a) as a runs over elements of (Z/NZ)× and χ runs over its
characters. Since KN is invertible (it is the tensor product of Vandermonde matrices arising
from the cyclic factors of (Z/NZ)×), KN ⊗KN is as well. Hence, the only way for (2.8) to
hold is if each ãε,ψ = 0. Recall that

ãε,ψ = aε,ψ,1 · (σε,ψ2λ−1(p
m)− pm(λ−1)χτ (p

m)),

and since σε,ψ2λ−1(p
m) � pm(2λ−1), by considering large enough m, we conclude that each

aε,ψ,1 = 0. By iteratively letting t be the smallest divisor of N not yet considered and
looking at b(tpmn), the above argument shows that each aε,ψ,t = 0. Consequently, we must
have that F0(z) = 0 and F (z) is a cusp form. But since this is true independent of the choice
of τ in the map Sλ,τ , we also have that f(z) is itself a cusp form. We now proceed as in the
integer-weight case. Strictly speaking, the coefficients of half-integer weight eigenforms are
only almost-everywhere multiplicative in square classes (that is, for t squarefree, a(tn2)/a(t)
is multiplicative in n, provided that (n,N) = 1), but by considering each square class
separately, the result follows. �

Before we can prove Theorem 1.2, we need one further lemma.
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Lemma 2.5. The only a = 2i3j which are one less than a square are a = 3, 8, 24, 48, and
288.

Proof. Suppose a = n2− 1 = (n+ 1)(n− 1). If a is odd, then we must have that both n− 1
and n + 1 are powers of 3, and so a = 3. If a is not divisible by 3, then both n − 1 and
n+ 1 must be powers of 2, and so a = 8. Lastly, suppose that a is divisible by both 2 and 3.
Since both n− 1 and n+ 1 are then required to be even, the pair

(
n−1
2
, n+1

2

)
must be either

(2i−2, 3j) or (3j, 2i−2). It is a classical result due to Levi ben Gerson that the only powers of
2 and 3 which differ by one are (2, 3), (3, 4), and (8, 9). These lead to a = 24, 48, and 288,
respectively. �

Remark. Of course, by Mihăilescu’s resolution of Catalan’s conjecture [9] it is known that
8 and 9 are the only consecutive perfect powers.

3. Proof of Theorem 1.2

We begin by considering a few concrete cases of Theorem 1.1. Although we could prove
Theorem 1.2 without doing so, this allows us to illustrate the constructive approach we shall
take.

Lemma 2.1 and Corollary 2.3 together tell us that if f(z) =
∏

d|N η(dz)rd is an eta-quotient

which is also a theta function θψ(z) of modulus r, then r must be divisible only by the primes
2 and 3, and we may take N = 4r2. Since the coefficients of any eta-quotient are real, we
must also have that ψ is a quadratic character. The key observation which leads to Theorem
1.1 is that if we know the modulus of a quadratic theta function, then we know the first few
terms in its Fourier series, at least up to a sign.

First, we consider whether θ1(z) = 1+2
∑∞

n=1 q
n2

is an eta-quotient. Let η0(z) :=
∏∞

n=1(1−
qn), so that f(z) = qaf

∏
d|N η0(dz)rd , where af =

∑
d|N

drd
24

. In order for f(z) to be equal to

θ1(z), we must have that af = 0, as η0(dz) = 1 +O(qd). In fact, we know more:

(3.1) η0(dz)rd = 1− rdqd +O(q2d).

Consequently, in order for the Fourier expansion of f(z) to match that of

θ1(z) = 1 + 2q + 2q4 + 2q9 +O(q16),

we must have that r1 = −2 or, equivalently, that −2 is the exact power of η(z) dividing f(z)
(we say that η(z)−2 divides f(z)). The Fourier series of η0(z)−2 is given by

η0(z)−2 = 1 + 2q + 5q2 +O(q3),

and since there is no q2 term in the Fourier expansion of θ1(z), we see that η(2z)5 must also
divide f(z) in order to cancel the 5q2 term in the Fourier series for η0(z)−2. This leads us to
consider

η0(2z)5

η0(z)2
= 1 + 2q − 4q5 +O(q6).

Since we now need to add 2q4 to this Fourier expansion, we see that η(4z)−2 must also divide
f(z). We compute that

η0(2z)5

η0(z)2η0(4z)2
= 1 + 2q + 2q4 + 2q9 +O(q16),
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which matches perfectly the Fourier expansion of θ1(z)! Since for f(z) = η(2z)5

η(z)2η(4z)2
, we have

that af = 0, f(z) is a candidate for an eta-quotient representation of θ1(z). One easily
verifies via (2.3) that f(z) is holomorphic, and then the Sturm bound [10, Theorem 2.58]
implies that f(z) = θ1(z).

We now suppose that ψ is a character whose modulus is a positive power of 2 and that
the weight of θψ(z) is 1/2. The Fourier series of θψ(z) must start as

θψ(z) = q ± q9 ± q25 ± q49 +O(q81).

Consequently, with the notation from before, we must have that af = 1, and from (3.1), that
the term η(dz)rd dividing f(z) with smallest d must be either η(8z) or η(8z)−1. We consider
only the first case before turning to the general situation of Theorem 1.2.

The Fourier expansion of η0(8z) is given by

η0(8z) = 1− q8 − q16 +O(q40).

As before, we now see that η(16z)−1 must divide f(z), and

η0(8z)

η0(16z)
= 1− q8 − q24 + q32 +O(q40).

Since the modulus of ψ is a power of 2, the proof of Lemma 2.1 implies that we cannot
change the coefficient of q24, as it would require the level to be divisible by 3. Of course,
this is acceptable, as the coefficient of q25 in the expansion of θψ(z) is permitted to be −1.
Continuing, we see that η(32z) must divide f(z), which leads us to

η0(8z)η0(32z)

η0(16z)
= 1− q8 − q24 + q48 + q80 − q120 − q168 +O(q224),

a very promising Fourier series. We compute that for f(z) = η(8z)η(32z)
η(16z)

, we have that af =

1, f(z) is holomorphic, and f(z) = θχ8(z) where χ8(·) =
(
2
·

)
is a primitive character of

conductor 8.
A priori it is conceivable that there are other theta functions expressible as eta-quotients

divisible by η(8z). However, since we have now reached a Fourier series whose exponents are
supported on the squares, if f(z) were additionally divisible by some η(dz)rd with d > 32
chosen minimally, then we must have both that d is a power of 2, based on the level, and
that d is one less than a square, based on its effect on the Fourier series. But Lemma 2.5
implies that there are no such d, so we have produced the only eta-quotient divisible by
η(8z) which is a theta function.

We now turn to the proof of Theorem 1.2, assuming that f(z) =
∏
η(dz)rd is in Θm for

some m whose only prime factors are 2 and 3. Under the assumption that f(z) is monic, we
must consider two cases: either the Fourier series of f(z) has the form 1 +O(q) or it has the
form q +O(q4).

In the first case, the Fourier expansion has the form 1 + O(q) and we must have that
m = 1 since f(z) is a linear combination of theta functions and the only theta function
whose Fourier expansions begins in this fashion is θ1(z). Lemma 2.1 then tells us that we are
limited to factors η(dz) with d | 144. Unfortunately, we must now split into further cases,
depending on the location of the first non-zero coefficient after the constant term.
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If the Fourier series begins 1− aq + O(q2) with a 6= 0, then we must have that η(z)a is a
factor of f(z). We have that

η0(z)a = 1− aq +
a(a− 3)

2
q2 +O(q3),

and consequently, we must have that η(2z)a2 divides f(z), where a2 = a(a−3)
2

. We then see

that η(3z)a3 must also divide f(z), where a3 = a3−4a
3

. The coefficient of q4 can be arbitrary,

however, so we let η(4z)b denote the power of η(4z) dividing f(z). We then compute the
coefficient of q5 in η0(z)aη0(2z)a2η0(3z)a3η0(4z)b to be

a

(
b− 1

20
a4 +

3

4
a2 − 1

2
a− 6

5

)
.

This coefficient must be 0, since we cannot ‘fix’ it with some η(dz) with d | 144. Since a was
assumed to be non-zero, we see that b is in fact not allowed to be arbitrary. We let a4 be
the required value, namely 1

20
a4 − 3

4
a2 + 1

2
a+ 6

5
. We then continue as before, seeing that we

must have a factor of η(6z)a6 , where a6 = − 1
30
a6 − 1

2
a3 + 8

15
a2 + 2a. The coefficient of q7 is

then

− 2

35
a(a− 1)(a+ 1)(a− 2)(a+ 2)(a2 + 5),

and, again since a 6= 0, we must have that a = ±1,±2.

If a = −2, the above yields that f(z) is divisible by η(2z)5

η(z)2η(4z)2
, which is exactly the eta-

quotient representation of θ1(z) we found earlier. In particular, the exponents in its Fourier
series are supported on the squares, and any additional factor η(dz)rd of f(z) must then have
the property that d is a square. But because of the 2q term in the Fourier series of f(z), this
would introduce a term of order qd+1 in the Fourier series which we cannot change. Since
d + 1 is not a perfect square, we have found the only possible f(z) with a = −2. Similarly,
we find that there is exactly one form in Θ1 for each of a = −1, a = 1, and a = 2:

η(2z)2η(3z)

η(z)η(6z)
,
η(z)η(4z)η(6z)2

η(2z)η(3z)η(12z)
, and

η(z)2

η(2z)
.

If the first non-zero coefficient of f(z) after the constant term is −aq4, the argument
above translates almost exactly to this case, with the modification that q is replaced by q4.
One must argue that there can be no η(9z)r9 factor, but this is clear, as it would introduce
an irreparable q13 in the Fourier expansion. We thus obtain in this case the previous eta-
quotients with z replaced by 4z. Two of these are in Θ1, namely

η(8z)5

η(4z)2η(16z)2
and

η(4z)η(16z)η(24z)2

η(8z)η(12z)η(48z)
.

If the Fourier series starts 1− aq9 +O(q16), we proceed similarly, obtaining two elements

of Θ0
1, namely η(9z)2

η(18z)
and η(18z)5

η(9z)2η(36z)2
. Throughout all of the remaining cases, corresponding

to the first non-constant term being q16, q36, and q144, we obtain exactly two forms whose

coefficients are supported on the squares: η(36z)2

η(72z)
, which is not in Θ1, and η(72z)5

η(36z)2η(144z)2
, which

is in Θ1.
We now consider the case when the Fourier expansion of f(z) has the form q+O(q4). By

Lemma 2.5, the factor η(dz)rd of f(z) with rd 6= 0 and d minimal has d ∈ {3, 8, 24, 48, 288}.
We consider each of these cases in turn.
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If a := r3 6= 0, in order for the Fourier coefficients to cancel properly, we must also have

that η(6z)a2η(9z)a3η(12z)a4η(18z)a5 divides f(z), where a2 = a(a−3)
2

, a3 = a(a−2)(a+2)
3

, a4 =
a(a+2)(a−1)2

4
, and a5 = −a(a−2)(a+2)(a3+4a+15)

30
. The coefficient of q21 in the Fourier expansion

of the corresponding f(z) is

− 2

35
a(a− 1)(a+ 1)(a− 2)(a+ 2)(a2 + 5),

from which we see that a must be one of ±1,±2. These give rise to

η(3z)2η(12z)2

η(6z)
,
η(3z)η(18z)2

η(6z)η(9z)
,
η(6z)2η(9z)η(36z)

η(3z)η(12z)η(18z)
, and

η(6z)5

η(3z)2
.

As before, one verifies that each of these is in some Θm, and no additional factors η(dz)rd

can be added to each of these eta-quotients while maintaining the property that the Fourier
coefficients are supported on the squares.

If r3 = 0 and a := r8 6= 0, then we must also have that η(16z)a2η(24z)bη(32z)a4 divides

f(z), where a2 = a(a−3)
2

, b is arbitrary, and a4 = ab − 1
12
a4 + 7

12
a2 + 1

2
a. Requiring the

coefficient of q40 to be 0 (as we are not permitted to change it), we must have that

b =
2a4 − 20a2 + 18

15a
.

Since b is an integer, we have that a | 18, and one observes that the above is an integer only
for a | 6. If a = ±1, we find the two forms

η(8z)η(32z)

η(16z)
and

η(16z)2

η(8z)
,

both of which are theta functions. Any factors of η(48z) or η(288z) would introduce ir-
reparable coefficients, so these are all the forms arising from a = ±1. If a = ±2, we find

η(8z)2η(48z)

η(16z)η(24z)
and

η(16z)5η(24z)η(96z)

η(8z)2η(32z)2η(48z)2
,

the first of which is in Θ0
2, the second of which is also a form of some interest, namely

θχ(z) + 3θχ(9z) where χ(n) =
(
2
n

)
, but the Serre-Stark basis theorem [13] implies that it

cannot lie in any Θm. If a = ±3, we obtain the forms

η(8z)3 and
η(16z)9

η(8z)3η(32z)3
,

both of which are theta functions. Lastly, if a = ±6, we obtain no forms, eventually running
into a non-zero coefficient of q88.

We now suppose that η(24z)aη(48z)b is the smallest divisor of f(z). We consider these
two variables, since either coefficient can be arbitrary. Consequently, we permit one, but not
both, of a and b to be 0. We proceed as before, eventually finding potentially problematic
coefficients of q240 and q264, say A1 and A2, respectively. Both A1 and A2 are polynomials
in a and b, whose degrees in a are 10 and 11, respectively, and whose degrees in b are both
5. A1 is irreducible, whereas A2 has a factor of a and is otherwise irreducible. Substituting
a = 0 into A1, we find that we must have b(b4− 6) = 0, which cannot hold since we assumed
that not both a and b are 0. Now, we compute the resultant in b of A1 and A2/a. This yields
a degree 50 polynomial in a whose only rational roots are a = 1, a = −1, a = 5, and a = −5,
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which yield that b = 0 or −2, b = 1 or 3, b = −2, and b = 13, respectively. These yield the

forms η(24z), η(24z)η(96z)η(144z)5

η(48z)2η(72z)2η(288z)2
, η(48z)η(72z)

2

η(24z)η(144z)
, η(48z)3

η(24z)η(96z)
, η(24z)

5

η(48z)2
, and η(48z)13

η(24z)5η(96z)5
.

Finally, we suppose that η(288z)a is the smallest divisor of f(z). We then must also have
that

η(576z)a2η(864z)a3η(1152z)a4

divides f(z), where a2 = a(a−3)
2

, a3 = a(a−2)(a+2)
3

, and a4 = a(a+2)(a−1)2
4

. The coefficient of

q1440 is 1
5
a(a4 − 6), which is non-zero, and so there are no such f(z). This finishes the proof

of Theorem 1.2.

References

[1] V. Blomer and G. Harcos. Hybrid bounds for twisted L-functions. J. Reine Angew. Math., 621:53–79,
2008.

[2] K. Bringmann and K. Ono. Coefficients of harmonic weak maass forms. Proc. of the 2008 Univ. of Flor.
Conf., accepted for publication.

[3] J. H. Bruinier, G. van der Geer, G. Harder, and D. Zagier. The 1-2-3 of modular forms. Universi-
text. Springer-Verlag, Berlin, 2008. Lectures from the Summer School on Modular Forms and their
Applications held in Nordfjordeid, June 2004, Edited by Kristian Ranestad.

[4] F. Diamond and J. Shurman. A first course in modular forms, volume 228 of Graduate Texts in Math-
ematics. Springer-Verlag, New York, 2005.

[5] D. Dummit, H. Kisilevsky, and J. McKay. Multiplicative products of η-functions. In Finite groups—
coming of age (Montreal, Que., 1982), volume 45 of Contemp. Math., pages 89–98. Amer. Math. Soc.,
Providence, RI, 1985.

[6] T. Jagathesan and M. Manickam. On Shimura correspondence for non-cusp forms of half-integral weight.
J. Ramanujan Math. Soc., 23(3):211–222, 2008.

[7] Y. Martin. Multiplicative η-quotients. Trans. Amer. Math. Soc., 348(12):4825–4856, 1996.
[8] G. Mersmann. Holomorphe η-produkte und nichtverschwindende ganze modulformen für γ0(n). Master’s

Thesis, Univ. of Bonn, 1991.
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