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Abstract. Let χ be a non-trivial character of F×q , and let g(χ) be its associated Gauss sum.
It is well known that g(χ) = ε(χ)

√
q, where |ε(χ)| = 1. Using the p-adic gamma function,

we give a new proof of a result of Evans which gives necessary and sufficient conditions for
ε(χ) to be a root of unity.

1. Introduction and statement of results

Let p > 2 be a prime, and let q = pf for some f ≥ 1. Let ψ : Fp → C× be a non-trivial
additive character, and let χ : F×q → C× be a non-trivial multiplicative character. The Gauss
sum g(χ) = g(χ, ψ) associated to χ is given by

(1.1) g(χ) :=
∑
x∈F×q

χ(x)ψ(tr(x)),

where tr(x) := x + xp + . . . + xpf−1
. The determination of g(χ) is of central importance

in analytic number theory as it reflects both the multiplicative and additive structure of
Fq. Classical arguments show that |g(χ)| =

√
q. On the other hand, the quantity ε(χ) :=

g(χ)/
√
q has only been determined for χ of certain orders (see [1] for a comprehensive

treatment of recent results). Motivated by observations of Zagier, we determine when ε(χ)
is a root of unity.

Theorem 1.1. Let χ : F×q → C× be a multiplicative character of order m and let r be the
order of p modulo m. The quantity ε(χ) is a root of unity if and only if for every integer t
coprime to m we have that

(1.2)
r−1∑
i=0

tpi =
rm

2
,

where tpi denotes the canonical representative of tpi modulo m in [0, . . . ,m− 1].

Remark. After this work was done, the author learned that Theorem 1.1 was first obtained
by Evans [2]. Evans’s proof used Stickelberger’s relation on the decomposition of g(χ) into
prime ideals (see [4]). An equivalent condition, essentially (2.5) below, was later obtained
by Yang and Zheng [5], again using Stickelberger’s relation. We give a different proof, one
based on a deep theorem of Gross and Koblitz [3] relating Gauss sums to the p-adic gamma
function.

2. Proof of Theorem 1.1

In Section 2.1 we begin by defining the p-adic gamma function Γp(z). We then state the
Gross-Koblitz formula, which relates Gauss sums over a finite field to a product of values of
Γp(z). In Section 2.2 we apply the Gross-Koblitz formula to prove Theorem 1.1.
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2.1. The Gross-Koblitz formula. Let p > 2 be a prime and q = pf for some f ≥ 1. The
p-adic gamma function Γp(z) : Zp → Z×p is defined by

(2.1) Γp(z) := lim
m→z
m∈Z

(−1)m
∏
j<m

(j,p)=1

j.

Let ωf : F×q → C× be the Teichmüller character of Fq, ψ : Fp → C× be a non-trivial
additive character, and ζp = ψ(1). Let π ∈ Qp(ζp) be the unique element satisfying both
πp−1 = −p and ζp ≡ 1 + π (mod π2). For integers 0 ≤ a < q − 1, the Gauss sum g(ω−a

f ) is
defined by

(2.2) g(ω−a
f ) := −

∑
x∈F×q

ω−a
f (x)ψ(tr(x)),

where tr(x) := x+ xp + . . .+ xpf−1
. The Gross-Koblitz formula [3] states that

(2.3) g(ω−a
f ) = πS(a)

f−1∏
j=0

Γp

({
apj

q − 1

})
,

where S(a) denotes the sum of digits in the base p expansion of a and, for any x ∈ R,
{x} := x− bxc denotes the fractional part of x.

2.2. Proof of Theorem 1.1. Let χ be a multiplicative character of F×q of order m. There

is a unique a such that 0 ≤ a < q − 1 and χ = ω−a
f . Since g(χ) ∈ Q(ζp, ζq−1), ε(χ) is a root

of unity if and only if g(χ)2p(q−1) = qp(q−1). The Gross-Koblitz formula (2.3) yields that

(2.4) g(χ)2p(q−1) = p2p(q−1)S(a)/(p−1)

(
f−1∏
j=0

Γp

({
apj

q − 1

}))2p(q−1)

,

and by comparing the p-adic valuation of both sides, we see that a necessary condition for

ε(χ) to be a root of unity is S(a) = f(p−1)
2

. In fact, if χ′ is another character of F×q of order
m, then there is an element of Gal(Q(ζp, ζm)) taking g(χ) to g(χ′). Hence, ε(χ) is a root of
unity if and only if ε(χ′) is. Thus, if ε(χ) is a root of unity, for all t coprime to m we have
that

(2.5) S(ta
(q−1)

) =
f(p− 1)

2
,

where ta
(q−1)

is the canonical reduction of ta modulo q − 1. This condition will prove to be
sufficient. To see this, we begin by reinterpreting the sum of digits function S(a).

Lemma 2.1. For any 0 ≤ b < q − 1, we have that

f−1∑
j=0

{
bpj

q − 1

}
=

S(b)

p− 1
.

Proof. Write b =
∑f−1

i=0 bip
i. For any 0 ≤ j ≤ f − 1, we observe that bpj ≡ b(j) (mod q − 1)

where 0 ≤ b(j) < q − 1 is the j-th iterate of the cyclic permutation on the base p digits of b.
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Hence, we have that
f−1∑
j=0

{
bpj

q − 1

}
=

1

q − 1

f−1∑
j=0

b(j)

=
S(b)

p− 1
.

�

Write a = t0(a, q − 1) for some t0 coprime to m. Since m = q−1
(a,q−1)

, we have that{
apj

q − 1

}
=

{
t0p

j

m

}
=
t0pj

m
,

whence

(2.6)

f−1∑
j=0

{
apj

q − 1

}
=
f

r

r−1∑
j=0

t0pj

m
,

where tpj is the reduction of tpj modulo m. Hence, by Lemma 2.1, (2.5) holds for t coprime
to m if and only if we have that

(2.7)
r−1∑
j=0

tpj =
rm

2
.

This establishes the necessity of (1.2) in the statement of Theorem 1.1. Sufficiency follows
immediately from a result of Gross and Koblitz [3]: If {a1, . . . , ak, n1, . . . , nk} is a set of

integers such that, for all u coprime to m,
∑k

i=1 ni · uai is an integer independent of u, then

the product
∏k

i=1

∏f−1
j=0 Γp

(
aipj

m

)ni

is a root of unity.
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