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ABSTRACT. Let x be a non-trivial character of F, and let g(x) be its associated Gauss sum.
It is well known that g(x) = €(x)/q, where |e(x)| = 1. Using the p-adic gamma function,
we give a new proof of a result of Evans which gives necessary and sufficient conditions for
e(x) to be a root of unity.

1. INTRODUCTION AND STATEMENT OF RESULTS

Let p > 2 be a prime, and let ¢ = p/ for some f > 1. Let ¢ : F, — C* be a non-trivial
additive character, and let x : ;Y — C* be a non-trivial multiplicative character. The Gauss
sum g(x) = g(x, ¢) associated to y is given by

(1.1) g(x) ==Y x(@)v(tr(x)),

xEF;

where tr(z) := z +2? + ... + 2’ '. The determination of g(x) is of central importance
in analytic number theory as it reflects both the multiplicative and additive structure of
IF,. Classical arguments show that |g(x)| = /¢. On the other hand, the quantity e(x) :=
9(x)/+/q has only been determined for x of certain orders (see [1] for a comprehensive
treatment of recent results). Motivated by observations of Zagier, we determine when ()
is a root of unity.

Theorem 1.1. Let x : Iy — C* be a multiplicative character of order m and let r be the
order of p modulo m. The quantity £(x) is a root of unity if and only if for every integer t
coprime to m we have that

r—1

—
1.2 pt = —
(1.2) ) =5
=0
where tpi denotes the canonical representative of tp' modulo m in 0,...,m—1].

Remark. After this work was done, the author learned that Theorem 1.1 was first obtained
by Evans [2]. Evans’s proof used Stickelberger’s relation on the decomposition of g(y) into
prime ideals (see [4]). An equivalent condition, essentially (2.5) below, was later obtained
by Yang and Zheng [5], again using Stickelberger’s relation. We give a different proof, one
based on a deep theorem of Gross and Koblitz [3] relating Gauss sums to the p-adic gamma
function.

2. PROOF OF THEOREM 1.1

In Section 2.1 we begin by defining the p-adic gamma function I',(z). We then state the
Gross-Koblitz formula, which relates Gauss sums over a finite field to a product of values of

I',(2). In Section 2.2 we apply the Gross-Koblitz formula to prove Theorem 1.1.
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2.1. The Gross-Koblitz formula. Let p > 2 be a prime and ¢ = p/ for some f > 1. The
p-adic gamma function ['y(2) : Z, — Z is defined by

(2.1) Ty(z) = lim (=)™ [] 4

m—>z
meZ j<m
(4,p)=1

Let wy : Y — C* be the Teichmiiller character of Fy, ¢ : F, — C* be a non-trivial
additive character and ¢, = ¥(1). Let 7 € Q,((,) be the unique element satisfying both
w1 = —pand (, =1+ 7 (mod 7?). For integers 0 < a < ¢ — 1, the Gauss sum g(wy®) is
defined by

(2.2) 9w == Y wit @)y (te()),

xeF?

where tr(z) := 4+ 2”4+ ... + 2?’ ", The Gross-Koblitz formula [3] states that

R (E)]

where S(a) denotes the sum of digits in the base p expansion of a and, for any = € R,
{z} := x — |z] denotes the fractional part of .

2.2. Proof of Theorem 1.1. Let x be a multiplicative character of Fy* of order m. There
is a unique @ such that 0 <a < ¢—1and xy = w;*. Since g(x) € Q(¢p, 4-1), €(X) is a root
of unity if and only if g(x)*@~Y = ¢?@@~. The Gross-Koblitz formula (2.3) yields that

2p(g—1)

/1 -
9p(a—1) _ , 2p(q—1)S(a)/(p—1) ap’
o e i ()

=0

and by comparing the p-adic valuation of both sides, we see that a necessary condition for
£(x) to be a root of unity is S(a) = £ (p Y In fact, if y/ is another character of F; of order
m, then there is an element of Gal(Q(Cp, Cm)) taking g() to g(x’). Hence, €(x) is a root of
unity if and only if (x’) is. Thus, if e(x) is a root of unity, for all ¢ coprime to m we have
that

(2.5) sae ) = 22l

where 7" is the canonical reduction of ta modulo q — 1. This condition will prove to be
sufficient. To see this, we begin by reinterpreting the sum of digits function S(a).

Lemma 2.1. For any 0 < b < q— 1, we have that

3 l{q—l} z;gib)l'

Proof. Write b = Z{:_Ol bip'. For any 0 < j < f — 1, we observe that bp’ = b (mod ¢ — 1)
where 0 < b¥) < ¢ — 1 is the j-th iterate of the cyclic permutation on the base p digits of b.

L[]
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Hence, we have that

S {bi} L )
7=0 4= 1 4= 1 7=0
()
= o1

-1

Write a = ty(a,q — 1) for some ¢ty coprime to m. Since m = (aqq——1)7 we have that

{W}_{to_pj}_@
g—1f 1 m | m’
whence

— [ ap |ty
SR

J=0 ¢—1

where tp7 is the reduction of tp’ modulo m. Hence, by Lemma 2.1, (2.5) holds for t coprime
to m if and only if we have that

\z
I
—

rm

(2.7) tpl = -

J

Il
o

This establishes the necessity of (1.2) in the statement of Theorem 1.1. Sufficiency follows
immediately from a result of Gross and Koblitz [3]: If {aq,...,ax,n1,...,nx} is a set of

integers such that, for all u coprime to m, Zle n; - ua; is an integer independent of u, then
the product [T}, Hj:& I, (“;sj) is a root of unity.
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