Bounds on the number of number fields of given degree and bounded discriminant

Robert J. Lemke Oliver Tufts University

(joint w/ Frank Thorne)

Preprint: https://arxiv.org/abs/2005.14110

Slides: https://rlemke01.math.tufts.edu/slides/nf-bounds.pdf

A number field K of degree n is formed by an irreducible poly.:

$$K := \mathbb{Q}[x]/(f(x)) \simeq \mathbb{Q}(\alpha)$$

A number field K of degree n is formed by an irreducible poly.:

$$K := \mathbb{Q}[x]/(f(x)) \simeq \mathbb{Q}(\alpha)$$

Central Question: How many degree n number fields are there $w/\operatorname{Disc}(K) \leq X$?

A number field K of degree n is formed by an irreducible poly.:

$$K := \mathbb{Q}[x]/(f(x)) \simeq \mathbb{Q}(\alpha)$$

Central Question: How many degree n number fields are there $w/\operatorname{Disc}(K) \leq X$?

Conjecture: $\sim c_n X$ as $X \to \infty$

A number field K of degree n is formed by an irreducible poly.:

$$K := \mathbb{Q}[x]/(f(x)) \simeq \mathbb{Q}(\alpha)$$

Central Question: How many degree n number fields are there $w/\operatorname{Disc}(K) \leq X$?

Conjecture: $\sim c_n X$ as $X \to \infty$

Open Problem: How many degree 6 number fields are there w/ $\operatorname{Disc}(K) \leq X$?

A number field K of degree n is formed by an irreducible poly.:

$$K := \mathbb{Q}[x]/(f(x)) \simeq \mathbb{Q}(\alpha)$$

Central Question: How many degree n number fields are there $w/\operatorname{Disc}(K) \leq X$?

Conjecture: $\sim c_n X$ as $X \to \infty$

Open Problem: How many degree 6 number fields are there w/ $\mathrm{Disc}(K) \leq X$?

Best known upper bound: $O(X^2)$

Theorem (Hilbert Irreducibility)

"100% of monic integer polynomials of degree n are irreducible."

Theorem (Hilbert Irreducibility)

"100% of monic integer polynomials of degree n are irreducible."

True for $f(x) = x^n + a_1 x^{n-1} + \cdots + a_n$ with:

• each $|a_i| \leq H$, as $H \to \infty$;

Theorem (Hilbert Irreducibility)

"100% of monic integer polynomials of degree n are irreducible."

True for $f(x) = x^n + a_1 x^{n-1} + \cdots + a_n$ with:

- each $|a_i| \leq H$, as $H \to \infty$;
- each $|a_i| \leq H^i$, as $H \to \infty$.

Theorem (Hilbert Irreducibility)

"100% of monic integer polynomials of degree n are irreducible."

True for $f(x) = x^n + a_1 x^{n-1} + \cdots + a_n$ with:

- each $|a_i| \leq H$, as $H \to \infty$;
- each $|a_i| \leq H^i$, as $H \to \infty$.

(Lots of other cases/families too!)

Theorem (Hilbert Irreducibility)

"100% of monic integer polynomials of degree n are irreducible."

True for $f(x) = x^n + a_1 x^{n-1} + \cdots + a_n$ with:

- each $|a_i| \leq H$, as $H \to \infty$;
- each $|a_i| \leq H^i$, as $H \to \infty$.

(Lots of other cases/families too!)

Naive thought: If it's easy to write down irreducible polynomials, shouldn't it be easy to write down number fields?

Let \mathcal{O}_K be the ring of integers of K.

Let \mathcal{O}_K be the ring of integers of K. Then

 $\operatorname{Disc}(K) := \operatorname{Disc}(\mathcal{O}_K).$

Let \mathcal{O}_K be the ring of integers of K. Then

$$\operatorname{Disc}(K) := \operatorname{Disc}(\mathcal{O}_K).$$

If
$$\mathcal{O}_K = \mathbb{Z}[\alpha]$$
, then $\mathrm{Disc}(\mathcal{O}_K) = \mathrm{Disc}(f_\alpha(x))$.

Let \mathcal{O}_K be the ring of integers of K. Then

$$\operatorname{Disc}(K) := \operatorname{Disc}(\mathcal{O}_K).$$

If
$$\mathcal{O}_K = \mathbb{Z}[\alpha]$$
, then $\mathrm{Disc}(\mathcal{O}_K) = \mathrm{Disc}(f_\alpha(x))$.

Problem: Usually $\mathcal{O}_K \neq \mathbb{Z}[\alpha]$ for any $\alpha!$

Let \mathcal{O}_K be the ring of integers of K. Then

$$\operatorname{Disc}(K) := \operatorname{Disc}(\mathcal{O}_K).$$

If
$$\mathcal{O}_K = \mathbb{Z}[\alpha]$$
, then $\mathrm{Disc}(\mathcal{O}_K) = \mathrm{Disc}(f_\alpha(x))$.

Problem: Usually $\mathcal{O}_K \neq \mathbb{Z}[\alpha]$ for any $\alpha!$

Definition: If $\mathcal{O}_K = \mathbb{Z}[\alpha]$ for some α , K is called monogenic.

Let \mathcal{O}_K be the ring of integers of K. Then

$$\operatorname{Disc}(K) := \operatorname{Disc}(\mathcal{O}_K).$$

If
$$\mathcal{O}_K = \mathbb{Z}[\alpha]$$
, then $\mathrm{Disc}(\mathcal{O}_K) = \mathrm{Disc}(f_\alpha(x))$.

Problem: Usually $\mathcal{O}_K \neq \mathbb{Z}[\alpha]$ for any $\alpha!$

Definition: If $\mathcal{O}_K = \mathbb{Z}[\alpha]$ for some α , K is called monogenic.

Typically, K is **not** monogenic

Let \mathcal{O}_K be the ring of integers of K. Then

$$\operatorname{Disc}(K) := \operatorname{Disc}(\mathcal{O}_K).$$

If
$$\mathcal{O}_K = \mathbb{Z}[\alpha]$$
, then $\mathrm{Disc}(\mathcal{O}_K) = \mathrm{Disc}(f_\alpha(x))$.

Problem: Usually $\mathcal{O}_K \neq \mathbb{Z}[\alpha]$ for any $\alpha!$

Definition: If $\mathcal{O}_K = \mathbb{Z}[\alpha]$ for some α , K is called monogenic.

Typically, K is **not** monogenic $\Rightarrow \mathcal{O}_K = \mathbb{Z}[\alpha_1, \dots, \alpha_m]$

Let \mathcal{O}_K be the ring of integers of K. Then

$$\operatorname{Disc}(K) := \operatorname{Disc}(\mathcal{O}_K).$$

If
$$\mathcal{O}_K = \mathbb{Z}[\alpha]$$
, then $\mathrm{Disc}(\mathcal{O}_K) = \mathrm{Disc}(f_\alpha(x))$.

Problem: Usually $\mathcal{O}_K \neq \mathbb{Z}[\alpha]$ for any $\alpha!$

Definition: If $\mathcal{O}_K = \mathbb{Z}[\alpha]$ for some α , K is called monogenic.

Typically, K is **not** monogenic $\Rightarrow \mathcal{O}_K = \mathbb{Z}[\alpha_1, \dots, \alpha_m]$ $\Rightarrow \operatorname{Disc}(K)$ more complicated (need all α_i , not just one)

Let \mathcal{O}_K be the ring of integers of K. Then

$$\operatorname{Disc}(K) := \operatorname{Disc}(\mathcal{O}_K).$$

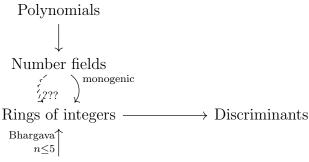
If
$$\mathcal{O}_K = \mathbb{Z}[\alpha]$$
, then $\mathrm{Disc}(\mathcal{O}_K) = \mathrm{Disc}(f_\alpha(x))$.

Problem: Usually $\mathcal{O}_K \neq \mathbb{Z}[\alpha]$ for any $\alpha!$

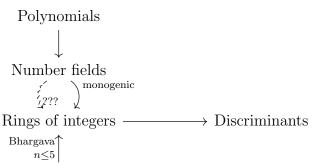
Definition: If $\mathcal{O}_K = \mathbb{Z}[\alpha]$ for some α , K is called monogenic.

Typically, K is **not** monogenic $\Rightarrow \mathcal{O}_K = \mathbb{Z}[\alpha_1, \dots, \alpha_m]$ $\Rightarrow \operatorname{Disc}(K)$ more complicated (need all α_i , not just one)

Example: $K = \mathbb{Q}[x]/(x^3 + 4x^2 + 3x + 8)$ needs m = 2

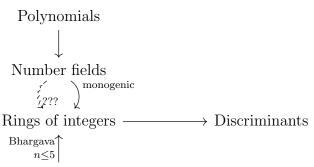


Prehomogeneous vector spaces



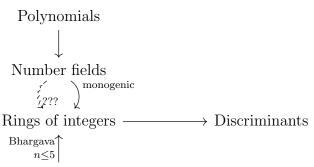
Prehomogeneous vector spaces

Key Obstacle: We "run out" of prehomogeneous vector spaces



Prehomogeneous vector spaces

Key Obstacle: We "run out" of prehomogeneous vector spaces \Rightarrow No direct route to discriminants for $n \ge 6$.



Prehomogeneous vector spaces

Key Obstacle: We "run out" of prehomogeneous vector spaces \Rightarrow No direct route to discriminants for $n \ge 6$.

Upshot: We have to settle for upper and lower bounds when $n \ge 6$

For $n \geq 2$, let $N_n(X) := \#\{K/\mathbb{Q} : [K:\mathbb{Q}] = n, |\mathrm{Disc}(K)| \leq X\}.$

For $n \geq 2$, let $N_n(X) := \#\{K/\mathbb{Q} : [K:\mathbb{Q}] = n, |\mathrm{Disc}(K)| \leq X\}.$

Conjecture: $N_n(X) \sim c_n X$ for some $c_n > 0$.

For $n \geq 2$, let $N_n(X) := \#\{K/\mathbb{Q} : [K : \mathbb{Q}] = n, |\mathrm{Disc}(K)| \leq X\}$.

Conjecture: $N_n(X) \sim c_n X$ for some $c_n > 0$.

Known only for $n \le 5$. (Davenport–Heilbronn; Bhargava)

For $n \geq 2$, let $N_n(X) := \#\{K/\mathbb{Q} : [K : \mathbb{Q}] = n, |\mathrm{Disc}(K)| \leq X\}$.

Conjecture: $N_n(X) \sim c_n X$ for some $c_n > 0$.

Known only for $n \le 5$. (Davenport–Heilbronn; Bhargava)

Lower bounds: $N_n(X) \gg_n X^{\frac{1}{2} + \frac{1}{n}}$.

For $n \geq 2$, let $N_n(X) := \#\{K/\mathbb{Q} : [K : \mathbb{Q}] = n, |\mathrm{Disc}(K)| \leq X\}$.

Conjecture: $N_n(X) \sim c_n X$ for some $c_n > 0$.

Known only for $n \le 5$. (Davenport–Heilbronn; Bhargava)

Lower bounds: $N_n(X) \gg_n X^{\frac{1}{2} + \frac{1}{n}}$.

Uses monogenic fields. (Bhargava-Shankar-Wang)

For $n \geq 2$, let $N_n(X) := \#\{K/\mathbb{Q} : [K : \mathbb{Q}] = n, |\mathrm{Disc}(K)| \leq X\}$.

Conjecture: $N_n(X) \sim c_n X$ for some $c_n > 0$.

Known only for $n \le 5$. (Davenport–Heilbronn; Bhargava)

Lower bounds: $N_n(X) \gg_n X^{\frac{1}{2} + \frac{1}{n}}$.

Uses monogenic fields. (Bhargava-Shankar-Wang)

Upper bounds: This talk!

For $n \geq 2$, let $N_n(X) := \#\{K/\mathbb{Q} : [K : \mathbb{Q}] = n, |\mathrm{Disc}(K)| \leq X\}$.

Conjecture: $N_n(X) \sim c_n X$ for some $c_n > 0$.

Known only for $n \le 5$. (Davenport–Heilbronn; Bhargava)

Lower bounds: $N_n(X) \gg_n X^{\frac{1}{2} + \frac{1}{n}}$.

Uses monogenic fields. (Bhargava–Shankar–Wang)

Upper bounds: This talk!

Much further from expected answer.

For $n \geq 2$, let $N_n(X) := \#\{K/\mathbb{Q} : [K : \mathbb{Q}] = n, |\mathrm{Disc}(K)| \leq X\}$.

Conjecture: $N_n(X) \sim c_n X$ for some $c_n > 0$.

Known only for $n \leq 5$. (Davenport–Heilbronn; Bhargava)

Lower bounds: $N_n(X) \gg_n X^{\frac{1}{2} + \frac{1}{n}}$.

Uses monogenic fields. (Bhargava–Shankar–Wang)

Upper bounds: This talk!

Much further from expected answer.

Previous work of Schmidt, Ellenberg-Venkatesh, Couveignes.

Recall: $N_n(X) := \#\{K/\mathbb{Q} : [K : \mathbb{Q}] = n, |\mathrm{Disc}(K)| \le X\}$

• **Schmidt** (1995): $N_n(X) \ll_n X^{\frac{n+2}{4}}$.

Recall: $N_n(X) := \#\{K/\mathbb{Q} : [K : \mathbb{Q}] = n, |\mathrm{Disc}(K)| \le X\}$

- Schmidt (1995): $N_n(X) \ll_n X^{\frac{n+2}{4}}$.
- Ellenberg–Venkatesh (2006): $N_n(X) \ll_n X^{e^{c\sqrt{\log n}}}$.

Recall: $N_n(X) := \#\{K/\mathbb{Q} : [K : \mathbb{Q}] = n, |\operatorname{Disc}(K)| \le X\}$

- Schmidt (1995): $N_n(X) \ll_n X^{\frac{n+2}{4}}$.
- Ellenberg–Venkatesh (2006): $N_n(X) \ll_n X^{e^{c\sqrt{\log n}}}$.
- Couveignes (2019): $N_n(X) \ll_n X^{c(\log n)^3}$.

Recall: $N_n(X) := \#\{K/\mathbb{Q} : [K : \mathbb{Q}] = n, |\operatorname{Disc}(K)| \le X\}$

- Schmidt (1995): $N_n(X) \ll_n X^{\frac{n+2}{4}}$.
- Ellenberg–Venkatesh (2006): $N_n(X) \ll_n X^{e^{c\sqrt{\log n}}}$.
- Couveignes (2019): $N_n(X) \ll_n X^{c(\log n)^3}$.

Theorem (L.O.–Thorne; 2020) $N_n(X) \ll_n X^{c(\log n)^2}$.

Upper bounds on number fields

Recall: $N_n(X) := \#\{K/\mathbb{Q} : [K : \mathbb{Q}] = n, |\operatorname{Disc}(K)| \le X\}$

- Schmidt (1995): $N_n(X) \ll_n X^{\frac{n+2}{4}}$.
- Ellenberg–Venkatesh (2006): $N_n(X) \ll_n X^{e^{c\sqrt{\log n}}}$.
- Couveignes (2019): $N_n(X) \ll_n X^{c(\log n)^3}$.

Theorem (L.O.–Thorne; 2020)
$$N_n(X) \ll_n X^{c(\log n)^2}$$
.

This improves on Schmidt for large n (in fact, $n \ge 95$).

Upper bounds on number fields

Recall: $N_n(X) := \#\{K/\mathbb{Q} : [K : \mathbb{Q}] = n, |\operatorname{Disc}(K)| \le X\}$

- Schmidt (1995): $N_n(X) \ll_n X^{\frac{n+2}{4}}$.
- Ellenberg–Venkatesh (2006): $N_n(X) \ll_n X^{e^{c\sqrt{\log n}}}$.
- Couveignes (2019): $N_n(X) \ll_n X^{c(\log n)^3}$.

Theorem (L.O.–Thorne; 2020)
$$N_n(X) \ll_n X^{c(\log n)^2}$$
.

This improves on Schmidt for large n (in fact, $n \ge 95$).

- AIM (2022+; in progress): Improve Schmidt for all n
 - Lose to LO–Thorne for n sufficiently large (e.g., $n \ge 100$)

Idea: Every field is cut out by a polynomial.

Idea: Every field is cut out by a polynomial.

Question: Given K, what's the "smallest" polynomial $f(x) = x^n + a_1 x^{n-1} + \cdots + a_n$ s.t. $K \simeq \mathbb{Q}(x)/(f(x))$?

Idea: Every field is cut out by a polynomial.

Question: Given K, what's the "smallest" polynomial $f(x) = x^n + a_1 x^{n-1} + \cdots + a_n$ s.t. $K \simeq \mathbb{Q}(x)/(f(x))$?

Factoring $f(x) = (x - \alpha_1) \dots (x - \alpha_n)$ over \mathbb{C} ,

Idea: Every field is cut out by a polynomial.

Question: Given K, what's the "smallest" polynomial $f(x) = x^n + a_1 x^{n-1} + \cdots + a_n$ s.t. $K \simeq \mathbb{Q}(x)/(f(x))$?

Factoring $f(x) = (x - \alpha_1) \dots (x - \alpha_n)$ over \mathbb{C} , we obtain:

Nearly equivalent question: Given K, what's the smallest $\alpha \in \mathcal{O}_K$ measured by $\max\{|\alpha_1|,\ldots,|\alpha_n|\}=:||\alpha||$?

Idea: Every field is cut out by a polynomial.

Question: Given K, what's the "smallest" polynomial $f(x) = x^n + a_1 x^{n-1} + \cdots + a_n$ s.t. $K \simeq \mathbb{Q}(x)/(f(x))$?

Factoring $f(x) = (x - \alpha_1) \dots (x - \alpha_n)$ over \mathbb{C} , we obtain:

Nearly equivalent question: Given K, what's the smallest $\alpha \in \mathcal{O}_K$ measured by $\max\{|\alpha_1|,\ldots,|\alpha_n|\}=:||\alpha||$?

Minkowski embedding: \mathcal{O}_K is a lattice in \mathbb{R}^n ,

Idea: Every field is cut out by a polynomial.

Question: Given K, what's the "smallest" polynomial $f(x) = x^n + a_1 x^{n-1} + \cdots + a_n$ s.t. $K \simeq \mathbb{Q}(x)/(f(x))$?

Factoring $f(x) = (x - \alpha_1) \dots (x - \alpha_n)$ over \mathbb{C} , we obtain:

Nearly equivalent question: Given K, what's the smallest $\alpha \in \mathcal{O}_K$ measured by $\max\{|\alpha_1|,\ldots,|\alpha_n|\}=:||\alpha||$?

Minkowski embedding: \mathcal{O}_K is a lattice in \mathbb{R}^n , covolume $\sqrt{|\mathrm{Disc}(K)|}$,

Idea: Every field is cut out by a polynomial.

Question: Given K, what's the "smallest" polynomial $f(x) = x^n + a_1 x^{n-1} + \cdots + a_n$ s.t. $K \simeq \mathbb{Q}(x)/(f(x))$?

Factoring $f(x) = (x - \alpha_1) \dots (x - \alpha_n)$ over \mathbb{C} , we obtain:

Nearly equivalent question: Given K, what's the smallest $\alpha \in \mathcal{O}_K$ measured by $\max\{|\alpha_1|,\ldots,|\alpha_n|\}=:||\alpha||$?

Minkowski embedding: \mathcal{O}_K is a lattice in \mathbb{R}^n , covolume $\sqrt{|\mathrm{Disc}(K)|}$, shortest vector $\asymp_n 1$,

Idea: Every field is cut out by a polynomial.

Question: Given K, what's the "smallest" polynomial $f(x) = x^n + a_1 x^{n-1} + \cdots + a_n$ s.t. $K \simeq \mathbb{Q}(x)/(f(x))$?

Factoring $f(x) = (x - \alpha_1) \dots (x - \alpha_n)$ over \mathbb{C} , we obtain:

Nearly equivalent question: Given K, what's the smallest $\alpha \in \mathcal{O}_K$ measured by $\max\{|\alpha_1|,\ldots,|\alpha_n|\}=:||\alpha||$?

Minkowski embedding: \mathcal{O}_K is a lattice in \mathbb{R}^n , covolume $\sqrt{|\mathrm{Disc}(K)|}$, shortest vector $\asymp_n 1$,

$$\Rightarrow \exists \alpha \in \mathcal{O}_K \text{ with } ||\alpha|| \ll_n |\mathrm{Disc}(K)|^{\frac{1}{2n-2}}.$$

Just saw $\exists \alpha \in \mathcal{O}_K$ with $||\alpha|| \ll_n |\mathrm{Disc}(K)|^{\frac{1}{2n-2}}$.

Just saw $\exists \alpha \in \mathcal{O}_K$ with $||\alpha|| \ll_n |\operatorname{Disc}(K)|^{\frac{1}{2n-2}}$.

In fact, $\exists \alpha \in \mathcal{O}_K$ with $||\alpha|| \ll_n |\mathrm{Disc}(K)|^{\frac{1}{2n-2}}$ and $\mathrm{Tr}_{K/\mathbb{Q}}(\alpha) = 0$.

Just saw $\exists \alpha \in \mathcal{O}_K \text{ with } ||\alpha|| \ll_n |\operatorname{Disc}(K)|^{\frac{1}{2n-2}}$.

In fact, $\exists \alpha \in \mathcal{O}_K$ with $||\alpha|| \ll_n |\mathrm{Disc}(K)|^{\frac{1}{2n-2}}$ and $\mathrm{Tr}_{K/\mathbb{Q}}(\alpha) = 0$.

Then
$$f_{\alpha}(x) = x^n + a_2 x^{n-2} + \cdots + a_n$$
, with

$$a_i \ll_n |\mathrm{Disc}(K)|^{\frac{i}{2n-2}}$$

Just saw $\exists \alpha \in \mathcal{O}_K \text{ with } ||\alpha|| \ll_n |\operatorname{Disc}(K)|^{\frac{1}{2n-2}}$.

In fact, $\exists \alpha \in \mathcal{O}_K$ with $||\alpha|| \ll_n |\mathrm{Disc}(K)|^{\frac{1}{2n-2}}$ and $\mathrm{Tr}_{K/\mathbb{Q}}(\alpha) = 0$.

Then $f_{\alpha}(x) = x^n + a_2 x^{n-2} + \cdots + a_n$, with

$$a_i \ll_n |\operatorname{Disc}(K)|^{\frac{i}{2n-2}} \leq X^{\frac{i}{2n-2}}.$$

Just saw $\exists \alpha \in \mathcal{O}_K$ with $||\alpha|| \ll_n |\operatorname{Disc}(K)|^{\frac{1}{2n-2}}$.

In fact, $\exists \alpha \in \mathcal{O}_K$ with $||\alpha|| \ll_n |\mathrm{Disc}(K)|^{\frac{1}{2n-2}}$ and $\mathrm{Tr}_{K/\mathbb{Q}}(\alpha) = 0$.

Then $f_{\alpha}(x) = x^n + a_2 x^{n-2} + \cdots + a_n$, with

$$a_i \ll_n |\operatorname{Disc}(K)|^{\frac{i}{2n-2}} \leq X^{\frac{i}{2n-2}}.$$

There are $\ll_n X^{\frac{2}{2n-2}+\cdots+\frac{n}{2n-2}}=X^{\frac{n+2}{4}}$ such polynomials in $\mathbb{Z}[x]$,

Just saw $\exists \alpha \in \mathcal{O}_K$ with $||\alpha|| \ll_n |\operatorname{Disc}(K)|^{\frac{1}{2n-2}}$.

In fact, $\exists \alpha \in \mathcal{O}_K$ with $||\alpha|| \ll_n |\mathrm{Disc}(K)|^{\frac{1}{2n-2}}$ and $\mathrm{Tr}_{K/\mathbb{Q}}(\alpha) = 0$.

Then $f_{\alpha}(x) = x^n + a_2 x^{n-2} + \cdots + a_n$, with

$$a_i \ll_n |\operatorname{Disc}(K)|^{\frac{i}{2n-2}} \leq X^{\frac{i}{2n-2}}.$$

There are $\ll_n X^{\frac{2}{2n-2}+\cdots+\frac{n}{2n-2}}=X^{\frac{n+2}{4}}$ such polynomials in $\mathbb{Z}[x]$, \Rightarrow there are $\ll_n X^{\frac{n+2}{4}}$ fields.

Just saw $\exists \alpha \in \mathcal{O}_K$ with $||\alpha|| \ll_n |\operatorname{Disc}(K)|^{\frac{1}{2n-2}}$.

In fact, $\exists \alpha \in \mathcal{O}_K$ with $||\alpha|| \ll_n |\mathrm{Disc}(K)|^{\frac{1}{2n-2}}$ and $\mathrm{Tr}_{K/\mathbb{Q}}(\alpha) = 0$.

Then $f_{\alpha}(x) = x^n + a_2 x^{n-2} + \cdots + a_n$, with

$$a_i \ll_n |\operatorname{Disc}(K)|^{\frac{i}{2n-2}} \leq X^{\frac{i}{2n-2}}.$$

There are $\ll_n X^{\frac{2}{2n-2}+\cdots+\frac{n}{2n-2}}=X^{\frac{n+2}{4}}$ such polynomials in $\mathbb{Z}[x]$, \Rightarrow there are $\ll_n X^{\frac{n+2}{4}}$ fields.

This is Schmidt's theorem.

Just saw $\exists \alpha \in \mathcal{O}_K$ with $||\alpha|| \ll_n |\operatorname{Disc}(K)|^{\frac{1}{2n-2}}$.

In fact, $\exists \alpha \in \mathcal{O}_K$ with $||\alpha|| \ll_n |\mathrm{Disc}(K)|^{\frac{1}{2n-2}}$ and $\mathrm{Tr}_{K/\mathbb{Q}}(\alpha) = 0$.

Then $f_{\alpha}(x) = x^n + a_2 x^{n-2} + \cdots + a_n$, with

$$a_i \ll_n |\operatorname{Disc}(K)|^{\frac{i}{2n-2}} \leq X^{\frac{i}{2n-2}}.$$

There are $\ll_n X^{\frac{2}{2n-2}+\cdots+\frac{n}{2n-2}}=X^{\frac{n+2}{4}}$ such polynomials in $\mathbb{Z}[x]$, \Rightarrow there are $\ll_n X^{\frac{n+2}{4}}$ fields.

This is Schmidt's theorem.

(Caution: Slight issue: what if $K \neq \mathbb{Q}(\alpha)$?

Just saw $\exists \alpha \in \mathcal{O}_K$ with $||\alpha|| \ll_n |\operatorname{Disc}(K)|^{\frac{1}{2n-2}}$.

In fact, $\exists \alpha \in \mathcal{O}_K$ with $||\alpha|| \ll_n |\mathrm{Disc}(K)|^{\frac{1}{2n-2}}$ and $\mathrm{Tr}_{K/\mathbb{Q}}(\alpha) = 0$.

Then $f_{\alpha}(x) = x^n + a_2 x^{n-2} + \cdots + a_n$, with

$$a_i \ll_n |\operatorname{Disc}(K)|^{\frac{i}{2n-2}} \leq X^{\frac{i}{2n-2}}.$$

There are $\ll_n X^{\frac{2}{2n-2}+\cdots+\frac{n}{2n-2}}=X^{\frac{n+2}{4}}$ such polynomials in $\mathbb{Z}[x]$, \Rightarrow there are $\ll_n X^{\frac{n+2}{4}}$ fields.

This is Schmidt's theorem.

(Caution: Slight issue: what if $K \neq \mathbb{Q}(\alpha)$? Schmidt inducts,

Just saw $\exists \alpha \in \mathcal{O}_K$ with $||\alpha|| \ll_n |\operatorname{Disc}(K)|^{\frac{1}{2n-2}}$.

In fact, $\exists \alpha \in \mathcal{O}_K$ with $||\alpha|| \ll_n |\mathrm{Disc}(K)|^{\frac{1}{2n-2}}$ and $\mathrm{Tr}_{K/\mathbb{Q}}(\alpha) = 0$.

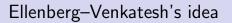
Then $f_{\alpha}(x) = x^n + a_2 x^{n-2} + \cdots + a_n$, with

$$a_i \ll_n |\operatorname{Disc}(K)|^{\frac{i}{2n-2}} \leq X^{\frac{i}{2n-2}}.$$

There are $\ll_n X^{\frac{2}{2n-2}+\cdots+\frac{n}{2n-2}}=X^{\frac{n+2}{4}}$ such polynomials in $\mathbb{Z}[x]$, \Rightarrow there are $\ll_n X^{\frac{n+2}{4}}$ fields.

This is Schmidt's theorem.

(Caution: Slight issue: what if $K \neq \mathbb{Q}(\alpha)$? Schmidt inducts, details not important for this talk.)



What if we instead consider pairs $\alpha, \beta \in \mathcal{O}_K$?

What if we instead consider pairs $\alpha, \beta \in \mathcal{O}_K$?

Bad idea: Could write down $f_{\alpha}(x)$ and $f_{\beta}(x)$ following Schmidt.

What if we instead consider **pairs** $\alpha, \beta \in \mathcal{O}_K$?

Bad idea: Could write down $f_{\alpha}(x)$ and $f_{\beta}(x)$ following Schmidt.

$$f_{\alpha}(x) \iff (\operatorname{Tr}_{K/\mathbb{Q}}(\alpha), \operatorname{Tr}_{K/\mathbb{Q}}(\alpha^2), \dots, \operatorname{Tr}_{K/\mathbb{Q}}(\alpha^n)) \in \mathbb{Z}^n$$

What if we instead consider pairs $\alpha, \beta \in \mathcal{O}_K$?

Bad idea: Could write down $f_{\alpha}(x)$ and $f_{\beta}(x)$ following Schmidt.

$$f_{\alpha}(x) \Longleftrightarrow (\operatorname{Tr}_{K/\mathbb{Q}}(\alpha), \operatorname{Tr}_{K/\mathbb{Q}}(\alpha^2), \dots, \operatorname{Tr}_{K/\mathbb{Q}}(\alpha^n)) \in \mathbb{Z}^n$$

$$f_{\beta}(x) \Longleftrightarrow (\operatorname{Tr}_{K/\mathbb{Q}}(\beta), \operatorname{Tr}_{K/\mathbb{Q}}(\beta^2), \dots, \operatorname{Tr}_{K/\mathbb{Q}}(\beta^n)) \in \mathbb{Z}^n$$

What if we instead consider pairs $\alpha, \beta \in \mathcal{O}_K$?

Bad idea: Could write down $f_{\alpha}(x)$ and $f_{\beta}(x)$ following Schmidt.

$$f_{\alpha}(x) \Longleftrightarrow (\mathrm{Tr}_{K/\mathbb{Q}}(\alpha), \mathrm{Tr}_{K/\mathbb{Q}}(\alpha^2), \dots, \mathrm{Tr}_{K/\mathbb{Q}}(\alpha^n)) \in \mathbb{Z}^n$$

$$f_{\beta}(x) \Longleftrightarrow (\operatorname{Tr}_{K/\mathbb{Q}}(\beta), \operatorname{Tr}_{K/\mathbb{Q}}(\beta^2), \dots, \operatorname{Tr}_{K/\mathbb{Q}}(\beta^n)) \in \mathbb{Z}^n$$

Good idea: Let α and β mingle.

What if we instead consider **pairs** $\alpha, \beta \in \mathcal{O}_K$?

Bad idea: Could write down $f_{\alpha}(x)$ and $f_{\beta}(x)$ following Schmidt.

$$f_{\alpha}(x) \Longleftrightarrow (\mathrm{Tr}_{K/\mathbb{Q}}(\alpha), \mathrm{Tr}_{K/\mathbb{Q}}(\alpha^2), \dots, \mathrm{Tr}_{K/\mathbb{Q}}(\alpha^n)) \in \mathbb{Z}^n$$

$$f_{\beta}(x) \Longleftrightarrow (\operatorname{Tr}_{K/\mathbb{Q}}(\beta), \operatorname{Tr}_{K/\mathbb{Q}}(\beta^2), \dots, \operatorname{Tr}_{K/\mathbb{Q}}(\beta^n)) \in \mathbb{Z}^n$$

Good idea: Let α and β mingle. Consider $\operatorname{Tr}_{K/\mathbb{Q}}(\alpha^i\beta^j) \in \mathbb{Z}$.

Suppose $\alpha, \beta \in \mathcal{O}_K$. Then

$$\operatorname{Tr}_{K/\mathbb{Q}}(\alpha^{i}\beta^{j}) = \alpha_{1}^{i}\beta_{1}^{j} + \alpha_{2}^{i}\beta_{2}^{j} + \dots + \alpha_{n}^{i}\beta_{n}^{j}.$$

Suppose $\alpha, \beta \in \mathcal{O}_K$. Then

$$\operatorname{Tr}_{K/\mathbb{Q}}(\alpha^i\beta^j) = \alpha_1^i\beta_1^j + \alpha_2^i\beta_2^j + \dots + \alpha_n^i\beta_n^j.$$

There are $\binom{n+2}{2} \approx \frac{n^2}{2}$ "mixed traces" $\operatorname{Tr}_{K/\mathbb{Q}}(\alpha^i \beta^j)$ with $i+j \leq n$.

Suppose $\alpha, \beta \in \mathcal{O}_K$. Then

$$\operatorname{Tr}_{K/\mathbb{Q}}(\alpha^i\beta^j) = \alpha_1^i\beta_1^j + \alpha_2^i\beta_2^j + \dots + \alpha_n^i\beta_n^j.$$

There are $\binom{n+2}{2} \approx \frac{n^2}{2}$ "mixed traces" $\operatorname{Tr}_{K/\mathbb{Q}}(\alpha^i \beta^j)$ with $i+j \leq n$.

Idea: If "enough" $\operatorname{Tr}_{K/\mathbb{Q}}(\alpha^i\beta^j)$ are specified, can solve for $\alpha_1,\ldots,\alpha_n,\beta_1,\ldots,\beta_n$.

Suppose $\alpha, \beta \in \mathcal{O}_K$. Then

$$\operatorname{Tr}_{K/\mathbb{Q}}(\alpha^i\beta^j) = \alpha_1^i\beta_1^j + \alpha_2^i\beta_2^j + \dots + \alpha_n^i\beta_n^j.$$

There are $\binom{n+2}{2} \approx \frac{n^2}{2}$ "mixed traces" $\mathrm{Tr}_{K/\mathbb{Q}}(\alpha^i\beta^j)$ with $i+j\leq n$.

Idea: If "enough" $\operatorname{Tr}_{K/\mathbb{Q}}(\alpha^i\beta^j)$ are specified, can solve for $\alpha_1,\ldots,\alpha_n,\beta_1,\ldots,\beta_n$.

Ellenberg–Venkatesh: $\approx 8n$ mixed traces are enough.

Suppose $\alpha, \beta \in \mathcal{O}_K$. Then

$$\operatorname{Tr}_{K/\mathbb{Q}}(\alpha^i\beta^j) = \alpha_1^i\beta_1^j + \alpha_2^i\beta_2^j + \dots + \alpha_n^i\beta_n^j.$$

There are $\binom{n+2}{2} \approx \frac{n^2}{2}$ "mixed traces" $\mathrm{Tr}_{K/\mathbb{Q}}(\alpha^i\beta^j)$ with $i+j\leq n$.

Idea: If "enough" $\operatorname{Tr}_{K/\mathbb{Q}}(\alpha^i\beta^j)$ are specified, can solve for $\alpha_1,\ldots,\alpha_n,\beta_1,\ldots,\beta_n$.

Ellenberg–Venkatesh: $\approx 8n$ mixed traces are enough.

L.O.–Thorne: The 2n mixed traces with smallest i + j are enough.

Suppose $\alpha, \beta \in \mathcal{O}_K$. Then

$$\operatorname{Tr}_{K/\mathbb{Q}}(\alpha^i\beta^j) = \alpha_1^i\beta_1^j + \alpha_2^i\beta_2^j + \dots + \alpha_n^i\beta_n^j.$$

There are $\binom{n+2}{2} \approx \frac{n^2}{2}$ "mixed traces" $\mathrm{Tr}_{K/\mathbb{Q}}(\alpha^i\beta^j)$ with $i+j\leq n$.

Idea: If "enough" $\operatorname{Tr}_{K/\mathbb{Q}}(\alpha^i\beta^j)$ are specified, can solve for $\alpha_1,\ldots,\alpha_n,\beta_1,\ldots,\beta_n$.

Ellenberg–Venkatesh: $\approx 8n$ mixed traces are enough.

L.O.–Thorne: The 2n mixed traces with smallest i + j are enough. (More on this later!)

Consequences for field counting

The 2n traces $\operatorname{Tr}_{K/\mathbb{Q}}(\alpha^i\beta^j)$ with smallest i+j are "enough."

Consequences for field counting

The
$$2n$$
 traces ${
m Tr}_{K/\mathbb Q}(\alpha^i\beta^j)$ with smallest $i+j$ are "enough." $\Rightarrow i+j \approx 2\sqrt{n}$

Consequences for field counting

The
$$2n$$
 traces ${\rm Tr}_{K/\mathbb Q}(\alpha^i\beta^j)$ with smallest $i+j$ are "enough." $\Rightarrow i+j \approx 2\sqrt{n}$

If
$$||\alpha||, ||\beta|| \ll_n Y$$
, then $\mathrm{Tr}_{K/\mathbb{Q}}(\alpha^i \beta^j) \ll_n Y^{i+j}$

The 2n traces $\mathrm{Tr}_{K/\mathbb{Q}}(\alpha^i\beta^j)$ with smallest i+j are "enough." $\Rightarrow i+j \approx 2\sqrt{n}$

If $||\alpha||, ||\beta|| \ll_n Y$, then $\operatorname{Tr}_{K/\mathbb{Q}}(\alpha^i \beta^j) \ll_n Y^{i+j} = Y^{O(n^{1/2})}$.

The
$$2n$$
 traces ${\rm Tr}_{K/\mathbb Q}(\alpha^i\beta^j)$ with smallest $i+j$ are "enough." $\Rightarrow i+j \approx 2\sqrt{n}$

If
$$||\alpha||, ||\beta|| \ll_n Y$$
, then $\operatorname{Tr}_{K/\mathbb{Q}}(\alpha^i \beta^j) \ll_n Y^{i+j} = Y^{O(n^{1/2})}$.

2n different invariants \Rightarrow there are $\ll_n Y^{O(n^{3/2})}$ choices for α, β

The
$$2n$$
 traces ${\rm Tr}_{K/\mathbb Q}(\alpha^i\beta^j)$ with smallest $i+j$ are "enough." $\Rightarrow i+j \approx 2\sqrt{n}$

If
$$||\alpha||, ||\beta|| \ll_n Y$$
, then $\operatorname{Tr}_{K/\mathbb{Q}}(\alpha^i \beta^j) \ll_n Y^{i+j} = Y^{O(n^{1/2})}$.

2n different invariants \Rightarrow there are $\ll_n Y^{O(n^{3/2})}$ choices for α, β $\Rightarrow Y^{O(n^{3/2})}$ choices for K

The
$$2n$$
 traces ${
m Tr}_{K/\mathbb Q}(\alpha^i\beta^j)$ with smallest $i+j$ are "enough." $\Rightarrow i+j \approx 2\sqrt{n}$

If
$$||\alpha||, ||\beta|| \ll_n Y$$
, then $\operatorname{Tr}_{K/\mathbb{Q}}(\alpha^i \beta^j) \ll_n Y^{i+j} = Y^{O(n^{1/2})}$.

2n different invariants \Rightarrow there are $\ll_n Y^{O(n^{3/2})}$ choices for α, β $\Rightarrow Y^{O(n^{3/2})}$ choices for K

Schmidt: $Y = X^{\frac{1}{2n-2}}$.

The
$$2n$$
 traces ${\rm Tr}_{K/\mathbb Q}(\alpha^i\beta^j)$ with smallest $i+j$ are "enough." $\Rightarrow i+j\approx 2\sqrt{n}$

If
$$||\alpha||, ||\beta|| \ll_n Y$$
, then $\operatorname{Tr}_{K/\mathbb{Q}}(\alpha^i \beta^j) \ll_n Y^{i+j} = Y^{O(n^{1/2})}$.

2n different invariants \Rightarrow there are $\ll_n Y^{O(n^{3/2})}$ choices for α, β $\Rightarrow Y^{O(n^{3/2})}$ choices for K

Schmidt: $Y = X^{\frac{1}{2n-2}}$. For "technical reasons," we take $Y = X^{\frac{1}{n}}$.

The
$$2n$$
 traces ${
m Tr}_{K/\mathbb Q}(\alpha^i\beta^j)$ with smallest $i+j$ are "enough." $\Rightarrow i+j \approx 2\sqrt{n}$

If
$$||\alpha||, ||\beta|| \ll_n Y$$
, then $\operatorname{Tr}_{K/\mathbb{Q}}(\alpha^i \beta^j) \ll_n Y^{i+j} = Y^{O(n^{1/2})}$.

2n different invariants \Rightarrow there are $\ll_n Y^{O(n^{3/2})}$ choices for α, β $\Rightarrow Y^{O(n^{3/2})}$ choices for K

Schmidt: $Y = X^{\frac{1}{2n-2}}$. For "technical reasons," we take $Y = X^{\frac{1}{n}}$.

Theorem: $N_n(X) \ll_n X^{\frac{8}{3}\sqrt{n}}$.

We can apply the same idea to triples $\alpha, \beta, \gamma \in \mathcal{O}_K$, looking at $\mathrm{Tr}_{K/\mathbb{Q}}(\alpha^i\beta^j\gamma^k) \in \mathbb{Z}$.

We can apply the same idea to triples $\alpha, \beta, \gamma \in \mathcal{O}_K$, looking at $\mathrm{Tr}_{K/\mathbb{Q}}(\alpha^i\beta^j\gamma^k) \in \mathbb{Z}$.

Or, more generally, to r-tuples $\alpha_1, \ldots, \alpha_r \in \mathcal{O}_K$, looking at $\mathrm{Tr}_{K/\mathbb{Q}}(\alpha_1^{i_1} \ldots \alpha_r^{i_r}) \in \mathbb{Z}$.

We can apply the same idea to triples $\alpha, \beta, \gamma \in \mathcal{O}_K$, looking at $\mathrm{Tr}_{K/\mathbb{Q}}(\alpha^i\beta^j\gamma^k) \in \mathbb{Z}$.

Or, more generally, to r-tuples $\alpha_1, \ldots, \alpha_r \in \mathcal{O}_K$, looking at $\mathrm{Tr}_{K/\mathbb{Q}}(\alpha_1^{i_1} \ldots \alpha_r^{i_r}) \in \mathbb{Z}$.

Ellenberg–Venkatesh: $\approx 2^{2r-1}n$ mixed traces are "enough" to determine $\alpha_1, \ldots, \alpha_r$ (and therefore K).

We can apply the same idea to triples $\alpha, \beta, \gamma \in \mathcal{O}_K$, looking at $\mathrm{Tr}_{K/\mathbb{Q}}(\alpha^i\beta^j\gamma^k) \in \mathbb{Z}$.

Or, more generally, to r-tuples $\alpha_1, \ldots, \alpha_r \in \mathcal{O}_K$, looking at $\mathrm{Tr}_{K/\mathbb{Q}}(\alpha_1^{i_1} \ldots \alpha_r^{i_r}) \in \mathbb{Z}$.

Ellenberg–Venkatesh: $\approx 2^{2r-1}n$ mixed traces are "enough" to determine $\alpha_1, \ldots, \alpha_r$ (and therefore K).

L.O.–Thorne: $r \cdot n$ traces with "small" $i_1 + \cdots + i_r$ are enough.

We can apply the same idea to triples $\alpha, \beta, \gamma \in \mathcal{O}_K$, looking at $\mathrm{Tr}_{K/\mathbb{Q}}(\alpha^i\beta^j\gamma^k) \in \mathbb{Z}$.

Or, more generally, to r-tuples $\alpha_1, \ldots, \alpha_r \in \mathcal{O}_K$, looking at $\mathrm{Tr}_{K/\mathbb{Q}}(\alpha_1^{i_1} \ldots \alpha_r^{i_r}) \in \mathbb{Z}$.

Ellenberg–Venkatesh: $\approx 2^{2r-1}n$ mixed traces are "enough" to determine $\alpha_1, \ldots, \alpha_r$ (and therefore K).

L.O.–Thorne: $r \cdot n$ traces with "small" $i_1 + \cdots + i_r$ are enough.

Main theorem uses $r \approx \log n$.

We can apply the same idea to triples $\alpha, \beta, \gamma \in \mathcal{O}_K$, looking at $\mathrm{Tr}_{K/\mathbb{Q}}(\alpha^i\beta^j\gamma^k) \in \mathbb{Z}$.

Or, more generally, to r-tuples $\alpha_1, \ldots, \alpha_r \in \mathcal{O}_K$, looking at $\mathrm{Tr}_{K/\mathbb{Q}}(\alpha_1^{i_1} \ldots \alpha_r^{i_r}) \in \mathbb{Z}$.

Ellenberg–Venkatesh: $\approx 2^{2r-1}n$ mixed traces are "enough" to determine $\alpha_1, \ldots, \alpha_r$ (and therefore K).

L.O.–Thorne: $r \cdot n$ traces with "small" $i_1 + \cdots + i_r$ are enough.

Main theorem uses $r \approx \log n$.

Question: How do we actually show a set of traces is enough?

Suppose n = 3 and r = 2.

Suppose n=3 and r=2. Replace "variables" α_i by x_i and β_i by y_i .

Suppose n=3 and r=2. Replace "variables" α_i by x_i and β_i by y_i . We're considering the equations

$$T_{1,0} \colon x_1 + x_2 + x_3 = \operatorname{Tr}(\alpha), \quad T_{0,1} \colon y_1 + y_2 + y_3 = \operatorname{Tr}(\beta),$$

$$T_{2,0} \colon x_1^2 + x_2^2 + x_3^2 = \operatorname{Tr}(\alpha^2), \quad T_{1,1} \colon x_1 y_1 + x_2 y_2 + x_3 y_3 = \operatorname{Tr}(\alpha\beta),$$

$$T_{0,2} \colon y_1^2 + y_2^2 + y_3^2 = \operatorname{Tr}(\beta^2), \quad T_{3,0} \colon x_1^3 + x_2^3 + x_3^3 = \operatorname{Tr}(\alpha^3).$$

Suppose n=3 and r=2. Replace "variables" α_i by x_i and β_i by y_i . We're considering the equations

$$\begin{split} & \mathcal{T}_{1,0} \colon x_1 + x_2 + x_3 = \mathrm{Tr}(\alpha), \quad \mathcal{T}_{0,1} \colon y_1 + y_2 + y_3 = \mathrm{Tr}(\beta), \\ & \mathcal{T}_{2,0} \colon x_1^2 + x_2^2 + x_3^2 = \mathrm{Tr}(\alpha^2), \quad \mathcal{T}_{1,1} \colon x_1 y_1 + x_2 y_2 + x_3 y_3 = \mathrm{Tr}(\alpha\beta), \\ & \mathcal{T}_{0,2} \colon y_1^2 + y_2^2 + y_3^2 = \mathrm{Tr}(\beta^2), \quad \mathcal{T}_{3,0} \colon x_1^3 + x_2^3 + x_3^3 = \mathrm{Tr}(\alpha^3). \end{split}$$

We want to show we can "solve" for x_1, \ldots, y_3 given the traces.

Suppose n=3 and r=2. Replace "variables" α_i by x_i and β_i by y_i . We're considering the equations

$$T_{1,0} \colon x_1 + x_2 + x_3 = \operatorname{Tr}(\alpha), \quad T_{0,1} \colon y_1 + y_2 + y_3 = \operatorname{Tr}(\beta),$$

$$T_{2,0} \colon x_1^2 + x_2^2 + x_3^2 = \operatorname{Tr}(\alpha^2), \quad T_{1,1} \colon x_1 y_1 + x_2 y_2 + x_3 y_3 = \operatorname{Tr}(\alpha\beta),$$

$$T_{0,2} \colon y_1^2 + y_2^2 + y_3^2 = \operatorname{Tr}(\beta^2), \quad T_{3,0} \colon x_1^3 + x_2^3 + x_3^3 = \operatorname{Tr}(\alpha^3).$$

We want to show we can "solve" for x_1, \ldots, y_3 given the traces.

Actual goal: Want to show the variety cut out by these eq'ns has dimension 0.

Goal: Show that dim $V(T_{1,0}, T_{0,1}, T_{2,0}, T_{1,1}, T_{0,2}, T_{3,0}) = 0$.

Goal: Show that dim $V(T_{1,0}, T_{0,1}, T_{2,0}, T_{1,1}, T_{0,2}, T_{3,0}) = 0$.

Compute the tangent space, i.e. the kernel of the 6×6 matrix

$$D := \begin{pmatrix} \nabla T_{1,0} \\ \nabla T_{0,1} \\ \nabla T_{2,0} \\ \nabla T_{1,1} \\ \nabla T_{0,2} \\ \nabla T_{3,0} \end{pmatrix}.$$

Goal: Show that dim $V(T_{1,0}, T_{0,1}, T_{2,0}, T_{1,1}, T_{0,2}, T_{3,0}) = 0$.

Compute the tangent space, i.e. the kernel of the 6×6 matrix

$$D := \begin{pmatrix} \nabla T_{1,0} \\ \nabla T_{0,1} \\ \nabla T_{2,0} \\ \nabla T_{1,1} \\ \nabla T_{0,2} \\ \nabla T_{3,0} \end{pmatrix}.$$

Hope $\ker D = 0$,

Goal: Show that dim $V(T_{1,0}, T_{0,1}, T_{2,0}, T_{1,1}, T_{0,2}, T_{3,0}) = 0$.

Compute the tangent space, i.e. the kernel of the 6×6 matrix

$$D := \begin{pmatrix} \nabla T_{1,0} \\ \nabla T_{0,1} \\ \nabla T_{2,0} \\ \nabla T_{1,1} \\ \nabla T_{0,2} \\ \nabla T_{3,0} \end{pmatrix}.$$

Hope ker D = 0, i.e. det $D \neq 0$.

Goal: Show that dim $V(T_{1,0}, T_{0,1}, T_{2,0}, T_{1,1}, T_{0,2}, T_{3,0}) = 0$.

Compute the tangent space, i.e. the kernel of the 6×6 matrix

$$D := \begin{pmatrix} \nabla T_{1,0} \\ \nabla T_{0,1} \\ \nabla T_{2,0} \\ \nabla T_{1,1} \\ \nabla T_{0,2} \\ \nabla T_{3,0} \end{pmatrix}.$$

Hope ker D = 0, i.e. det $D \neq 0$. In fact,

$$\det D = -12(x_1 - x_2)(x_1 - x_3)(x_2 - x_3)(x_1y_2 - x_1y_3 - x_2y_1 + x_2y_3 + x_3y_1 - x_3y_2).$$

Upshot: $\det D$ is a non-zero polynomial

Upshot: det D is a non-zero polynomial such that if det $D(\vec{\alpha}, \vec{\beta}) \neq 0$,

Upshot: det D is a non-zero polynomial such that if det $D(\vec{\alpha}, \vec{\beta}) \neq 0$, then the traces $\operatorname{Tr}(\alpha), \operatorname{Tr}(\beta), \operatorname{Tr}(\alpha^2), \operatorname{Tr}(\alpha\beta), \operatorname{Tr}(\beta^2), \operatorname{Tr}(\alpha^3)$ determine K.

Upshot: det D is a non-zero polynomial such that if det $D(\vec{\alpha}, \vec{\beta}) \neq 0$, then the traces $\text{Tr}(\alpha), \text{Tr}(\beta), \text{Tr}(\alpha^2), \text{Tr}(\alpha\beta), \text{Tr}(\beta^2), \text{Tr}(\alpha^3)$ determine K.

Lemma

If $P:(\mathbb{C}^n)^r \to \mathbb{C}$ is a non-zero polynomial and $[K:\mathbb{Q}]=n$,

Upshot: det D is a non-zero polynomial such that if det $D(\vec{\alpha}, \vec{\beta}) \neq 0$, then the traces $\text{Tr}(\alpha), \text{Tr}(\beta), \text{Tr}(\alpha^2), \text{Tr}(\alpha\beta), \text{Tr}(\beta^2), \text{Tr}(\alpha^3)$ determine K.

Lemma

If $P: (\mathbb{C}^n)^r \to \mathbb{C}$ is a non-zero polynomial and $[K:\mathbb{Q}] = n$, then there exist $\alpha_1, \ldots, \alpha_r \in \mathcal{O}_K$ with each $||\alpha_i|| \ll_{n,P} |\mathrm{Disc}(K)|^{1/n}$ such that $P(\vec{\alpha_1}, \ldots, \vec{\alpha_r}) \neq 0$.

Upshot: det D is a non-zero polynomial such that if det $D(\vec{\alpha}, \vec{\beta}) \neq 0$, then the traces $\text{Tr}(\alpha), \text{Tr}(\beta), \text{Tr}(\alpha^2), \text{Tr}(\alpha\beta), \text{Tr}(\beta^2), \text{Tr}(\alpha^3)$ determine K.

Lemma

If $P: (\mathbb{C}^n)^r \to \mathbb{C}$ is a non-zero polynomial and $[K:\mathbb{Q}] = n$, then there exist $\alpha_1, \ldots, \alpha_r \in \mathcal{O}_K$ with each $||\alpha_i|| \ll_{n,P} |\mathrm{Disc}(K)|^{1/n}$ such that $P(\vec{\alpha_1}, \ldots, \vec{\alpha_r}) \neq 0$.

Applied to det *D* with n = 3, r = 2, we find:

$$N_3(X) \ll X^{\frac{1+1+2+2+2+3}{3}}$$

Upshot: det D is a non-zero polynomial such that if det $D(\vec{\alpha}, \vec{\beta}) \neq 0$, then the traces $\text{Tr}(\alpha), \text{Tr}(\beta), \text{Tr}(\alpha^2), \text{Tr}(\alpha\beta), \text{Tr}(\beta^2), \text{Tr}(\alpha^3)$ determine K.

Lemma

If $P: (\mathbb{C}^n)^r \to \mathbb{C}$ is a non-zero polynomial and $[K:\mathbb{Q}] = n$, then there exist $\alpha_1, \ldots, \alpha_r \in \mathcal{O}_K$ with each $||\alpha_i|| \ll_{n,P} |\mathrm{Disc}(K)|^{1/n}$ such that $P(\vec{\alpha_1}, \ldots, \vec{\alpha_r}) \neq 0$.

Applied to det *D* with n = 3, r = 2, we find:

$$N_3(X) \ll X^{\frac{1+1+2+2+2+3}{3}} = X^{11/3}.$$

Upshot: det D is a non-zero polynomial such that if det $D(\vec{\alpha}, \vec{\beta}) \neq 0$, then the traces $\text{Tr}(\alpha), \text{Tr}(\beta), \text{Tr}(\alpha^2), \text{Tr}(\alpha\beta), \text{Tr}(\beta^2), \text{Tr}(\alpha^3)$ determine K.

Lemma

If $P: (\mathbb{C}^n)^r \to \mathbb{C}$ is a non-zero polynomial and $[K:\mathbb{Q}] = n$, then there exist $\alpha_1, \ldots, \alpha_r \in \mathcal{O}_K$ with each $||\alpha_i|| \ll_{n,P} |\mathrm{Disc}(K)|^{1/n}$ such that $P(\vec{\alpha_1}, \ldots, \vec{\alpha_r}) \neq 0$.

Applied to det *D* with n = 3, r = 2, we find:

$$N_3(X) \ll X^{\frac{1+1+2+2+2+3}{3}} = X^{11/3}.$$

In general, we've transformed the problem into showing a (horrible!) determinant is a non-zero polynomial.

Theorem (LO–Thorne; r = 2)

If D is the $2n \times 2n$ matrix of partial derivatives of the first 2n functions $T_{1,0}, T_{0,1}, T_{2,0}, T_{1,1}, \ldots$, with

$$T_{a,b} := \sum_{i=1}^n x_i^a y_i^b,$$

then det D is a non-zero polynomial in x_1, \ldots, y_n .

Theorem (LO–Thorne; r = 2)

If D is the $2n \times 2n$ matrix of partial derivatives of the first 2n functions $T_{1,0}, T_{0,1}, T_{2,0}, T_{1,1}, \ldots$, with

$$T_{a,b} := \sum_{i=1}^n x_i^a y_i^b,$$

then det D is a non-zero polynomial in x_1, \ldots, y_n .

Proof.

Induction. $n\mapsto n+1$ gives two new rows and two new columns. Cofactor expansion \Rightarrow new 2×2 contribution not canceled.

Theorem (LO–Thorne; r = 2)

If D is the $2n \times 2n$ matrix of partial derivatives of the first 2n functions $T_{1,0}, T_{0,1}, T_{2,0}, T_{1,1}, \ldots$, with

$$T_{a,b} := \sum_{i=1}^n x_i^a y_i^b,$$

then det D is a non-zero polynomial in x_1, \ldots, y_n .

Proof.

Induction. $n\mapsto n+1$ gives two new rows and two new columns. Cofactor expansion \Rightarrow new 2×2 contribution not canceled.

Leads to the bound $N_n(X) \ll X^{\frac{8}{3}\sqrt{n}}$.

Theorem (LO–Thorne; r > 2) Let $n \ge 6$ and $r \ge 3$.

Theorem (LO–Thorne; r > 2)

Let $n \ge 6$ and $r \ge 3$. Suppose d is such that $\binom{d+r-1}{r-1} \ge r \cdot n$, and that $(d,r,n) \ne (3,5,7), (4,5,14)$.

Theorem (LO–Thorne; r > 2)

Let $n \ge 6$ and $r \ge 3$. Suppose d is such that $\binom{d+r-1}{r-1} \ge r \cdot n$, and that $(d,r,n) \ne (3,5,7), (4,5,14)$. Then there is a set of $r \cdot n$ functions of the form T_{a_1,\ldots,a_r} with $a_1+\cdots+a_r=d$ such that det D is a non-zero polynomial.

Theorem (LO–Thorne; r > 2)

Let $n \ge 6$ and $r \ge 3$. Suppose d is such that $\binom{d+r-1}{r-1} \ge r \cdot n$, and that $(d,r,n) \ne (3,5,7), (4,5,14)$. Then there is a set of $r \cdot n$ functions of the form T_{a_1,\ldots,a_r} with $a_1 + \cdots + a_r = d$ such that det D is a non-zero polynomial.

Proof.

Uses a hammer from algebraic geometry, the Alexander–Hirschowitz theorem.

Theorem (LO–Thorne; r > 2)

Let $n \ge 6$ and $r \ge 3$. Suppose d is such that $\binom{d+r-1}{r-1} \ge r \cdot n$, and that $(d,r,n) \ne (3,5,7), (4,5,14)$. Then there is a set of $r \cdot n$ functions of the form T_{a_1,\ldots,a_r} with $a_1 + \cdots + a_r = d$ such that det D is a non-zero polynomial.

Proof.

Uses a hammer from algebraic geometry, the Alexander–Hirschowitz theorem.

Leads to the bound $N_n(X) \ll_n (X^{\frac{d}{n}})^{rn} = X^{dr}$

Theorem (LO–Thorne; r > 2)

Let $n \ge 6$ and $r \ge 3$. Suppose d is such that $\binom{d+r-1}{r-1} \ge r \cdot n$, and that $(d,r,n) \ne (3,5,7), (4,5,14)$. Then there is a set of $r \cdot n$ functions of the form T_{a_1,\ldots,a_r} with $a_1 + \cdots + a_r = d$ such that det D is a non-zero polynomial.

Proof.

Uses a hammer from algebraic geometry, the Alexander–Hirschowitz theorem.

Leads to the bound $N_n(X) \ll_n (X^{\frac{d}{n}})^{rn} = X^{dr} = X^{O(r^2n^{\frac{1}{r-1}})}$.

Summary

Theorem (LO-Thorne; explicit version)

1) Let d be the least integer for which $\binom{d+2}{2} \ge 2n+1$. Then

$$N_n(X) \ll_n X^{2d - \frac{d(d-1)(d+4)}{6n}} \ll X^{\frac{8\sqrt{n}}{3}}.$$

2) Let $3 \le r \le n$ and let d be such that $\binom{d+r-1}{r-1} \ge rn$. Then $N_n(X) \ll_{n,r,d} X^{dr}$.

Summary

Theorem (LO-Thorne; explicit version)

1) Let d be the least integer for which $\binom{d+2}{2} \ge 2n+1$. Then

$$N_n(X) \ll_n X^{2d - \frac{d(d-1)(d+4)}{6n}} \ll X^{\frac{8\sqrt{n}}{3}}.$$

2) Let $3 \le r \le n$ and let d be such that $\binom{d+r-1}{r-1} \ge rn$. Then $N_n(X) \ll_{n,r,d} X^{dr}$.

Theorem (LO-Thorne; asymptotic version)

There is a constant c > 0 such that $N_n(X) \ll_n X^{c(\log n)^2}$. In fact, c = 1.564 is admissible.

